import altair as alt
import pandas as pd
from vega_datasets import data
df = pd.DataFrame({
'Name': ['Big M*c', 'Lg Supreme Pizza', '12" Veggie Delite', "500ml Coke"],
'Calories': [540, 350, 460, 210],
'Fat': [28, 17, 6, 0],
'Sugar': [9, 2, 12, 53]
})
alt.Chart(
df,
padding=20,
background='#fff'
).mark_bar(
).encode(
x='Name',
y='Calories'
).properties(
width=150,
height=200
)
alt.Chart(
df,
padding=20,
background='#fff'
).mark_circle(
).encode(
x='Fat',
y='Sugar',
size='Calories'
).properties(
width=200,
height=00
)
base = alt.Chart(
df,
).encode(
x='Name'
).properties(
width=150,
height=200
)
cal = base.mark_bar(
).encode(
y=alt.Y('Calories', axis=alt.Axis(orient='left')),
)
sugar = base.mark_line(
color='orange'
).encode(
y=alt.Y('Sugar', axis=alt.Axis(orient='right')),
)
(cal + sugar).resolve_scale(
y='independent'
).configure(
padding=20,
background='#fff'
)
source = data.movies.url
alt.Chart(
source,
padding=20,
background='#fff'
).mark_bar(
).encode(
alt.X("IMDB_Rating:Q", bin=True),
y='count()',
)
source = data.movies.url
alt.Chart(
source,
padding=20,
background='#fff'
).mark_bar(
).encode(
alt.X("IMDB_Rating:Q", bin=True),
y='average(Worldwide_Gross):Q',
)