import numpy as np
import pandas as pd
import scipy as sp
import emcee
from sklearn.pipeline import Pipeline
from sklearn.compose import TransformedTargetRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import RobustScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score, ShuffleSplit, KFold
from scipy import stats
from math import *
import sys
import re
import os
from itertools import chain
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
from tqdm import tqdm_notebook as tqdm
np.random.seed(0) # for reproducibility
import seaborn as sns
sns.set(style="ticks", palette="muted", rc={"xtick.bottom" : True, "ytick.left" : True})
plt.style.use('matplotlibrc')
import warnings
warnings.filterwarnings('ignore')
DF = pd.read_table('../regression/classical/models_cep.dat', sep='\t')
DF.drop(columns=['Mode'], inplace=True)
DF = DF[DF['M'] < 9]
pd.set_option('display.max_columns', 500)
DF['Period'] = np.log10(DF['Period'])
DF.rename(columns={'Period':'logP'}, inplace=True)
DF['W'] = DF['I_M0'] - 1.55 * (DF['V_M0'] - DF['I_M0'])
DF['VI'] = DF['V_M0'] - DF['I_M0']
DF['logR'] = np.log10(np.sqrt(10**DF['logL']) * (DF['Teff']/5777)**-2)
print(DF.columns)
DF
Index(['M', 'Z', 'logR', 'logL', 'Teff', 'logP', 'I_Amplitude', 'I_Skewness', 'I_acuteness', 'I_R21', 'I_R31', 'I_M0', 'I_A1', 'I_A2', 'I_A3', 'V_Amplitude', 'V_Skewness', 'V_acuteness', 'V_R21', 'V_R31', 'V_M0', 'V_A1', 'V_A2', 'V_A3', 'W', 'VI'], dtype='object')
M | Z | logR | logL | Teff | logP | I_Amplitude | I_Skewness | I_acuteness | I_R21 | I_R31 | I_M0 | I_A1 | I_A2 | I_A3 | V_Amplitude | V_Skewness | V_acuteness | V_R21 | V_R31 | V_M0 | V_A1 | V_A2 | V_A3 | W | VI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4.6 | 0.008 | 1.477102 | 3.02 | 6000 | 0.466380 | 0.552 | 2.571 | 1.329 | 0.43929 | 0.15010 | -3.38631 | 0.21697 | 0.09531 | 0.03257 | 0.882 | 2.368 | 1.830 | 0.44330 | 0.15349 | -2.74358 | 0.34335 | 0.15220 | 0.05270 | -4.382541 | 0.64273 |
1 | 4.6 | 0.008 | 1.477102 | 3.02 | 6000 | 0.466650 | 0.800 | 3.099 | 1.551 | 0.54260 | 0.26072 | -3.36715 | 0.27487 | 0.14915 | 0.07166 | 1.298 | 2.969 | 2.134 | 0.54981 | 0.26784 | -2.71277 | 0.43298 | 0.23806 | 0.11597 | -4.381439 | 0.65438 |
2 | 4.6 | 0.008 | 1.491701 | 3.02 | 5900 | 0.490475 | 0.440 | 2.425 | 0.921 | 0.37955 | 0.11013 | -3.40824 | 0.18830 | 0.07147 | 0.02074 | 0.678 | 2.087 | 1.341 | 0.38871 | 0.11579 | -2.73952 | 0.29563 | 0.11492 | 0.03423 | -4.444756 | 0.66872 |
3 | 4.6 | 0.008 | 1.491701 | 3.02 | 5900 | 0.490745 | 0.691 | 3.717 | 1.143 | 0.51889 | 0.22975 | -3.39157 | 0.25519 | 0.13242 | 0.05863 | 1.085 | 2.496 | 1.791 | 0.52955 | 0.23697 | -2.71144 | 0.39741 | 0.21045 | 0.09417 | -4.445771 | 0.68013 |
4 | 4.6 | 0.008 | 1.506549 | 3.02 | 5800 | 0.514472 | 0.317 | 1.950 | 0.761 | 0.32980 | 0.13680 | -3.42835 | 0.14776 | 0.04873 | 0.02021 | 0.501 | 3.309 | 1.088 | 0.34265 | 0.14114 | -2.73490 | 0.23427 | 0.08027 | 0.03307 | -4.503197 | 0.69345 |
5 | 4.6 | 0.008 | 1.506549 | 3.02 | 5800 | 0.515287 | 0.561 | 3.548 | 0.815 | 0.45976 | 0.19837 | -3.41423 | 0.23158 | 0.10647 | 0.04594 | 0.863 | 3.032 | 1.273 | 0.47535 | 0.20595 | -2.70878 | 0.35680 | 0.16960 | 0.07348 | -4.507678 | 0.70545 |
6 | 4.6 | 0.008 | 1.521655 | 3.02 | 5700 | 0.539598 | 0.197 | 2.598 | 0.772 | 0.30496 | 0.13906 | -3.44669 | 0.09311 | 0.02840 | 0.01295 | 0.336 | 2.448 | 1.139 | 0.31027 | 0.13521 | -2.72857 | 0.15312 | 0.04751 | 0.02070 | -4.559776 | 0.71812 |
7 | 4.6 | 0.008 | 1.521655 | 3.02 | 5700 | 0.540138 | 0.470 | 9.423 | 0.687 | 0.40808 | 0.20670 | -3.43443 | 0.19822 | 0.08089 | 0.04097 | 0.744 | 8.712 | 1.184 | 0.42691 | 0.21526 | -2.70324 | 0.30525 | 0.13032 | 0.06571 | -4.567775 | 0.73119 |
8 | 4.6 | 0.008 | 1.537029 | 3.02 | 5600 | 0.565515 | 0.403 | 7.699 | 0.726 | 0.40512 | 0.24458 | -3.45241 | 0.15827 | 0.06412 | 0.03871 | 0.638 | 7.132 | 1.252 | 0.42260 | 0.24895 | -2.69574 | 0.24744 | 0.10457 | 0.06160 | -4.625248 | 0.75667 |
9 | 4.6 | 0.008 | 1.552679 | 3.02 | 5500 | 0.590934 | 0.286 | 4.781 | 0.864 | 0.42011 | 0.24556 | -3.46875 | 0.11408 | 0.04793 | 0.02801 | 0.461 | 2.677 | 1.398 | 0.41801 | 0.23619 | -2.68691 | 0.18560 | 0.07758 | 0.04384 | -4.680602 | 0.78184 |
10 | 4.6 | 0.008 | 1.587745 | 3.27 | 6100 | 0.654317 | 0.073 | 0.748 | 1.245 | 0.07664 | 0.06854 | -4.01908 | 0.03354 | 0.00257 | 0.00230 | 0.111 | 0.742 | 1.162 | 0.07363 | 0.06663 | -3.42357 | 0.05303 | 0.00390 | 0.00353 | -4.942121 | 0.59551 |
11 | 4.6 | 0.008 | 1.602102 | 3.27 | 6000 | 0.679052 | 0.516 | 2.573 | 1.294 | 0.39981 | 0.12866 | -4.01708 | 0.20772 | 0.08305 | 0.02673 | 0.822 | 2.637 | 1.575 | 0.39753 | 0.12860 | -3.38021 | 0.32757 | 0.13022 | 0.04213 | -5.004228 | 0.63687 |
12 | 4.6 | 0.008 | 1.602102 | 3.27 | 6000 | 0.679590 | 0.732 | 4.153 | 1.257 | 0.49614 | 0.23591 | -4.00088 | 0.26395 | 0.13096 | 0.06227 | 1.170 | 3.740 | 1.635 | 0.49643 | 0.23806 | -3.35500 | 0.41574 | 0.20638 | 0.09897 | -5.001994 | 0.64588 |
13 | 4.6 | 0.008 | 1.616701 | 3.27 | 5900 | 0.703394 | 0.745 | 3.589 | 0.747 | 0.52244 | 0.21904 | -4.01850 | 0.26619 | 0.13907 | 0.05830 | 1.176 | 3.221 | 1.248 | 0.52621 | 0.22176 | -3.34266 | 0.41184 | 0.21671 | 0.09133 | -5.066052 | 0.67584 |
14 | 4.6 | 0.008 | 1.616701 | 3.27 | 5900 | 0.703932 | 0.544 | 2.473 | 0.823 | 0.41532 | 0.10969 | -4.03276 | 0.21271 | 0.08834 | 0.02333 | 0.851 | 2.585 | 1.173 | 0.41697 | 0.11089 | -3.36541 | 0.33062 | 0.13786 | 0.03666 | -5.067152 | 0.66735 |
15 | 4.6 | 0.008 | 1.631549 | 3.27 | 5800 | 0.729115 | 0.480 | 1.891 | 0.527 | 0.38483 | 0.11141 | -4.05230 | 0.19198 | 0.07388 | 0.02139 | 0.736 | 2.030 | 0.725 | 0.39419 | 0.11619 | -3.35633 | 0.29389 | 0.11585 | 0.03415 | -5.131053 | 0.69597 |
16 | 4.6 | 0.008 | 1.631549 | 3.27 | 5800 | 0.729384 | 0.678 | 3.064 | 0.508 | 0.51588 | 0.16413 | -4.03980 | 0.25118 | 0.12958 | 0.04123 | 1.044 | 3.150 | 0.704 | 0.52505 | 0.16800 | -3.33552 | 0.38205 | 0.20060 | 0.06418 | -5.131434 | 0.70428 |
17 | 4.6 | 0.008 | 1.646655 | 3.27 | 5700 | 0.754374 | 0.397 | 1.611 | 0.430 | 0.36775 | 0.16609 | -4.07079 | 0.15964 | 0.05871 | 0.02651 | 0.595 | 1.793 | 0.490 | 0.38535 | 0.17103 | -3.34747 | 0.24225 | 0.09335 | 0.04143 | -5.191936 | 0.72332 |
18 | 4.6 | 0.008 | 1.646655 | 3.27 | 5700 | 0.754911 | 0.611 | 2.290 | 0.392 | 0.47613 | 0.14588 | -4.05976 | 0.23014 | 0.10958 | 0.03357 | 0.898 | 2.413 | 0.448 | 0.49403 | 0.15279 | -3.32798 | 0.34393 | 0.16991 | 0.05255 | -5.194019 | 0.73178 |
19 | 4.6 | 0.008 | 1.662029 | 3.27 | 5600 | 0.780413 | 0.530 | 2.003 | 0.383 | 0.45236 | 0.16807 | -4.07881 | 0.19704 | 0.08914 | 0.03312 | 0.776 | 2.105 | 0.421 | 0.47957 | 0.17550 | -3.31934 | 0.29137 | 0.13973 | 0.05114 | -5.255988 | 0.75947 |
20 | 4.6 | 0.008 | 1.677679 | 3.27 | 5500 | 0.806160 | 0.199 | 1.494 | 0.431 | 0.43636 | 0.08023 | -4.10129 | 0.08647 | 0.03773 | 0.00694 | 0.320 | 1.681 | 0.474 | 0.45539 | 0.07596 | -3.32157 | 0.13359 | 0.06084 | 0.01015 | -5.309856 | 0.77972 |
21 | 4.6 | 0.008 | 1.677679 | 3.27 | 5500 | 0.806698 | 0.455 | 1.755 | 0.374 | 0.47853 | 0.12431 | -4.09307 | 0.17331 | 0.08293 | 0.02154 | 0.681 | 1.907 | 0.415 | 0.51557 | 0.12541 | -3.30416 | 0.25534 | 0.13165 | 0.03202 | -5.315881 | 0.78891 |
22 | 4.6 | 0.008 | 1.693617 | 3.27 | 5400 | 0.832441 | 0.077 | 1.748 | 0.511 | 0.37569 | 0.03939 | -4.11376 | 0.03565 | 0.01339 | 0.00140 | 0.132 | 1.916 | 0.618 | 0.36950 | 0.03674 | -3.30635 | 0.05770 | 0.02132 | 0.00212 | -5.365246 | 0.80741 |
23 | 4.6 | 0.008 | 1.693617 | 3.27 | 5400 | 0.832980 | 0.329 | 0.550 | 0.405 | 0.56023 | 0.08291 | -4.10756 | 0.13184 | 0.07386 | 0.01093 | 0.498 | 2.509 | 0.443 | 0.59848 | 0.08684 | -3.29059 | 0.19630 | 0.11748 | 0.01705 | -5.373863 | 0.81697 |
24 | 4.6 | 0.008 | 1.709853 | 3.27 | 5300 | 0.859297 | 0.178 | 0.493 | 0.429 | 0.67353 | 0.12277 | -4.12149 | 0.06807 | 0.04585 | 0.00836 | 0.288 | 3.000 | 0.495 | 0.68888 | 0.12505 | -3.27754 | 0.10444 | 0.07194 | 0.01306 | -5.429613 | 0.84395 |
25 | 4.6 | 0.008 | 1.726398 | 3.27 | 5200 | 0.888073 | 0.100 | 0.495 | 0.521 | 0.62750 | 0.11560 | -4.13025 | 0.03581 | 0.02247 | 0.00414 | 0.150 | 0.546 | 0.509 | 0.59487 | 0.10824 | -3.25549 | 0.05798 | 0.03449 | 0.00628 | -5.486128 | 0.87476 |
26 | 4.6 | 0.008 | 1.743264 | 3.27 | 5100 | 0.915084 | 0.106 | 0.616 | 0.830 | 0.28357 | 0.07916 | -4.13531 | 0.04535 | 0.01286 | 0.00359 | 0.168 | 0.618 | 0.740 | 0.25690 | 0.07211 | -3.22846 | 0.07514 | 0.01930 | 0.00542 | -5.540927 | 0.90685 |
27 | 4.7 | 0.008 | 1.492102 | 3.05 | 6000 | 0.481891 | 0.595 | 3.000 | 1.396 | 0.44053 | 0.16614 | -3.45621 | 0.23044 | 0.10151 | 0.03829 | 0.948 | 2.322 | 1.867 | 0.44560 | 0.17041 | -2.81648 | 0.36351 | 0.16198 | 0.06195 | -4.447792 | 0.63973 |
28 | 4.7 | 0.008 | 1.506701 | 3.05 | 5900 | 0.509512 | 0.466 | 2.311 | 0.961 | 0.38518 | 0.12466 | -3.48209 | 0.19809 | 0.07630 | 0.02469 | 0.720 | 2.311 | 1.376 | 0.39332 | 0.12888 | -2.81304 | 0.31034 | 0.12207 | 0.04000 | -4.519118 | 0.66905 |
29 | 4.7 | 0.008 | 1.506701 | 3.05 | 5900 | 0.509783 | 0.712 | 4.000 | 1.128 | 0.51291 | 0.23322 | -3.46513 | 0.26203 | 0.13440 | 0.06111 | 1.122 | 3.877 | 1.811 | 0.52423 | 0.24029 | -2.78482 | 0.40732 | 0.21353 | 0.09787 | -4.519611 | 0.68031 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
361 | 6.8 | 0.008 | 1.957679 | 3.83 | 5500 | 1.183636 | 0.886 | 2.154 | 1.579 | 0.20728 | 0.16471 | -5.46599 | 0.32597 | 0.06757 | 0.05369 | 1.437 | 2.096 | 2.270 | 0.22320 | 0.17183 | -4.64929 | 0.50731 | 0.11323 | 0.08717 | -6.731875 | 0.81670 |
362 | 6.8 | 0.008 | 1.957679 | 3.83 | 5500 | 1.184432 | 1.114 | 2.650 | 1.596 | 0.22364 | 0.14890 | -5.44759 | 0.38111 | 0.08523 | 0.05675 | 1.791 | 2.611 | 2.596 | 0.24342 | 0.16026 | -4.61944 | 0.58441 | 0.14226 | 0.09366 | -6.731222 | 0.82815 |
363 | 6.8 | 0.008 | 1.973617 | 3.83 | 5400 | 1.212477 | 0.920 | 2.258 | 1.301 | 0.23926 | 0.12553 | -5.47349 | 0.34199 | 0.08182 | 0.04293 | 1.485 | 2.205 | 1.828 | 0.25810 | 0.13166 | -4.61694 | 0.52495 | 0.13549 | 0.06911 | -6.801142 | 0.85655 |
364 | 6.8 | 0.008 | 1.973617 | 3.83 | 5400 | 1.214062 | 1.203 | 2.788 | 1.239 | 0.26035 | 0.10239 | -5.45024 | 0.41240 | 0.10737 | 0.04223 | 1.924 | 2.760 | 1.865 | 0.28439 | 0.11656 | -4.57804 | 0.62060 | 0.17649 | 0.07234 | -6.802150 | 0.87220 |
365 | 6.8 | 0.008 | 1.989853 | 3.83 | 5300 | 1.240656 | 0.803 | 1.977 | 0.967 | 0.25822 | 0.10658 | -5.48847 | 0.32696 | 0.08443 | 0.03485 | 1.284 | 1.994 | 1.414 | 0.27758 | 0.10772 | -4.60073 | 0.49852 | 0.13838 | 0.05370 | -6.864467 | 0.88774 |
366 | 6.8 | 0.008 | 1.989853 | 3.83 | 5300 | 1.242768 | 1.153 | 2.704 | 0.907 | 0.31810 | 0.04840 | -5.46142 | 0.41673 | 0.13256 | 0.02017 | 1.835 | 2.717 | 1.449 | 0.34081 | 0.06403 | -4.55209 | 0.61916 | 0.21101 | 0.03965 | -6.870881 | 0.90933 |
367 | 6.8 | 0.008 | 2.006398 | 3.83 | 5200 | 1.267441 | 0.681 | 1.578 | 0.871 | 0.22987 | 0.08779 | -5.50440 | 0.29649 | 0.06815 | 0.02603 | 1.081 | 2.355 | 1.139 | 0.25151 | 0.08919 | -4.58942 | 0.45067 | 0.11335 | 0.04019 | -6.922619 | 0.91498 |
368 | 6.8 | 0.008 | 2.023264 | 3.83 | 5100 | 1.294895 | 0.525 | 1.359 | 0.843 | 0.20046 | 0.06900 | -5.51983 | 0.24876 | 0.04987 | 0.01716 | 0.882 | 2.205 | 1.149 | 0.22140 | 0.07261 | -4.57853 | 0.37979 | 0.08409 | 0.02758 | -6.978845 | 0.94130 |
369 | 6.8 | 0.008 | 2.023264 | 3.83 | 5100 | 1.299946 | 0.889 | 1.933 | 0.683 | 0.31191 | 0.03655 | -5.49136 | 0.37241 | 0.11616 | 0.01361 | 1.409 | 3.238 | 0.906 | 0.33657 | 0.04903 | -4.52189 | 0.54627 | 0.18386 | 0.02679 | -6.994039 | 0.96947 |
370 | 6.8 | 0.008 | 2.040465 | 3.83 | 5000 | 1.317512 | 0.419 | 2.185 | 0.855 | 0.17097 | 0.07711 | -5.53071 | 0.20354 | 0.03480 | 0.01570 | 0.707 | 1.986 | 1.134 | 0.19007 | 0.08158 | -4.56796 | 0.31308 | 0.05951 | 0.02554 | -7.022972 | 0.96275 |
371 | 6.8 | 0.008 | 2.040465 | 3.83 | 5000 | 1.322616 | 0.805 | 3.237 | 0.676 | 0.27379 | 0.02656 | -5.50048 | 0.34945 | 0.09568 | 0.00928 | 1.314 | 3.201 | 0.927 | 0.29827 | 0.03968 | -4.50717 | 0.51248 | 0.15286 | 0.02033 | -7.040111 | 0.99331 |
372 | 6.8 | 0.008 | 2.058013 | 3.83 | 4900 | 1.356278 | 0.703 | 3.184 | 0.687 | 0.24726 | 0.04981 | -5.50731 | 0.32061 | 0.07927 | 0.01597 | 1.162 | 3.099 | 0.946 | 0.27174 | 0.05936 | -4.47620 | 0.47261 | 0.12843 | 0.02805 | -7.105530 | 1.03111 |
373 | 6.8 | 0.008 | 2.075922 | 3.83 | 4800 | 1.384846 | 0.647 | 2.732 | 0.701 | 0.27153 | 0.10357 | -5.50801 | 0.30338 | 0.08238 | 0.03142 | 1.079 | 2.704 | 0.983 | 0.29678 | 0.11335 | -4.44144 | 0.44931 | 0.13334 | 0.05093 | -7.161193 | 1.06657 |
374 | 6.8 | 0.008 | 2.094209 | 3.83 | 4700 | 1.408872 | 0.617 | 7.930 | 0.737 | 0.29407 | 0.15436 | -5.50917 | 0.28010 | 0.08237 | 0.04323 | 1.012 | 2.559 | 1.051 | 0.31722 | 0.16223 | -4.41539 | 0.41749 | 0.13244 | 0.06773 | -7.204529 | 1.09378 |
375 | 6.8 | 0.008 | 2.112889 | 3.83 | 4600 | 1.440466 | 0.480 | 5.454 | 0.793 | 0.32401 | 0.20694 | -5.51676 | 0.21084 | 0.06832 | 0.04363 | 0.744 | 2.125 | 1.220 | 0.33283 | 0.20419 | -4.39404 | 0.32322 | 0.10758 | 0.06600 | -7.256976 | 1.12272 |
376 | 7.4 | 0.008 | 1.871549 | 3.75 | 5800 | 0.999544 | 0.112 | 1.066 | 0.957 | 0.09761 | 0.00976 | -5.27220 | 0.05552 | 0.00542 | 0.00054 | 0.178 | 1.155 | 0.996 | 0.09655 | 0.00960 | -4.59290 | 0.08820 | 0.00852 | 0.00085 | -6.325115 | 0.67930 |
377 | 7.4 | 0.008 | 1.886655 | 3.75 | 5700 | 1.024478 | 0.392 | 2.021 | 0.724 | 0.28949 | 0.07662 | -5.27570 | 0.17777 | 0.05146 | 0.01362 | 0.624 | 1.907 | 0.801 | 0.29278 | 0.07780 | -4.55784 | 0.27811 | 0.08142 | 0.02164 | -6.388383 | 0.71786 |
378 | 7.4 | 0.008 | 1.898160 | 3.75 | 5625 | 1.045485 | 0.366 | 1.874 | 0.608 | 0.29035 | 0.08649 | -5.28666 | 0.17343 | 0.05035 | 0.01500 | 0.582 | 2.136 | 0.673 | 0.29744 | 0.08939 | -4.54461 | 0.26925 | 0.08009 | 0.02407 | -6.436837 | 0.74205 |
379 | 7.4 | 0.008 | 1.902029 | 3.75 | 5600 | 1.052150 | 0.351 | 2.058 | 0.579 | 0.29170 | 0.09150 | -5.29061 | 0.16803 | 0.04901 | 0.01538 | 0.556 | 1.959 | 0.638 | 0.30012 | 0.09492 | -4.54076 | 0.26018 | 0.07809 | 0.02470 | -6.452878 | 0.74985 |
380 | 7.4 | 0.008 | 1.905915 | 3.75 | 5575 | 1.058880 | 0.336 | 0.754 | 0.564 | 0.29242 | 0.09265 | -5.29488 | 0.15900 | 0.04649 | 0.01473 | 0.513 | 1.907 | 0.594 | 0.30245 | 0.09832 | -4.53759 | 0.24566 | 0.07430 | 0.02415 | -6.468680 | 0.75729 |
381 | 7.4 | 0.008 | 1.909819 | 3.75 | 5550 | 1.065631 | 0.330 | 0.695 | 0.565 | 0.29660 | 0.09821 | -5.29898 | 0.15049 | 0.04464 | 0.01478 | 0.487 | 0.733 | 0.572 | 0.30803 | 0.10282 | -4.53393 | 0.23227 | 0.07155 | 0.02388 | -6.484807 | 0.76505 |
382 | 7.4 | 0.008 | 1.913740 | 3.75 | 5525 | 1.072418 | 0.328 | 0.730 | 0.572 | 0.30550 | 0.10684 | -5.30280 | 0.14292 | 0.04366 | 0.01527 | 0.487 | 0.703 | 0.578 | 0.31832 | 0.11169 | -4.52989 | 0.22029 | 0.07012 | 0.02460 | -6.500811 | 0.77291 |
383 | 7.4 | 0.008 | 1.917679 | 3.75 | 5500 | 1.079215 | 0.334 | 0.736 | 0.582 | 0.31916 | 0.12414 | -5.30612 | 0.13851 | 0.04421 | 0.01719 | 0.500 | 0.718 | 0.589 | 0.33295 | 0.12903 | -4.52506 | 0.21331 | 0.07102 | 0.02752 | -6.516763 | 0.78106 |
384 | 7.4 | 0.008 | 1.925612 | 3.75 | 5450 | 1.094013 | 0.405 | 0.805 | 0.623 | 0.35188 | 0.19739 | -5.30969 | 0.15201 | 0.05349 | 0.03000 | 0.615 | 0.767 | 0.627 | 0.36482 | 0.20261 | -4.51013 | 0.23407 | 0.08539 | 0.04743 | -6.549008 | 0.79956 |
385 | 7.4 | 0.008 | 1.933617 | 3.75 | 5400 | 1.108081 | 0.554 | 0.930 | 1.500 | 0.35229 | 0.30542 | -5.30784 | 0.19413 | 0.06839 | 0.05929 | 0.853 | 0.919 | 0.641 | 0.35845 | 0.31091 | -4.48608 | 0.29871 | 0.10707 | 0.09287 | -6.581568 | 0.82176 |
386 | 7.4 | 0.008 | 1.949853 | 3.75 | 5300 | 1.137560 | 0.764 | 1.288 | 1.083 | 0.22873 | 0.39911 | -5.30261 | 0.26173 | 0.05987 | 0.10446 | 1.194 | 1.237 | 1.019 | 0.21560 | 0.39844 | -4.43437 | 0.40258 | 0.08680 | 0.16040 | -6.648382 | 0.86824 |
387 | 7.4 | 0.008 | 1.966398 | 3.75 | 5200 | 1.166958 | 0.867 | 1.538 | 0.908 | 0.12127 | 0.35736 | -5.30085 | 0.29690 | 0.03600 | 0.10610 | 1.375 | 1.519 | 1.070 | 0.10063 | 0.35018 | -4.38986 | 0.45658 | 0.04594 | 0.15988 | -6.712884 | 0.91099 |
388 | 7.4 | 0.008 | 1.983264 | 3.75 | 5100 | 1.195275 | 0.932 | 1.802 | 1.063 | 0.11461 | 0.25094 | -5.30022 | 0.31343 | 0.03592 | 0.07865 | 1.500 | 1.770 | 1.434 | 0.11973 | 0.23962 | -4.34934 | 0.48510 | 0.05808 | 0.11624 | -6.774084 | 0.95088 |
389 | 7.5 | 0.008 | 2.000465 | 3.75 | 5000 | 1.223979 | 0.447 | 2.846 | 1.634 | 0.39164 | 0.18668 | -5.08193 | 0.17022 | 0.06666 | 0.03178 | 0.710 | 2.690 | 3.072 | 0.44466 | 0.25849 | -3.97067 | 0.22353 | 0.09939 | 0.05778 | -6.804383 | 1.11126 |
390 | 7.5 | 0.008 | 2.018013 | 3.75 | 4900 | 1.250225 | 0.225 | 1.564 | 1.501 | 0.23606 | 0.07483 | -5.18131 | 0.09739 | 0.02299 | 0.00729 | 0.394 | 1.404 | 2.794 | 0.33403 | 0.15767 | -4.09747 | 0.14173 | 0.04734 | 0.02235 | -6.861262 | 1.08384 |
391 rows × 26 columns
y_columns = ['logP',
'I_Amplitude', 'I_Skewness', 'I_acuteness',
'V_Amplitude', 'V_Skewness', 'V_acuteness',
'I_A1', 'I_A2', 'I_A3',
'V_A1', 'V_A2', 'V_A3']
X_columns = ['M', 'logR', 'logL', 'Teff', 'I_M0', 'V_M0', 'VI', 'W']
Visualize grid of models
#sns.pairplot(DF[y_columns])
fig, ax = plt.subplots(3, 4, squeeze=True, figsize=(6.64306*2,4.10318716*2))
for i, ax_row in enumerate(ax):
for j, axes in enumerate(ax_row):
axes.plot(DF['logP'], DF[y_columns].iloc[:,1+3*i+j], '.')
plt.suptitle('Cepheid H–R Diagram', y=0.99)
plt.scatter(DF['Teff'], DF['logL'], c=DF['M'])
plt.xlabel('$T_{\mathrm{eff}}/K$')
plt.ylabel('$\log\;L/$L$_\odot$')
plt.colorbar(label='$M/$M$_\odot$')
plt.xlim([6200, 4550])
plt.savefig('HR.pdf', bbox_inches='tight')
plt.show()
plt.suptitle('Cepheid P–M Relation', y=0.99)
plt.scatter(DF['logP'], DF['M'], c=DF['logR'])
plt.xlabel('$\log\;P/$days')
plt.ylabel('$M/$M$_\odot$')
plt.colorbar(label='$\log\;R/$R$_\odot$')
plt.savefig('PMR.pdf', bbox_inches='tight')
plt.show()
plt.suptitle('Cepheid P–R Relation', y=0.99)
plt.scatter(DF['logP'], DF['logR'], c=DF['M'])
plt.ylabel('$\log\;R/$R$_\odot$')
plt.xlabel('$\log\;P/$days')
plt.colorbar(label='$M/$M$_\odot$')
plt.savefig('PRM.pdf', bbox_inches='tight')
plt.show()
plt.suptitle('Cepheid P–L Relation', y=0.99)
plt.scatter(DF['logP'], DF['logL'], c=DF['logR'])
plt.ylabel('$\log\;L/$L$_\odot$')
plt.xlabel('$\log\;P/$days')
plt.colorbar(label='$\log\;R/$R$_\odot$')
plt.savefig('PL.pdf', bbox_inches='tight')
plt.show()
Cross validation
np.random.seed(0)
splits = KFold(n_splits=2, shuffle=True, random_state=0).split(DF)
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
ml_preds = {}
lm_preds = {}
for split in splits:
training_idx, testing_idx = split
ml.fit(DF.iloc[training_idx][y_columns], DF.iloc[training_idx][X_columns])
ml_pred = ml.predict(DF.iloc[testing_idx][y_columns].values)
lm.fit(DF.iloc[training_idx][['logP']], DF.iloc[training_idx][X_columns])
lm_pred = lm.predict(DF.iloc[testing_idx]['logP'].values.reshape(-1, 1))
for ii in range(len(testing_idx)):
ml_preds[testing_idx[ii]] = ml_pred[ii]
lm_preds[testing_idx[ii]] = lm_pred[ii]
ml_pred = np.array([ml_preds[ii] for ii in range(len(DF))])
lm_pred = np.array([lm_preds[ii] for ii in range(len(DF))])
for penalty in [0, 0.00001, 0.0001, 0.001, 0.01]:
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7,
alpha=penalty))]),
transformer=RobustScaler())
print(penalty, cross_val_score(ml, DF[y_columns], DF[X_columns], cv=KFold(n_splits=2, shuffle=True, random_state=0)))
0 [0.89920164 0.84726445] 1e-05 [0.90443243 0.84731028] 0.0001 [0.91943472 0.8606015 ] 0.001 [0.8964787 0.84558117] 0.01 [0.90326339 0.86531132]
Compute R^2, standard deviations, and percentages of improved estimates
all_r2s = []
all_sds = []
for pred in (ml_pred, lm_pred):
r2s = []
sds = []
for idx, name in enumerate(X_columns):
std = np.array(np.array(pred[:,idx]) - DF[name]).std()
sds += [std]
SS_tot = np.sum((DF[name] - DF[name].mean())**2)
SS_res = np.sum((pred[:,idx] - DF[name].values)**2)
R2 = 1-SS_res/SS_tot
r2s += [R2]
all_r2s += [r2s]
all_sds += [sds]
all_r2s = np.array(all_r2s)
all_sds = np.array(all_sds)
ml_err = []
lm_err = []
for idx, name in enumerate(X_columns):
ml_errs = abs(np.array(ml_pred[:,idx]) - DF[name])
lm_errs = abs(np.array(lm_pred[:,idx]) - DF[name])
ml_err += [ml_errs]
lm_err += [lm_errs]
ml_err = np.array(ml_err)
lm_err = np.array(lm_err)
for idx, name in enumerate(X_columns):
print(name, int(np.round(((lm_err[idx,:] >= ml_err[idx,:]).sum()) / lm_err.shape[1] * 100, 0)))
M 74 logR 74 logL 81 Teff 85 I_M0 81 V_M0 82 VI 84 W 76
labels = ['$M$', '$\log\;R$', '$\log\;L$', '$T_{\\rm{eff}}$', '$M_I$', '$M_V$', '$V-I$', '$W$']
plt.rcParams["font.size"] = 18
x = np.arange(len(labels)) # the label locations
width = 0.45 # the width of the bars
fig, ax = plt.subplots(figsize=(6.64306*2,4.10318716*0.9))
plt.suptitle('Cepheids', y=0.99)
rects1 = ax.bar(x - width/2, all_r2s[0,:], width, label='Machine learning')
rects2 = ax.bar(x + width/2, all_r2s[1,:], width, label='Linear model')
plt.axhline(1, c='gray', linewidth=1.25, linestyle='--')
ax.set_ylabel('$R^2$')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.set_ylim([0, 1.15])
ax.legend(loc='lower right')
def autolabel(rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
ax.annotate('%.3f' % height,
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
plt.rcParams["font.size"] = 12
autolabel(rects1)
autolabel(rects2)
plt.rcParams["font.size"] = 18
#autolabel(rects3)
plt.savefig('R2-ML-LM.pdf')
plt.show()
labels = ['$M$', '$\log\;R$', '$\log\;L$', '$T_{\\rm{eff}}$', '$M_I$', '$M_V$', '$V-I$', '$W$']
x = np.arange(len(labels))
width = 0.45
fig, ax = plt.subplots(figsize=(6.64306*2,4.10318716*0.9))
plt.suptitle('Cepheids', y=0.99)
rects1 = ax.bar(x, (all_sds[1,:] - all_sds[0,:])/all_sds[1,:], width)
ax.set_ylabel('Accuracy improvement\n$(\sigma_{\\rm{LM}} - \sigma_{\\rm{ML}}) / \sigma_{\\rm{LM}}$')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.set_ylim([0, 0.8])
ax.set_yticks([0, 0.2, 0.4, 0.6, 0.8])
locs, labels = plt.yticks()
ax.set_yticklabels([str(int(loc*100)) + '%' for loc in locs])
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('%.1f' % (height*100) + '%',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
plt.savefig('sds-ML-LM.pdf')
plt.show()
ml_stds = []
ml_r2s = []
for idx, name in enumerate(X_columns):
std = np.array(np.array(ml_pred[:,idx]) - DF[name]).std()
print(name, 'std: %.3f' % std)
ml_stds += [std]
SS_tot = np.sum((DF[name] - DF[name].mean())**2)
SS_res = np.sum((ml_pred[:,idx] - DF[name].values)**2)
R2 = 1-SS_res/SS_tot
ml_r2s += [R2]
print(name, 'R2: %.3f' % R2)
M std: 0.350 M R2: 0.799 logR std: 0.011 logR R2: 0.994 logL std: 0.044 logL R2: 0.961 Teff std: 107.694 Teff R2: 0.885 I_M0 std: 0.101 I_M0 R2: 0.969 V_M0 std: 0.131 V_M0 R2: 0.936 VI std: 0.033 VI R2: 0.909 W std: 0.065 W R2: 0.991
lm_stds = []
lm_r2s = []
for idx, name in enumerate(X_columns):
std = np.array(np.array(lm_pred[:,idx]) - DF[name]).std()
print(name, 'std: %.3f' % std)
lm_stds += [std]
SS_tot = np.sum((DF[name] - DF[name].mean())**2)
SS_res = np.sum((lm_pred[:,idx] - DF[name].values)**2)
R2 = 1-SS_res/SS_tot
lm_r2s += [R2]
print(name, 'R2: %.3f' % R2)
M std: 0.564 M R2: 0.479 logR std: 0.017 logR R2: 0.986 logL std: 0.084 logL R2: 0.860 Teff std: 209.088 Teff R2: 0.568 I_M0 std: 0.193 I_M0 R2: 0.886 V_M0 std: 0.258 V_M0 R2: 0.754 VI std: 0.070 VI R2: 0.605 W std: 0.105 W R2: 0.976
var = 'M'
lims = [4, 8]
plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Machine Learning: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)], c=DF['logL'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Mass [M$_\odot$]')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$\log\;L/$L$_\odot$', pad=0.02)
plt.text(7, 4.1, '$R^2$: %.3f' % ml_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.axhline(0, c='k', ls='--', linewidth=1.25)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)] - DF[var], c=DF['logL'])
plt.xlabel('Model Mass [M$_\odot$]')
plt.ylabel('Errors [M$_\odot$]')
plt.colorbar(label='$\log\;L/$L$_\odot$', pad=0.02)
plt.xlim(lims)
plt.ylim([-1.5, 1.5])
ax2.set_yticks([-1, 0, 1])
ax2.set_yticklabels([-1, 0, 1])
plt.text(6.35, -1.4, 'St. dev: %.2f M$_\odot$' % ml_stds[X_columns.index(var)])
plt.savefig('CEP-ML-mass.pdf')#, bbox_inches='tight')
plt.show()
var = 'logR'
lims = [1.4, 2.2]
fig = plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Linear Model: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)], c=DF['M'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Radius [$\log$ R$_\odot$]')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='Mass [M$_\odot$]', pad=0.02)
plt.text(1.98, 1.43, '$R^2$: %.3f' % lm_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)] - DF[var], c=DF['M'])
plt.colorbar(label='Mass [M$_\odot$]', pad=0.02)
plt.xlabel('Model Radius [$\log$ R$_\odot$]')
plt.ylabel('Errors [$\log$ R$_\odot$]')
plt.xlim(lims)
plt.ylim([-0.05, 0.05])
plt.text(1.42, -0.045, 'St. dev: %.3f $\log$ R$_\odot$' % lm_stds[X_columns.index(var)])
plt.savefig('CEP-LM-radius.pdf')#, bbox_inches='tight')
plt.show()
var = 'logR'
lims = [1.4, 2.2]
plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Machine Learning: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)], c=DF['M'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Radius [$\log$ R$_\odot$]')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='Mass [M$_\odot$]', pad=0.02)
plt.text(1.98, 1.43, '$R^2$: %.3f' % ml_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)] - DF[var], c=DF['M'])
plt.colorbar(label='Mass [M$_\odot$]', pad=0.02)
plt.xlabel('Model Radius [$\log$ R$_\odot$]')
plt.ylabel('Errors [$\log$ R$_\odot$]')
plt.xlim(lims)
plt.ylim([-0.05, 0.05])
plt.text(1.42, -0.045, 'St. dev: %.3f $\log$ R$_\odot$' % ml_stds[X_columns.index(var)])
plt.savefig('CEP-ML-radius.pdf')#, bbox_inches='tight')
plt.show()
var = 'logL'
lims = [2.9, 4.05]
fig = plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Linear Model: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)], c=DF['Teff'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Luminosity [$\log$ L$_\odot$]')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.text(3.73, 2.93, '$R^2$: %.3f' % lm_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF['logL'], lm_pred[:,X_columns.index(var)] - DF['logL'], c=DF['Teff'])
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.xlabel('Model Luminosity [$\log$ L$_\odot$]')
plt.ylabel('Errors [$\log$ L$_\odot$]')
plt.xlim(lims)
plt.ylim([-0.3, 0.3])
plt.text(2.93, -0.28, 'St. dev: %.3f $\log$ L$_\odot$' % lm_stds[X_columns.index(var)])
plt.savefig('CEP-LM-luminosity.pdf')#, bbox_inches='tight')
plt.show()
lims = [2.9, 4.05]
plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Machine Learning: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)], c=DF['Teff'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Luminosity [$\log$ L$_\odot$]')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.text(3.73, 2.93, '$R^2$: %.3f' % ml_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF['logL'], ml_pred[:,X_columns.index(var)] - DF['logL'], c=DF['Teff'])
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.xlabel('Model Luminosity [$\log$ L$_\odot$]')
plt.ylabel('Errors [$\log$ L$_\odot$]')
plt.xlim(lims)
plt.ylim([-0.3, 0.3])
plt.text(2.93, -0.28, 'St. dev: %.3f $\log$ L$_\odot$' % ml_stds[X_columns.index(var)])
plt.savefig('CEP-ML-luminosity.pdf')#, bbox_inches='tight')
plt.show()
var = 'W'
lims = [-4, -8]
fig = plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Linear Model: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)], c=DF['Teff'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Wesenheit Index')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.text(-6.9, -4.1, '$R^2$: %.3f' % lm_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)] - DF[var], c=DF['Teff'])
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.xlabel('Model Wesenheit Index')
plt.ylabel('Errors [mag]')
plt.xlim(lims)
plt.ylim([-0.4, 0.4])
plt.text(-4.1, -0.37, 'St. dev: %.2f mag' % lm_stds[X_columns.index(var)])
plt.savefig('CEP-LM-W.pdf')#, bbox_inches='tight')
plt.show()
var = 'W'
lims = [-4, -8]
fig = plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Machine Learning: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)], c=DF['Teff'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted Wesenheit Index')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.text(-6.9, -4.1, '$R^2$: %.3f' % ml_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)] - DF[var], c=DF['Teff'])
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.xlabel('Model Wesenheit Index')
plt.ylabel('Errors [mag]')
plt.xlim(lims)
plt.ylim([-0.4, 0.4])
plt.text(-4.1, -0.37, 'St. dev: %.3f mag' % ml_stds[X_columns.index(var)])
plt.savefig('CEP-ML-W.pdf')#, bbox_inches='tight')
plt.show()
var = 'V_M0'
lims = [-2.5, -5]
fig = plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Linear Model: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)], c=DF['Teff'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted $M_V$')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.text(-4.3, -2.56, '$R^2$: %.3f' % lm_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF[var], lm_pred[:,X_columns.index(var)] - DF[var], c=DF['Teff'])
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.xlabel('Model $M_V$')
plt.ylabel('Errors [mag]')
plt.xlim(lims)
plt.ylim([-0.8, 0.8])
plt.text(-2.57, -0.75, 'St. dev: %.2f mag' % lm_stds[X_columns.index(var)])
plt.savefig('CEP-LM-V_M0.pdf')#, bbox_inches='tight')
plt.show()
var = 'V_M0'
lims = [-2.5, -5]
fig = plt.figure(figsize=(6.64306,4.10318716*2))
plt.suptitle('Machine Learning: Cepheids', y=0.995)
ax = plt.subplot(2,1,1)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)], c=DF['Teff'])
plt.plot([lims[0],lims[1]], [lims[0],lims[1]], 'k--', alpha=0.75, zorder=0)
plt.ylabel('Predicted $M_V$')
plt.xlim(lims)
plt.ylim(lims)
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.text(-4.3, -2.56, '$R^2$: %.3f' % ml_r2s[X_columns.index(var)])
ax2 = plt.subplot(2,1,2, sharex=ax)
plt.plot([lims[0], lims[1]], [0, 0], 'k--', zorder=0, linewidth=1.25)
plt.scatter(DF[var], ml_pred[:,X_columns.index(var)] - DF[var], c=DF['Teff'])
plt.colorbar(label='$T_{\\rm{eff}}/$K', pad=0.02)
plt.xlabel('Model $M_V$')
plt.ylabel('Errors [mag]')
plt.xlim(lims)
plt.ylim([-0.8, 0.8])
plt.text(-2.57, -0.75, 'St. dev: %.2f mag' % ml_stds[X_columns.index(var)])
plt.savefig('CEP-ML-V_M0.pdf')#, bbox_inches='tight')
plt.show()
Significance testing
# (neural network with log P and lightcurve) vs (linear model with log P) with the Wilcoxon test
for name in X_columns:
ml_err = abs(DF[name] - ml_pred[:,X_columns.index(name)])
lm_err = abs(DF[name] - lm_pred[:,X_columns.index(name)])
print(name, sp.stats.wilcoxon(lm_err, ml_err).pvalue)
M 4.8226885861573445e-28 logR 1.2904685567980838e-25 logL 7.410398478671702e-40 Teff 2.768046944534012e-45 I_M0 2.3024578991353531e-38 V_M0 2.873842493932314e-41 VI 4.765730830885012e-46 W 1.8762776320162059e-28
# (neural network with log P and lightcurve) vs (linear model with log P) with 5x2 cv test
np.random.seed(0)
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
first_p1 = 0
s2s = []
for ii in range(5):
ml_scores = []
lm_scores = []
cv = ShuffleSplit(n_splits=2, random_state=ii, train_size=0.5, test_size=0.5)
for train_index, test_index in cv.split(DF):
ml.fit(DF.iloc[train_index][y_columns], DF.iloc[train_index][X_columns])
lm.fit(DF.iloc[train_index][['logP']], DF.iloc[train_index][X_columns])
ml_predict = ml.predict(DF.iloc[test_index][y_columns])
lm_predict = lm.predict(DF.iloc[test_index][['logP']])
ml_scores_ = []
lm_scores_ = []
for idx, name in enumerate(X_columns):
SS_tot = np.sum((DF.iloc[test_index][name] - DF.iloc[test_index][name].mean())**2)
ml_SS_res = np.sum((ml_predict[:,idx] - DF.iloc[test_index][name].values)**2)
ml_R2 = 1-ml_SS_res/SS_tot
#ml_scores_ += [ml_R2]
ml_scores_ += [ml_SS_res]
lm_SS_res = np.sum((lm_predict[:,idx] - DF.iloc[test_index][name].values)**2)
lm_R2 = 1-lm_SS_res/SS_tot
#lm_scores_ += [lm_R2]
lm_scores_ += [lm_SS_res]
ml_scores += [ml_scores_]
lm_scores += [lm_scores_]
ml_scores = np.array(ml_scores)
lm_scores = np.array(lm_scores)
p1 = ml_scores[0,:] - lm_scores[0,:]
p2 = ml_scores[1,:] - lm_scores[1,:]
p_bar = (p1 + p2)/2
s2 = (p1 - p_bar)**2 + (p2 - p_bar)**2
if ii == 0:
first_p1 = p1
s2s += [s2]
first_p1 = np.array(first_p1)
s2s = np.array(s2s)
for idx, name in enumerate(X_columns):
p = stats.t.sf(np.abs(first_p1[idx]) / np.sqrt(1/5. * sum(s2s[:,idx])), 5)*2.
print(name, '%.2E' % p) # '%.10f' % p)
M 9.64E-05 logR 4.37E-03 logL 3.03E-06 Teff 6.29E-06 I_M0 3.67E-06 V_M0 4.78E-06 VI 4.82E-06 W 1.57E-04
# (neural network with log P and lightcurve) vs (linear model with log P) with Wilcoxon signed-rank test
np.random.seed(0)
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
cv = ShuffleSplit(n_splits=2, random_state=0, train_size=0.5, test_size=0.5)
train_set, test_set = list(cv.split(DF))[0]
ml.fit(DF.iloc[train_set][y_columns], DF.iloc[train_set][X_columns])
lm.fit(DF.iloc[train_set][['logP']], DF.iloc[train_set][X_columns])
ml_predict = ml.predict(DF.iloc[test_set][y_columns])
lm_predict = lm.predict(DF.iloc[test_set][['logP']])
for idx, name in enumerate(X_columns):
ml_SE = (ml_predict[:,idx] - DF.iloc[test_set][name].values)**2
lm_SE = (lm_predict[:,idx] - DF.iloc[test_set][name].values)**2
wil = sp.stats.wilcoxon(ml_SE, lm_SE)
print(name, ml_SE.mean() < lm_SE.mean(), wil.pvalue/2.) # one sided test
M True 4.1581837797536337e-13 logR True 3.63728908382849e-14 logL True 6.160719974907984e-21 Teff True 5.654911569738892e-24 I_M0 True 5.818796617528765e-20 V_M0 True 3.652754351987831e-21 VI True 2.108630817227543e-23 W True 6.818718841112479e-14
# (neural network with log P and lightcurve) vs (linear model with log P and lightcurve) with 5x2cv test
np.random.seed(0)
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
first_p1 = 0
s2s = []
for ii in range(5):
ml_scores = []
lm_scores = []
cv = ShuffleSplit(n_splits=2, random_state=ii, train_size=0.5, test_size=0.5)
for train_index, test_index in cv.split(DF):
ml.fit(DF.iloc[train_index][y_columns], DF.iloc[train_index][X_columns])
lm.fit(DF.iloc[train_index][y_columns], DF.iloc[train_index][X_columns])
ml_predict = ml.predict(DF.iloc[test_index][y_columns])
lm_predict = lm.predict(DF.iloc[test_index][y_columns])
ml_scores_ = []
lm_scores_ = []
for idx, name in enumerate(X_columns):
SS_tot = np.sum((DF.iloc[test_index][name] - DF.iloc[test_index][name].mean())**2)
ml_SS_res = np.sum((ml_predict[:,idx] - DF.iloc[test_index][name].values)**2)
ml_R2 = 1-ml_SS_res/SS_tot
#ml_scores_ += [ml_R2]
ml_scores_ += [ml_SS_res]
lm_SS_res = np.sum((lm_predict[:,idx] - DF.iloc[test_index][name].values)**2)
lm_R2 = 1-lm_SS_res/SS_tot
#lm_scores_ += [lm_R2]
lm_scores_ += [lm_SS_res]
ml_scores += [ml_scores_]
lm_scores += [lm_scores_]
ml_scores = np.array(ml_scores)
lm_scores = np.array(lm_scores)
p1 = ml_scores[0,:] - lm_scores[0,:]
p2 = ml_scores[1,:] - lm_scores[1,:]
p_bar = (p1 + p2)/2
s2 = (p1 - p_bar)**2 + (p2 - p_bar)**2
if ii == 0:
first_p1 = p1
s2s += [s2]
first_p1 = np.array(first_p1)
s2s = np.array(s2s)
for idx, name in enumerate(X_columns):
p = stats.t.sf(np.abs(first_p1[idx]) / np.sqrt(1/5. * sum(s2s[:,idx])), 5)/2. # one sided test
print(name, '%.2E' % p)
M 3.29E-04 logR 2.94E-03 logL 3.87E-04 Teff 3.76E-04 I_M0 6.87E-04 V_M0 5.52E-04 VI 2.97E-04 W 4.23E-04
# (neural network with log P and lightcurve) vs (linear model with log P and lightcurve) with Wilcoxon signed-rank test
np.random.seed(0)
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
cv = ShuffleSplit(n_splits=2, random_state=0, train_size=0.5, test_size=0.5)
train_set, test_set = list(cv.split(DF))[0]
ml.fit(DF.iloc[train_set][y_columns], DF.iloc[train_set][X_columns])
lm.fit(DF.iloc[train_set][y_columns], DF.iloc[train_set][X_columns])
ml_predict = ml.predict(DF.iloc[test_set][y_columns])
lm_predict = lm.predict(DF.iloc[test_set][y_columns])
for idx, name in enumerate(X_columns):
ml_SE = (ml_predict[:,idx] - DF.iloc[test_set][name].values)**2
lm_SE = (lm_predict[:,idx] - DF.iloc[test_set][name].values)**2
wil = sp.stats.wilcoxon(ml_SE, lm_SE)
print(name, ml_SE.mean() < lm_SE.mean(), wil.pvalue/2.) # one sided test
M True 3.6221348278706677e-12 logR True 5.371970878763796e-13 logL True 3.3695494986483773e-16 Teff True 1.1229376543350066e-18 I_M0 True 1.880937254410796e-15 V_M0 True 2.497344286221803e-16 VI True 5.0889774862789716e-18 W True 8.964825529966717e-12
Now train on all models and run on real data
np.random.seed(0)
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
ml.fit(DF[y_columns], DF[X_columns])
lm.fit(DF[['logP']], DF[X_columns])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
import joblib
joblib.dump(ml, 'Cepheids.ann')
['Cepheids.ann']
maxs = DF[y_columns].quantile(0.95)
mins = DF[y_columns].quantile(0.05)
print(maxs, '\n\n', mins)
logP 1.267723 I_Amplitude 0.949500 I_Skewness 4.636500 I_acuteness 1.587500 V_Amplitude 1.509000 V_Skewness 5.008500 V_acuteness 2.047500 I_A1 0.341895 I_A2 0.129675 I_A3 0.077520 V_A1 0.518150 V_A2 0.202490 V_A3 0.120370 Name: 0.95, dtype: float64 logP 0.553626 I_Amplitude 0.103000 I_Skewness 0.609000 I_acuteness 0.391500 V_Amplitude 0.159000 V_Skewness 0.722500 V_acuteness 0.454500 I_A1 0.044220 I_A2 0.010055 I_A3 0.002625 V_A1 0.073965 V_A2 0.016170 V_A3 0.004420 Name: 0.05, dtype: float64
X_maxs = DF[X_columns].max()
X_mins = DF[X_columns].min()
print(X_maxs, '\n\n', X_mins)
M 7.500000 logR 2.112889 logL 3.830000 Teff 6100.000000 I_M0 -3.367150 V_M0 -2.686910 VI 1.122720 W -4.381439 dtype: float64 M 4.600000 logR 1.477102 logL 3.020000 Teff 4600.000000 I_M0 -5.530710 V_M0 -4.765800 VI 0.595510 W -7.256976 dtype: float64
star_names = []
ests = []
e_ests = []
logPs = []
lm_ests = []
e_lm_ests = []
LMC_CEP_dir = '/scratch/seismo/bellinger/asteroseismology/regression/perturb/LMC_CEP'
for star_filename in tqdm(os.listdir(LMC_CEP_dir)):
star_name = star_filename.split('_')[0]
star_data = pd.read_table(os.path.join(LMC_CEP_dir, star_filename), sep='\s+')
star_data['Period'] = np.log10(star_data['Period'])
star_data.rename(columns={'Period':'logP'}, inplace=True)
if np.any(star_data[y_columns] >= maxs) or np.any(star_data[y_columns] <= mins):
#print('Skipping', star_name)
continue
res = ml.predict(star_data[y_columns])
if np.any([res_i >= X_maxs for res_i in res]) or \
np.any([res_i <= X_mins for res_i in res]):
#print('Skipping', star_name)
continue
ests += [res[0]]
e_ests += [res.std(axis=0)]
lm_res = lm.predict(star_data[['logP']])
lm_ests += [lm_res[0]]
e_lm_ests += [lm_res.std(axis=0)]
star_names += [star_name]
logPs += [star_data['logP'].iloc[0]]
logPs = np.array(logPs)
ests = np.array(ests)
e_ests = np.array(e_ests)
lm_ests = np.array(lm_ests)
e_lm_ests = np.array(e_lm_ests)
HBox(children=(IntProgress(value=0, max=2132), HTML(value='')))
ests.shape
(325, 8)
e_ests_ = np.array([np.sqrt(e_ests[ii]**2 + np.array(ml_stds)**2)
for ii in range(len(e_ests))])
ests_ = np.vstack(chain.from_iterable(((ests[:,ii], e_ests_[:,ii]) for ii in range(ests.shape[1])))).T
#ests_DF = pd.DataFrame(ests, columns=X_columns)
ests_DF = pd.DataFrame(ests_, columns=list(chain.from_iterable(zip(X_columns, ['e_'+X_col for X_col in X_columns]))))
ests_DF.insert(0, 'ID', star_names)
ests_DF
ID | M | e_M | logR | e_logR | logL | e_logL | Teff | e_Teff | I_M0 | e_I_M0 | V_M0 | e_V_M0 | VI | e_VI | W | e_W | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | OGLE-LMC-CEP-0033 | 5.981732 | 0.390032 | 1.756617 | 0.014038 | 3.513580 | 0.057473 | 5784.480902 | 137.084847 | -4.660956 | 0.132794 | -3.963571 | 0.174257 | 0.700211 | 0.044123 | -5.748440 | 0.082892 |
1 | OGLE-LMC-CEP-0050 | 6.166502 | 0.399251 | 1.780000 | 0.013875 | 3.541317 | 0.058653 | 5719.021219 | 139.354356 | -4.744733 | 0.133739 | -4.020167 | 0.177962 | 0.720711 | 0.045507 | -5.862415 | 0.082405 |
2 | OGLE-LMC-CEP-0057 | 6.871249 | 0.398144 | 1.861168 | 0.011742 | 3.693657 | 0.044538 | 5684.717505 | 110.927487 | -5.148841 | 0.101086 | -4.423182 | 0.131607 | 0.721185 | 0.034501 | -6.260633 | 0.066180 |
3 | OGLE-LMC-CEP-0078 | 5.699958 | 0.366346 | 1.749439 | 0.011992 | 3.493068 | 0.045377 | 5763.870880 | 109.680605 | -4.608432 | 0.103839 | -3.901637 | 0.134257 | 0.708586 | 0.034162 | -5.707185 | 0.068343 |
4 | OGLE-LMC-CEP-0103 | 6.330912 | 0.403360 | 1.760601 | 0.013788 | 3.570397 | 0.048609 | 5941.385137 | 109.314158 | -4.794215 | 0.111991 | -4.144789 | 0.141975 | 0.647057 | 0.034063 | -5.795697 | 0.077433 |
5 | OGLE-LMC-CEP-0107 | 5.980849 | 0.355053 | 1.799100 | 0.011692 | 3.584044 | 0.050546 | 5732.983831 | 122.383591 | -4.840953 | 0.114402 | -4.120565 | 0.150769 | 0.720462 | 0.038612 | -5.961329 | 0.069967 |
6 | OGLE-LMC-CEP-0123 | 5.826094 | 0.360087 | 1.736962 | 0.011951 | 3.461769 | 0.046147 | 5738.516324 | 111.949047 | -4.529634 | 0.105788 | -3.816418 | 0.137326 | 0.716085 | 0.035095 | -5.639910 | 0.068627 |
7 | OGLE-LMC-CEP-0155 | 6.250097 | 0.391777 | 1.835071 | 0.012150 | 3.702338 | 0.045001 | 5870.056191 | 109.880246 | -5.143550 | 0.102843 | -4.480868 | 0.132649 | 0.665213 | 0.034128 | -6.182993 | 0.068784 |
8 | OGLE-LMC-CEP-0158 | 5.487512 | 0.378884 | 1.735524 | 0.012837 | 3.476436 | 0.047695 | 5801.943364 | 111.430148 | -4.557389 | 0.109506 | -3.861329 | 0.140579 | 0.698613 | 0.034784 | -5.643501 | 0.073200 |
9 | OGLE-LMC-CEP-0162 | 5.465754 | 0.506745 | 1.647071 | 0.018590 | 3.367102 | 0.052835 | 6015.969035 | 108.031712 | -4.252390 | 0.127329 | -3.626834 | 0.153373 | 0.629550 | 0.033601 | -5.230378 | 0.099812 |
10 | OGLE-LMC-CEP-0169 | 5.528907 | 0.440518 | 1.673293 | 0.016346 | 3.328034 | 0.051738 | 5707.637170 | 111.208387 | -4.201153 | 0.121787 | -3.473906 | 0.150703 | 0.723450 | 0.034694 | -5.320069 | 0.089202 |
11 | OGLE-LMC-CEP-0177 | 5.548326 | 0.459980 | 1.600906 | 0.016786 | 3.215232 | 0.051782 | 5841.181651 | 108.523398 | -3.899994 | 0.122690 | -3.216864 | 0.151590 | 0.687223 | 0.033868 | -4.966730 | 0.091349 |
12 | OGLE-LMC-CEP-0189 | 5.360901 | 0.436592 | 1.677614 | 0.014538 | 3.383387 | 0.048328 | 5870.029253 | 108.519472 | -4.311477 | 0.113080 | -3.632315 | 0.141764 | 0.679045 | 0.033771 | -5.362733 | 0.080284 |
13 | OGLE-LMC-CEP-0212 | 5.827662 | 0.388543 | 1.878070 | 0.012839 | 3.678507 | 0.058507 | 5512.321224 | 136.168289 | -5.110928 | 0.134717 | -4.306381 | 0.175297 | 0.796622 | 0.043224 | -6.345276 | 0.080668 |
14 | OGLE-LMC-CEP-0250 | 5.810384 | 0.390116 | 1.705167 | 0.014125 | 3.381746 | 0.049315 | 5676.234659 | 110.116633 | -4.344498 | 0.114007 | -3.614058 | 0.143999 | 0.729551 | 0.034345 | -5.471039 | 0.078992 |
15 | OGLE-LMC-CEP-0264 | 5.340560 | 0.423963 | 1.564663 | 0.015050 | 3.136247 | 0.049791 | 5836.566834 | 108.575913 | -3.702632 | 0.116724 | -3.017599 | 0.146205 | 0.691011 | 0.033859 | -4.779438 | 0.083818 |
16 | OGLE-LMC-CEP-0269 | 5.223341 | 0.400990 | 1.565511 | 0.014293 | 3.165140 | 0.048471 | 5913.272544 | 108.283659 | -3.755813 | 0.113094 | -3.089476 | 0.142398 | 0.671343 | 0.033740 | -4.801272 | 0.079445 |
17 | OGLE-LMC-CEP-0291 | 5.214949 | 0.442964 | 1.556525 | 0.016287 | 3.109353 | 0.052164 | 5790.705025 | 108.936928 | -3.643970 | 0.122596 | -2.942489 | 0.151575 | 0.705261 | 0.033957 | -4.738173 | 0.089745 |
18 | OGLE-LMC-CEP-0306 | 6.141272 | 0.370203 | 1.737548 | 0.011800 | 3.485621 | 0.045800 | 5818.700016 | 110.334754 | -4.580542 | 0.104712 | -3.888373 | 0.135723 | 0.692407 | 0.034412 | -5.653477 | 0.067836 |
19 | OGLE-LMC-CEP-0316 | 5.399814 | 0.437950 | 1.557504 | 0.015657 | 3.109774 | 0.050749 | 5786.677530 | 108.652587 | -3.643539 | 0.119598 | -2.943436 | 0.148702 | 0.705220 | 0.033886 | -4.737486 | 0.086755 |
20 | OGLE-LMC-CEP-0329 | 5.237083 | 0.413132 | 1.567480 | 0.014386 | 3.134955 | 0.049245 | 5797.709739 | 108.553704 | -3.704776 | 0.114282 | -3.008118 | 0.143684 | 0.701122 | 0.033776 | -4.793327 | 0.080557 |
21 | OGLE-LMC-CEP-0356 | 6.021884 | 0.372840 | 1.892691 | 0.012304 | 3.672953 | 0.055787 | 5424.543155 | 129.241502 | -5.087434 | 0.127832 | -4.253778 | 0.166450 | 0.838968 | 0.040944 | -6.382608 | 0.077124 |
22 | OGLE-LMC-CEP-0377 | 6.608692 | 0.414287 | 1.732983 | 0.014289 | 3.521981 | 0.049051 | 5953.413965 | 110.958698 | -4.647231 | 0.114633 | -3.996031 | 0.144837 | 0.648584 | 0.034730 | -5.650205 | 0.080014 |
23 | OGLE-LMC-CEP-0458 | 5.281688 | 0.407069 | 1.562998 | 0.014325 | 3.119723 | 0.048912 | 5783.798184 | 108.395195 | -3.669420 | 0.113737 | -2.967387 | 0.143118 | 0.706554 | 0.033738 | -4.766181 | 0.080090 |
24 | OGLE-LMC-CEP-0482 | 5.727776 | 0.369432 | 1.749335 | 0.012144 | 3.501535 | 0.047825 | 5783.424213 | 114.584404 | -4.631902 | 0.109061 | -3.929575 | 0.141729 | 0.700820 | 0.036012 | -5.712972 | 0.069977 |
25 | OGLE-LMC-CEP-0492 | 5.020713 | 0.401435 | 1.636063 | 0.013508 | 3.320696 | 0.047238 | 5934.848049 | 108.239370 | -4.143013 | 0.109388 | -3.483671 | 0.138702 | 0.660544 | 0.033665 | -5.165452 | 0.075554 |
26 | OGLE-LMC-CEP-0505 | 5.297052 | 0.423142 | 1.583592 | 0.015286 | 3.160552 | 0.050114 | 5777.273315 | 108.396204 | -3.772481 | 0.117093 | -3.066106 | 0.146068 | 0.709262 | 0.033752 | -4.871374 | 0.084179 |
27 | OGLE-LMC-CEP-0520 | 6.116985 | 0.357136 | 1.793759 | 0.012131 | 3.572909 | 0.051777 | 5728.852765 | 121.591288 | -4.811805 | 0.118213 | -4.096073 | 0.154286 | 0.719826 | 0.038372 | -5.930786 | 0.073430 |
28 | OGLE-LMC-CEP-0542 | 5.487110 | 0.441655 | 1.647855 | 0.015728 | 3.299480 | 0.049094 | 5788.135818 | 108.023427 | -4.113048 | 0.116194 | -3.408498 | 0.144080 | 0.703619 | 0.033552 | -5.200917 | 0.085542 |
29 | OGLE-LMC-CEP-0561 | 5.972216 | 0.374926 | 1.872249 | 0.012086 | 3.630625 | 0.067437 | 5414.643974 | 165.521892 | -4.988641 | 0.152511 | -4.163650 | 0.201596 | 0.827615 | 0.051492 | -6.270989 | 0.083603 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
295 | OGLE-LMC-CEP-4153 | 5.840818 | 0.353542 | 1.794408 | 0.011735 | 3.557715 | 0.048026 | 5673.105028 | 114.058821 | -4.781374 | 0.109741 | -4.046425 | 0.142773 | 0.737870 | 0.035679 | -5.928041 | 0.069112 |
296 | OGLE-LMC-CEP-4176 | 5.858068 | 0.352757 | 1.780428 | 0.011477 | 3.562131 | 0.046822 | 5770.803045 | 112.524011 | -4.787490 | 0.106400 | -4.082022 | 0.138313 | 0.702135 | 0.035280 | -5.874449 | 0.066939 |
297 | OGLE-LMC-CEP-4194 | 5.867758 | 0.373700 | 1.774839 | 0.012186 | 3.558133 | 0.048747 | 5809.781229 | 115.554813 | -4.772283 | 0.110597 | -4.075753 | 0.144085 | 0.694995 | 0.036264 | -5.853785 | 0.070912 |
298 | OGLE-LMC-CEP-4211 | 5.988204 | 0.354018 | 1.788256 | 0.011704 | 3.568296 | 0.048561 | 5752.672642 | 116.005497 | -4.803398 | 0.110395 | -4.093041 | 0.143961 | 0.712956 | 0.036298 | -5.910954 | 0.069196 |
299 | OGLE-LMC-CEP-4249 | 5.439077 | 0.458192 | 1.578760 | 0.016903 | 3.188277 | 0.052242 | 5908.389470 | 108.758928 | -3.822877 | 0.124137 | -3.160218 | 0.153196 | 0.668875 | 0.033980 | -4.865996 | 0.092401 |
300 | OGLE-LMC-CEP-4257 | 5.182741 | 0.431018 | 1.585972 | 0.015937 | 3.222722 | 0.050965 | 5957.248740 | 108.606825 | -3.893257 | 0.120344 | -3.241180 | 0.149290 | 0.655313 | 0.033925 | -4.912366 | 0.087613 |
301 | OGLE-LMC-CEP-4274 | 5.462647 | 0.445767 | 1.653439 | 0.015338 | 3.316108 | 0.048316 | 5807.763804 | 108.420563 | -4.156299 | 0.112773 | -3.459070 | 0.140357 | 0.696064 | 0.033624 | -5.235904 | 0.082794 |
302 | OGLE-LMC-CEP-4281 | 5.340388 | 0.446426 | 1.658971 | 0.015163 | 3.332365 | 0.048060 | 5832.036830 | 108.814164 | -4.192350 | 0.112551 | -3.501848 | 0.140470 | 0.690884 | 0.033760 | -5.264705 | 0.082117 |
303 | OGLE-LMC-CEP-4287 | 5.793736 | 0.449801 | 1.714802 | 0.016004 | 3.429586 | 0.051858 | 5775.387942 | 110.786713 | -4.445291 | 0.121385 | -3.742566 | 0.151172 | 0.703409 | 0.034693 | -5.531175 | 0.087689 |
304 | OGLE-LMC-CEP-4293 | 5.492365 | 0.449147 | 1.592466 | 0.016686 | 3.209056 | 0.051575 | 5878.997746 | 108.585078 | -3.877234 | 0.122038 | -3.203930 | 0.150807 | 0.678308 | 0.033884 | -4.932093 | 0.090383 |
305 | OGLE-LMC-CEP-4316 | 5.319296 | 0.355738 | 1.742126 | 0.012140 | 3.453836 | 0.048886 | 5681.251473 | 115.139574 | -4.526689 | 0.111408 | -3.800150 | 0.144114 | 0.728685 | 0.036143 | -5.654391 | 0.070567 |
306 | OGLE-LMC-CEP-4317 | 6.067925 | 0.373260 | 1.844272 | 0.012223 | 3.671292 | 0.056455 | 5704.296014 | 135.006430 | -5.077455 | 0.130387 | -4.350499 | 0.169925 | 0.723217 | 0.043282 | -6.206211 | 0.076856 |
307 | OGLE-LMC-CEP-4319 | 5.800130 | 0.398842 | 1.706651 | 0.014260 | 3.416578 | 0.048475 | 5786.500997 | 111.576645 | -4.409215 | 0.112284 | -3.707509 | 0.142398 | 0.703287 | 0.034861 | -5.500201 | 0.078638 |
308 | OGLE-LMC-CEP-4330 | 5.330297 | 0.396520 | 1.634917 | 0.013571 | 3.267188 | 0.046495 | 5771.216637 | 107.889030 | -4.036485 | 0.107953 | -3.328429 | 0.136795 | 0.708039 | 0.033490 | -5.132767 | 0.075235 |
309 | OGLE-LMC-CEP-4396 | 5.481457 | 0.437013 | 1.613785 | 0.015762 | 3.232454 | 0.050284 | 5805.610560 | 108.370159 | -3.948748 | 0.118420 | -3.250918 | 0.147182 | 0.699603 | 0.033765 | -5.031833 | 0.086105 |
310 | OGLE-LMC-CEP-4402 | 5.875651 | 0.354651 | 1.788180 | 0.011433 | 3.571531 | 0.048785 | 5749.355273 | 120.686002 | -4.816530 | 0.109742 | -4.107320 | 0.144842 | 0.706930 | 0.038068 | -5.911652 | 0.067039 |
311 | OGLE-LMC-CEP-4409 | 5.636537 | 0.369849 | 1.702387 | 0.012642 | 3.360739 | 0.046654 | 5630.602752 | 108.162740 | -4.299324 | 0.106931 | -3.550974 | 0.136734 | 0.745008 | 0.033653 | -5.445785 | 0.071585 |
312 | OGLE-LMC-CEP-4414 | 5.853990 | 0.400237 | 1.682367 | 0.013374 | 3.362379 | 0.046351 | 5768.517908 | 108.623317 | -4.277952 | 0.106947 | -3.570380 | 0.135905 | 0.706007 | 0.033722 | -5.371111 | 0.074175 |
313 | OGLE-LMC-CEP-4440 | 5.423800 | 0.396749 | 1.629071 | 0.013535 | 3.256091 | 0.046498 | 5769.328847 | 107.860387 | -4.008001 | 0.107730 | -3.296252 | 0.136519 | 0.710061 | 0.033478 | -5.105987 | 0.074993 |
314 | OGLE-LMC-CEP-4465 | 5.335445 | 0.430254 | 1.567492 | 0.015697 | 3.135683 | 0.050066 | 5801.744938 | 108.267175 | -3.702393 | 0.117825 | -3.000760 | 0.146715 | 0.705030 | 0.033744 | -4.795042 | 0.085713 |
315 | OGLE-LMC-CEP-4470 | 5.353141 | 0.442194 | 1.577129 | 0.016293 | 3.181481 | 0.051488 | 5895.259448 | 108.828612 | -3.808703 | 0.121953 | -3.141582 | 0.151200 | 0.672580 | 0.033991 | -4.856896 | 0.089570 |
316 | OGLE-LMC-CEP-4474 | 5.457405 | 0.456051 | 1.662122 | 0.015783 | 3.333803 | 0.049024 | 5812.066895 | 108.743552 | -4.200595 | 0.114823 | -3.505129 | 0.142242 | 0.694569 | 0.033736 | -5.278677 | 0.085169 |
317 | OGLE-LMC-CEP-4475 | 5.313539 | 0.404938 | 1.584267 | 0.014311 | 3.170286 | 0.048585 | 5801.745285 | 108.321130 | -3.791293 | 0.113218 | -3.091693 | 0.142506 | 0.702613 | 0.033724 | -4.880608 | 0.079589 |
318 | OGLE-LMC-CEP-4476 | 5.390528 | 0.456553 | 1.654910 | 0.015396 | 3.340119 | 0.048401 | 5872.781626 | 108.754571 | -4.202901 | 0.113889 | -3.523501 | 0.141532 | 0.677572 | 0.033775 | -5.254489 | 0.083236 |
319 | OGLE-LMC-CEP-4484 | 5.213186 | 0.430378 | 1.647035 | 0.015256 | 3.274910 | 0.049997 | 5710.702515 | 108.826781 | -4.067261 | 0.116416 | -3.341477 | 0.145289 | 0.723262 | 0.033844 | -5.184288 | 0.083809 |
320 | OGLE-LMC-CEP-4504 | 5.313000 | 0.414688 | 1.594631 | 0.014793 | 3.208892 | 0.048698 | 5852.826370 | 108.104109 | -3.878441 | 0.113918 | -3.192993 | 0.142975 | 0.687920 | 0.033657 | -4.944660 | 0.081253 |
321 | OGLE-LMC-CEP-4512 | 6.109729 | 0.361390 | 1.793811 | 0.013051 | 3.569567 | 0.058209 | 5719.497818 | 133.394190 | -4.809538 | 0.133576 | -4.090534 | 0.174047 | 0.722550 | 0.042394 | -5.929879 | 0.081163 |
322 | OGLE-LMC-CEP-4524 | 5.377051 | 0.419763 | 1.603084 | 0.015022 | 3.203401 | 0.049523 | 5779.593970 | 108.407770 | -3.877106 | 0.116135 | -3.170269 | 0.145171 | 0.708462 | 0.033767 | -4.972559 | 0.082994 |
323 | OGLE-LMC-CEP-4544 | 4.861819 | 0.355307 | 1.752786 | 0.011574 | 3.439831 | 0.046230 | 5574.115821 | 113.031667 | -4.508021 | 0.104629 | -3.746073 | 0.136494 | 0.761896 | 0.035316 | -5.689614 | 0.066140 |
324 | OGLE-LMC-CEP-4600 | 6.015916 | 0.494931 | 1.887622 | 0.016501 | 3.646813 | 0.088076 | 5364.440289 | 201.291367 | -5.039300 | 0.203981 | -4.179848 | 0.268950 | 0.852019 | 0.065033 | -6.357413 | 0.114394 |
325 rows × 17 columns
ests_DF.iloc[1:10].to_latex(longtable=False, index=False)
'\\begin{tabular}{lrrrrrrrrrrrrrrrr}\n\\toprule\n ID & M & e\\_M & logR & e\\_logR & logL & e\\_logL & Teff & e\\_Teff & I\\_M0 & e\\_I\\_M0 & V\\_M0 & e\\_V\\_M0 & VI & e\\_VI & W & e\\_W \\\\\n\\midrule\n OGLE-LMC-CEP-0050 & 6.166502 & 0.399251 & 1.780000 & 0.013875 & 3.541317 & 0.058653 & 5719.021219 & 139.354356 & -4.744733 & 0.133739 & -4.020167 & 0.177962 & 0.720711 & 0.045507 & -5.862415 & 0.082405 \\\\\n OGLE-LMC-CEP-0057 & 6.871249 & 0.398144 & 1.861168 & 0.011742 & 3.693657 & 0.044538 & 5684.717505 & 110.927487 & -5.148841 & 0.101086 & -4.423182 & 0.131607 & 0.721185 & 0.034501 & -6.260633 & 0.066180 \\\\\n OGLE-LMC-CEP-0078 & 5.699958 & 0.366346 & 1.749439 & 0.011992 & 3.493068 & 0.045377 & 5763.870880 & 109.680605 & -4.608432 & 0.103839 & -3.901637 & 0.134257 & 0.708586 & 0.034162 & -5.707185 & 0.068343 \\\\\n OGLE-LMC-CEP-0103 & 6.330912 & 0.403360 & 1.760601 & 0.013788 & 3.570397 & 0.048609 & 5941.385137 & 109.314158 & -4.794215 & 0.111991 & -4.144789 & 0.141975 & 0.647057 & 0.034063 & -5.795697 & 0.077433 \\\\\n OGLE-LMC-CEP-0107 & 5.980849 & 0.355053 & 1.799100 & 0.011692 & 3.584044 & 0.050546 & 5732.983831 & 122.383591 & -4.840953 & 0.114402 & -4.120565 & 0.150769 & 0.720462 & 0.038612 & -5.961329 & 0.069967 \\\\\n OGLE-LMC-CEP-0123 & 5.826094 & 0.360087 & 1.736962 & 0.011951 & 3.461769 & 0.046147 & 5738.516324 & 111.949047 & -4.529634 & 0.105788 & -3.816418 & 0.137326 & 0.716085 & 0.035095 & -5.639910 & 0.068627 \\\\\n OGLE-LMC-CEP-0155 & 6.250097 & 0.391777 & 1.835071 & 0.012150 & 3.702338 & 0.045001 & 5870.056191 & 109.880246 & -5.143550 & 0.102843 & -4.480868 & 0.132649 & 0.665213 & 0.034128 & -6.182993 & 0.068784 \\\\\n OGLE-LMC-CEP-0158 & 5.487512 & 0.378884 & 1.735524 & 0.012837 & 3.476436 & 0.047695 & 5801.943364 & 111.430148 & -4.557389 & 0.109506 & -3.861329 & 0.140579 & 0.698613 & 0.034784 & -5.643501 & 0.073200 \\\\\n OGLE-LMC-CEP-0162 & 5.465754 & 0.506745 & 1.647071 & 0.018590 & 3.367102 & 0.052835 & 6015.969035 & 108.031712 & -4.252390 & 0.127329 & -3.626834 & 0.153373 & 0.629550 & 0.033601 & -5.230378 & 0.099812 \\\\\n\\bottomrule\n\\end{tabular}\n'
def signif(x, digits=6):
if x == 0 or not isfinite(x):
return x
digits -= ceil(log10(abs(x)))
rounded = round(x, digits)
if rounded > 10:
rounded = int(rounded)
return rounded
def formatter(val, unc):
unc = str(signif(unc, 2))
if len(unc) == 1:
unc += '.0'
if float(unc) < 10:
if unc[-2] == '0' or (unc[-2] == '.' and unc[-3] == '0'):
unc += '0'
dec_places = len(unc.split('.')[1])
val = str(val).split('.')
val = val[0] + '.' + val[1][:dec_places]
else:
val = str(val).split('.')[0]
if len(unc) > 2:
val = val[:len(val) - len(unc) + 2] + '0'*(len(val) - len(unc))
return [val, unc]
for index, row in ests_DF.iloc[0:10].iterrows():
out_str = row['ID'].split('-')[-1]
rest = row[1:]
for ii in range(len(rest) - 1):
if ii % 2 != 0: # every other column contains the uncertainty
continue
val, unc = formatter(rest[ii], rest[ii+1])
out_str += ' & ' + val + ' $\pm$ ' + unc
out_str += r' \\'
print(out_str)
0033 & 5.98 $\pm$ 0.39 & 1.756 $\pm$ 0.014 & 3.513 $\pm$ 0.057 & 5780 $\pm$ 140 & -4.66 $\pm$ 0.13 & -3.96 $\pm$ 0.17 & 0.700 $\pm$ 0.044 & -5.748 $\pm$ 0.083 \\ 0050 & 6.16 $\pm$ 0.40 & 1.780 $\pm$ 0.014 & 3.541 $\pm$ 0.059 & 5710 $\pm$ 140 & -4.74 $\pm$ 0.13 & -4.02 $\pm$ 0.18 & 0.720 $\pm$ 0.046 & -5.862 $\pm$ 0.082 \\ 0057 & 6.87 $\pm$ 0.40 & 1.861 $\pm$ 0.012 & 3.693 $\pm$ 0.045 & 5680 $\pm$ 110 & -5.14 $\pm$ 0.10 & -4.42 $\pm$ 0.13 & 0.721 $\pm$ 0.035 & -6.260 $\pm$ 0.066 \\ 0078 & 5.69 $\pm$ 0.37 & 1.749 $\pm$ 0.012 & 3.493 $\pm$ 0.045 & 5760 $\pm$ 110 & -4.60 $\pm$ 0.10 & -3.90 $\pm$ 0.13 & 0.708 $\pm$ 0.034 & -5.707 $\pm$ 0.068 \\ 0103 & 6.33 $\pm$ 0.40 & 1.760 $\pm$ 0.014 & 3.570 $\pm$ 0.049 & 5940 $\pm$ 110 & -4.79 $\pm$ 0.11 & -4.14 $\pm$ 0.14 & 0.647 $\pm$ 0.034 & -5.795 $\pm$ 0.077 \\ 0107 & 5.98 $\pm$ 0.36 & 1.799 $\pm$ 0.012 & 3.584 $\pm$ 0.051 & 5730 $\pm$ 120 & -4.84 $\pm$ 0.11 & -4.12 $\pm$ 0.15 & 0.720 $\pm$ 0.039 & -5.961 $\pm$ 0.070 \\ 0123 & 5.82 $\pm$ 0.36 & 1.736 $\pm$ 0.012 & 3.461 $\pm$ 0.046 & 5730 $\pm$ 110 & -4.52 $\pm$ 0.11 & -3.81 $\pm$ 0.14 & 0.716 $\pm$ 0.035 & -5.639 $\pm$ 0.069 \\ 0155 & 6.25 $\pm$ 0.39 & 1.835 $\pm$ 0.012 & 3.702 $\pm$ 0.045 & 5870 $\pm$ 110 & -5.14 $\pm$ 0.10 & -4.48 $\pm$ 0.13 & 0.665 $\pm$ 0.034 & -6.182 $\pm$ 0.069 \\ 0158 & 5.48 $\pm$ 0.38 & 1.735 $\pm$ 0.013 & 3.476 $\pm$ 0.048 & 5800 $\pm$ 110 & -4.55 $\pm$ 0.11 & -3.86 $\pm$ 0.14 & 0.698 $\pm$ 0.035 & -5.643 $\pm$ 0.073 \\ 0162 & 5.46 $\pm$ 0.51 & 1.647 $\pm$ 0.019 & 3.367 $\pm$ 0.053 & 6010 $\pm$ 110 & -4.25 $\pm$ 0.13 & -3.62 $\pm$ 0.15 & 0.629 $\pm$ 0.034 & -5.23 $\pm$ 0.10 \\
out_str = '\t'.join(list(ests_DF.columns)) + '\n'
for index, row in ests_DF.iterrows():
out_str += row['ID'] + '\t'
rest = row[1:]
for ii in range(len(rest) - 1):
if ii % 2 != 0: # every other column contains the uncertainty
continue
val, unc = formatter(rest[ii], rest[ii+1])
out_str += val + '\t' + unc + '\t'
out_str += '\n'
print(out_str)
out_file = open("ML-OGLE_LMC_CEP.dat", "w")
out_file.write(out_str)
out_file.close()
ID M e_M logR e_logR logL e_logL Teff e_Teff I_M0 e_I_M0 V_M0 e_V_M0 VI e_VI W e_W OGLE-LMC-CEP-0033 5.98 0.39 1.756 0.014 3.513 0.057 5780 140 -4.66 0.13 -3.96 0.17 0.700 0.044 -5.748 0.083 OGLE-LMC-CEP-0050 6.16 0.40 1.780 0.014 3.541 0.059 5710 140 -4.74 0.13 -4.02 0.18 0.720 0.046 -5.862 0.082 OGLE-LMC-CEP-0057 6.87 0.40 1.861 0.012 3.693 0.045 5680 110 -5.14 0.10 -4.42 0.13 0.721 0.035 -6.260 0.066 OGLE-LMC-CEP-0078 5.69 0.37 1.749 0.012 3.493 0.045 5760 110 -4.60 0.10 -3.90 0.13 0.708 0.034 -5.707 0.068 OGLE-LMC-CEP-0103 6.33 0.40 1.760 0.014 3.570 0.049 5940 110 -4.79 0.11 -4.14 0.14 0.647 0.034 -5.795 0.077 OGLE-LMC-CEP-0107 5.98 0.36 1.799 0.012 3.584 0.051 5730 120 -4.84 0.11 -4.12 0.15 0.720 0.039 -5.961 0.070 OGLE-LMC-CEP-0123 5.82 0.36 1.736 0.012 3.461 0.046 5730 110 -4.52 0.11 -3.81 0.14 0.716 0.035 -5.639 0.069 OGLE-LMC-CEP-0155 6.25 0.39 1.835 0.012 3.702 0.045 5870 110 -5.14 0.10 -4.48 0.13 0.665 0.034 -6.182 0.069 OGLE-LMC-CEP-0158 5.48 0.38 1.735 0.013 3.476 0.048 5800 110 -4.55 0.11 -3.86 0.14 0.698 0.035 -5.643 0.073 OGLE-LMC-CEP-0162 5.46 0.51 1.647 0.019 3.367 0.053 6010 110 -4.25 0.13 -3.62 0.15 0.629 0.034 -5.23 0.10 OGLE-LMC-CEP-0169 5.52 0.44 1.673 0.016 3.328 0.052 5700 110 -4.20 0.12 -3.47 0.15 0.723 0.035 -5.320 0.089 OGLE-LMC-CEP-0177 5.54 0.46 1.600 0.017 3.215 0.052 5840 110 -3.89 0.12 -3.21 0.15 0.687 0.034 -4.966 0.091 OGLE-LMC-CEP-0189 5.36 0.44 1.677 0.015 3.383 0.048 5870 110 -4.31 0.11 -3.63 0.14 0.679 0.034 -5.362 0.080 OGLE-LMC-CEP-0212 5.82 0.39 1.878 0.013 3.678 0.059 5510 140 -5.11 0.13 -4.30 0.18 0.796 0.043 -6.345 0.081 OGLE-LMC-CEP-0250 5.81 0.39 1.705 0.014 3.381 0.049 5670 110 -4.34 0.11 -3.61 0.14 0.729 0.034 -5.471 0.079 OGLE-LMC-CEP-0264 5.34 0.42 1.564 0.015 3.136 0.050 5830 110 -3.70 0.12 -3.01 0.15 0.691 0.034 -4.779 0.084 OGLE-LMC-CEP-0269 5.22 0.40 1.565 0.014 3.165 0.048 5910 110 -3.75 0.11 -3.08 0.14 0.671 0.034 -4.801 0.079 OGLE-LMC-CEP-0291 5.21 0.44 1.556 0.016 3.109 0.052 5790 110 -3.64 0.12 -2.94 0.15 0.705 0.034 -4.738 0.090 OGLE-LMC-CEP-0306 6.14 0.37 1.737 0.012 3.485 0.046 5810 110 -4.58 0.10 -3.88 0.14 0.692 0.034 -5.653 0.068 OGLE-LMC-CEP-0316 5.39 0.44 1.557 0.016 3.109 0.051 5780 110 -3.64 0.12 -2.94 0.15 0.705 0.034 -4.737 0.087 OGLE-LMC-CEP-0329 5.23 0.41 1.567 0.014 3.134 0.049 5790 110 -3.70 0.11 -3.00 0.14 0.701 0.034 -4.793 0.081 OGLE-LMC-CEP-0356 6.02 0.37 1.892 0.012 3.672 0.056 5420 130 -5.08 0.13 -4.25 0.17 0.838 0.041 -6.382 0.077 OGLE-LMC-CEP-0377 6.60 0.41 1.732 0.014 3.521 0.049 5950 110 -4.64 0.11 -3.99 0.14 0.648 0.035 -5.650 0.080 OGLE-LMC-CEP-0458 5.28 0.41 1.562 0.014 3.119 0.049 5780 110 -3.66 0.11 -2.96 0.14 0.706 0.034 -4.766 0.080 OGLE-LMC-CEP-0482 5.72 0.37 1.749 0.012 3.501 0.048 5780 110 -4.63 0.11 -3.92 0.14 0.700 0.036 -5.712 0.070 OGLE-LMC-CEP-0492 5.02 0.40 1.636 0.014 3.320 0.047 5930 110 -4.14 0.11 -3.48 0.14 0.660 0.034 -5.165 0.076 OGLE-LMC-CEP-0505 5.29 0.42 1.583 0.015 3.160 0.050 5770 110 -3.77 0.12 -3.06 0.15 0.709 0.034 -4.871 0.084 OGLE-LMC-CEP-0520 6.11 0.36 1.793 0.012 3.572 0.052 5720 120 -4.81 0.12 -4.09 0.15 0.719 0.038 -5.930 0.073 OGLE-LMC-CEP-0542 5.48 0.44 1.647 0.016 3.299 0.049 5780 110 -4.11 0.12 -3.40 0.14 0.703 0.034 -5.200 0.086 OGLE-LMC-CEP-0561 5.97 0.37 1.872 0.012 3.630 0.067 5410 170 -4.98 0.15 -4.16 0.20 0.827 0.051 -6.270 0.084 OGLE-LMC-CEP-0576 5.67 0.42 1.645 0.015 3.292 0.049 5790 110 -4.09 0.12 -3.39 0.14 0.703 0.034 -5.184 0.083 OGLE-LMC-CEP-0592 5.38 0.44 1.588 0.016 3.184 0.051 5820 110 -3.82 0.12 -3.13 0.15 0.693 0.034 -4.899 0.087 OGLE-LMC-CEP-0599 5.67 0.43 1.664 0.015 3.334 0.048 5800 110 -4.20 0.11 -3.50 0.14 0.699 0.034 -5.287 0.080 OGLE-LMC-CEP-0613 5.46 0.44 1.603 0.016 3.223 0.050 5840 110 -3.92 0.12 -3.23 0.15 0.688 0.034 -4.987 0.087 OGLE-LMC-CEP-0625 5.22 0.42 1.557 0.015 3.118 0.050 5810 110 -3.66 0.12 -2.96 0.15 0.698 0.034 -4.747 0.084 OGLE-LMC-CEP-0647 5.33 0.42 1.632 0.014 3.289 0.048 5850 110 -4.07 0.11 -3.39 0.14 0.684 0.034 -5.137 0.078 OGLE-LMC-CEP-0655 5.93 0.37 1.892 0.012 3.670 0.055 5390 130 -5.09 0.12 -4.25 0.16 0.835 0.042 -6.391 0.075 OGLE-LMC-CEP-0658 5.48 0.40 1.664 0.014 3.406 0.048 6020 110 -4.34 0.11 -3.71 0.14 0.630 0.034 -5.323 0.077 OGLE-LMC-CEP-0669 5.89 0.37 1.770 0.011 3.507 0.047 5660 110 -4.65 0.11 -3.92 0.14 0.737 0.036 -5.806 0.067 OGLE-LMC-CEP-0671 6.39 0.39 1.667 0.013 3.335 0.047 5800 110 -4.20 0.11 -3.51 0.14 0.693 0.034 -5.283 0.074 OGLE-LMC-CEP-0683 6.20 0.38 1.932 0.012 3.720 0.059 5300 140 -5.23 0.14 -4.36 0.18 0.866 0.046 -6.573 0.077 OGLE-LMC-CEP-0702 5.30 0.42 1.628 0.015 3.254 0.048 5770 110 -4.00 0.11 -3.29 0.14 0.707 0.034 -5.101 0.080 OGLE-LMC-CEP-0708 5.76 0.39 1.836 0.012 3.650 0.060 5680 140 -5.02 0.14 -4.28 0.18 0.730 0.046 -6.154 0.079 OGLE-LMC-CEP-0716 5.60 0.36 1.870 0.012 3.607 0.051 5340 120 -4.94 0.12 -4.09 0.15 0.847 0.039 -6.258 0.070 OGLE-LMC-CEP-0741 6.18 0.37 1.857 0.012 3.730 0.053 5790 130 -5.21 0.12 -4.51 0.16 0.691 0.041 -6.292 0.074 OGLE-LMC-CEP-0776 6.70 0.37 1.759 0.012 3.548 0.046 5870 110 -4.73 0.11 -4.06 0.14 0.671 0.035 -5.776 0.068 OGLE-LMC-CEP-0800 5.56 0.38 1.875 0.012 3.620 0.062 5350 150 -4.97 0.14 -4.11 0.19 0.850 0.047 -6.287 0.082 OGLE-LMC-CEP-0831 5.55 0.37 1.811 0.012 3.591 0.046 5660 120 -4.88 0.11 -4.14 0.14 0.734 0.037 -6.022 0.067 OGLE-LMC-CEP-0837 5.43 0.38 1.675 0.012 3.255 0.048 5470 110 -4.04 0.11 -3.23 0.14 0.798 0.035 -5.272 0.073 OGLE-LMC-CEP-0838 5.16 0.42 1.567 0.015 3.173 0.049 5920 110 -3.78 0.12 -3.12 0.14 0.664 0.034 -4.816 0.083 OGLE-LMC-CEP-0843 5.79 0.35 1.776 0.011 3.551 0.047 5750 110 -4.76 0.11 -4.05 0.14 0.705 0.036 -5.856 0.066 OGLE-LMC-CEP-0845 5.29 0.42 1.599 0.015 3.194 0.050 5770 110 -3.85 0.12 -3.14 0.15 0.709 0.034 -4.954 0.084 OGLE-LMC-CEP-0846 6.08 0.35 1.815 0.011 3.597 0.048 5670 110 -4.87 0.11 -4.13 0.14 0.741 0.036 -6.029 0.068 OGLE-LMC-CEP-0878 6.21 0.42 1.830 0.013 3.625 0.045 5660 110 -4.98 0.10 -4.23 0.13 0.733 0.035 -6.108 0.069 OGLE-LMC-CEP-0884 5.79 0.37 1.761 0.012 3.534 0.048 5810 110 -4.70 0.11 -4.00 0.14 0.694 0.035 -5.782 0.070 OGLE-LMC-CEP-0886 5.39 0.41 1.599 0.014 3.195 0.048 5770 110 -3.86 0.11 -3.15 0.14 0.705 0.034 -4.953 0.079 OGLE-LMC-CEP-0888 6.42 0.39 1.828 0.012 3.610 0.045 5630 110 -4.94 0.10 -4.20 0.13 0.739 0.035 -6.087 0.066 OGLE-LMC-CEP-0915 5.75 0.36 1.747 0.012 3.481 0.046 5730 110 -4.58 0.11 -3.87 0.14 0.716 0.034 -5.695 0.068 OGLE-LMC-CEP-0919 5.53 0.43 1.632 0.015 3.275 0.049 5810 110 -4.05 0.11 -3.35 0.14 0.696 0.034 -5.128 0.082 OGLE-LMC-CEP-0926 5.28 0.39 1.612 0.014 3.229 0.047 5790 110 -3.93 0.11 -3.23 0.14 0.704 0.034 -5.027 0.076 OGLE-LMC-CEP-0927 5.85 0.35 1.800 0.011 3.593 0.046 5750 110 -4.86 0.10 -4.15 0.14 0.711 0.034 -5.972 0.067 OGLE-LMC-CEP-0931 6.49 0.42 1.713 0.015 3.472 0.049 5930 110 -4.53 0.11 -3.87 0.14 0.653 0.034 -5.541 0.081 OGLE-LMC-CEP-0936 5.99 0.35 1.787 0.011 3.541 0.046 5670 110 -4.74 0.10 -4.01 0.14 0.735 0.034 -5.891 0.066 OGLE-LMC-CEP-0949 5.38 0.38 1.877 0.012 3.610 0.057 5300 130 -4.94 0.13 -4.06 0.17 0.870 0.043 -6.288 0.078 OGLE-LMC-CEP-0963 5.96 0.35 1.797 0.012 3.569 0.048 5690 110 -4.80 0.11 -4.08 0.14 0.730 0.036 -5.945 0.068 OGLE-LMC-CEP-0969 5.85 0.37 1.891 0.012 3.671 0.053 5400 130 -5.10 0.12 -4.26 0.16 0.825 0.041 -6.377 0.073 OGLE-LMC-CEP-0973 5.23 0.36 1.821 0.012 3.491 0.053 5280 130 -4.65 0.12 -3.79 0.16 0.857 0.041 -5.983 0.070 OGLE-LMC-CEP-0975 6.13 0.37 1.897 0.012 3.710 0.058 5480 140 -5.18 0.13 -4.38 0.17 0.797 0.044 -6.418 0.077 OGLE-LMC-CEP-0990 5.35 0.43 1.563 0.015 3.130 0.049 5810 110 -3.69 0.12 -3.00 0.14 0.694 0.034 -4.773 0.084 OGLE-LMC-CEP-1004 5.15 0.42 1.551 0.015 3.097 0.049 5780 110 -3.61 0.11 -2.91 0.14 0.706 0.034 -4.709 0.082 OGLE-LMC-CEP-1011 5.25 0.41 1.587 0.015 3.191 0.049 5840 110 -3.83 0.11 -3.15 0.14 0.690 0.034 -4.907 0.081 OGLE-LMC-CEP-1012 5.31 0.44 1.641 0.015 3.291 0.049 5790 110 -4.09 0.12 -3.39 0.14 0.699 0.034 -5.173 0.084 OGLE-LMC-CEP-1019 5.24 0.44 1.612 0.016 3.227 0.050 5780 110 -3.93 0.12 -3.22 0.15 0.704 0.034 -5.025 0.086 OGLE-LMC-CEP-1020 5.16 0.42 1.572 0.015 3.131 0.049 5750 110 -3.70 0.11 -2.99 0.14 0.715 0.034 -4.811 0.082 OGLE-LMC-CEP-1045 5.35 0.42 1.619 0.015 3.236 0.048 5770 110 -3.95 0.11 -3.25 0.14 0.707 0.033 -5.054 0.082 OGLE-LMC-CEP-1057 5.44 0.42 1.638 0.015 3.276 0.048 5770 110 -4.06 0.11 -3.35 0.14 0.706 0.034 -5.153 0.081 OGLE-LMC-CEP-1073 5.85 0.39 1.657 0.013 3.304 0.048 5760 110 -4.13 0.11 -3.42 0.14 0.707 0.034 -5.231 0.076 OGLE-LMC-CEP-1078 6.08 0.35 1.798 0.011 3.569 0.047 5680 120 -4.80 0.11 -4.08 0.14 0.730 0.036 -5.945 0.067 OGLE-LMC-CEP-1094 5.95 0.37 1.737 0.012 3.475 0.045 5790 110 -4.55 0.10 -3.85 0.13 0.700 0.034 -5.645 0.066 OGLE-LMC-CEP-1096 5.27 0.40 1.600 0.014 3.254 0.048 5960 110 -3.97 0.11 -3.32 0.14 0.650 0.034 -4.988 0.079 OGLE-LMC-CEP-1109 6.06 0.37 1.876 0.012 3.639 0.060 5410 150 -5.01 0.14 -4.18 0.18 0.826 0.048 -6.292 0.077 OGLE-LMC-CEP-1112 5.76 0.37 1.763 0.012 3.530 0.047 5800 110 -4.70 0.11 -4.00 0.14 0.696 0.035 -5.782 0.068 OGLE-LMC-CEP-1115 6.26 0.39 1.830 0.012 3.617 0.044 5630 110 -4.96 0.10 -4.21 0.13 0.740 0.035 -6.103 0.066 OGLE-LMC-CEP-1118 5.46 0.46 1.563 0.017 3.133 0.052 5820 110 -3.69 0.12 -3.01 0.15 0.690 0.034 -4.773 0.091 OGLE-LMC-CEP-1120 5.46 0.37 1.863 0.012 3.566 0.057 5260 140 -4.84 0.13 -3.96 0.17 0.873 0.044 -6.198 0.075 OGLE-LMC-CEP-1128 5.51 0.41 1.728 0.014 3.475 0.054 5840 120 -4.55 0.12 -3.86 0.16 0.685 0.039 -5.615 0.083 OGLE-LMC-CEP-1129 5.45 0.39 1.678 0.014 3.334 0.049 5700 110 -4.22 0.11 -3.50 0.14 0.721 0.034 -5.340 0.079 OGLE-LMC-CEP-1141 5.50 0.39 1.679 0.013 3.374 0.046 5820 110 -4.30 0.11 -3.60 0.14 0.688 0.034 -5.369 0.074 OGLE-LMC-CEP-1166 5.78 0.39 1.905 0.012 3.674 0.057 5330 130 -5.10 0.13 -4.23 0.17 0.864 0.042 -6.442 0.078 OGLE-LMC-CEP-1172 5.19 0.45 1.620 0.016 3.275 0.050 5890 110 -4.03 0.12 -3.36 0.15 0.673 0.034 -5.081 0.086 OGLE-LMC-CEP-1180 6.23 0.37 1.939 0.012 3.731 0.053 5300 130 -5.25 0.12 -4.37 0.16 0.873 0.040 -6.605 0.073 OGLE-LMC-CEP-1184 6.17 0.37 1.923 0.012 3.705 0.052 5310 120 -5.19 0.12 -4.32 0.15 0.862 0.039 -6.529 0.072 OGLE-LMC-CEP-1190 5.33 0.41 1.594 0.015 3.204 0.049 5840 110 -3.86 0.11 -3.18 0.14 0.688 0.034 -4.938 0.082 OGLE-LMC-CEP-1192 5.26 0.43 1.629 0.015 3.280 0.048 5840 110 -4.05 0.11 -3.36 0.14 0.687 0.034 -5.125 0.081 OGLE-LMC-CEP-1200 5.78 0.37 1.727 0.012 3.457 0.046 5770 110 -4.51 0.11 -3.81 0.14 0.702 0.035 -5.603 0.070 OGLE-LMC-CEP-1211 5.26 0.42 1.553 0.015 3.135 0.049 5880 110 -3.69 0.11 -3.02 0.14 0.673 0.034 -4.742 0.082 OGLE-LMC-CEP-1214 5.84 0.35 1.794 0.011 3.554 0.046 5670 110 -4.77 0.10 -4.03 0.14 0.740 0.035 -5.925 0.066 OGLE-LMC-CEP-1225 5.27 0.43 1.576 0.016 3.196 0.051 5940 110 -3.83 0.12 -3.17 0.15 0.660 0.034 -4.861 0.087 OGLE-LMC-CEP-1233 6.04 0.35 1.786 0.011 3.583 0.047 5810 110 -4.83 0.11 -4.13 0.14 0.695 0.035 -5.914 0.067 OGLE-LMC-CEP-1237 5.51 0.37 1.826 0.012 3.602 0.059 5600 140 -4.90 0.14 -4.13 0.18 0.761 0.046 -6.092 0.079 OGLE-LMC-CEP-1245 5.40 0.42 1.640 0.014 3.290 0.047 5810 110 -4.08 0.11 -3.38 0.14 0.698 0.033 -5.168 0.077 OGLE-LMC-CEP-1249 6.32 0.38 1.746 0.012 3.492 0.046 5780 110 -4.60 0.10 -3.90 0.14 0.700 0.034 -5.689 0.069 OGLE-LMC-CEP-1252 5.59 0.38 1.821 0.012 3.679 0.053 5850 130 -5.08 0.12 -4.41 0.16 0.671 0.040 -6.129 0.075 OGLE-LMC-CEP-1256 5.20 0.40 1.621 0.014 3.218 0.047 5700 110 -3.92 0.11 -3.19 0.14 0.728 0.034 -5.048 0.077 OGLE-LMC-CEP-1261 5.95 0.35 1.756 0.011 3.472 0.046 5640 110 -4.56 0.10 -3.82 0.14 0.744 0.035 -5.729 0.066 OGLE-LMC-CEP-1266 5.26 0.40 1.593 0.014 3.186 0.048 5790 110 -3.83 0.11 -3.13 0.14 0.702 0.034 -4.922 0.078 OGLE-LMC-CEP-1301 5.45 0.43 1.637 0.015 3.334 0.049 5970 110 -4.17 0.12 -3.52 0.14 0.646 0.034 -5.176 0.083 OGLE-LMC-CEP-1304 4.91 0.41 1.539 0.014 3.059 0.048 5730 110 -3.52 0.11 -2.80 0.14 0.720 0.034 -4.641 0.078 OGLE-LMC-CEP-1313 5.45 0.37 1.718 0.013 3.415 0.047 5700 110 -4.42 0.11 -3.69 0.14 0.724 0.034 -5.542 0.073 OGLE-LMC-CEP-1321 5.13 0.39 1.563 0.014 3.194 0.047 6010 110 -3.81 0.11 -3.17 0.14 0.639 0.034 -4.809 0.076 OGLE-LMC-CEP-1335 5.32 0.42 1.583 0.015 3.160 0.049 5760 110 -3.77 0.12 -3.06 0.14 0.712 0.034 -4.873 0.083 OGLE-LMC-CEP-1344 5.96 0.36 1.748 0.012 3.513 0.046 5830 110 -4.64 0.11 -3.96 0.14 0.685 0.034 -5.716 0.068 OGLE-LMC-CEP-1353 5.99 0.36 1.770 0.011 3.523 0.045 5710 110 -4.69 0.10 -3.97 0.13 0.722 0.034 -5.816 0.066 OGLE-LMC-CEP-1370 5.44 0.40 1.576 0.014 3.162 0.048 5830 110 -3.76 0.11 -3.08 0.14 0.688 0.034 -4.839 0.077 OGLE-LMC-CEP-1389 5.84 0.35 1.749 0.012 3.481 0.046 5720 110 -4.58 0.10 -3.87 0.14 0.719 0.034 -5.701 0.068 OGLE-LMC-CEP-1396 5.45 0.43 1.602 0.015 3.266 0.049 5980 110 -4.00 0.11 -3.37 0.14 0.639 0.034 -5.002 0.083 OGLE-LMC-CEP-1398 5.45 0.42 1.611 0.015 3.228 0.049 5800 110 -3.93 0.12 -3.24 0.15 0.698 0.034 -5.019 0.084 OGLE-LMC-CEP-1404 5.08 0.40 1.694 0.014 3.366 0.049 5700 110 -4.30 0.11 -3.58 0.14 0.720 0.034 -5.421 0.076 OGLE-LMC-CEP-1407 5.38 0.42 1.589 0.015 3.200 0.049 5850 110 -3.86 0.12 -3.18 0.14 0.680 0.034 -4.917 0.083 OGLE-LMC-CEP-1416 5.46 0.42 1.629 0.015 3.281 0.048 5850 110 -4.06 0.11 -3.38 0.14 0.683 0.034 -5.122 0.082 OGLE-LMC-CEP-1444 5.51 0.38 1.714 0.013 3.406 0.048 5700 110 -4.40 0.11 -3.68 0.14 0.719 0.034 -5.522 0.073 OGLE-LMC-CEP-1463 5.79 0.37 1.756 0.013 3.520 0.046 5800 110 -4.67 0.11 -3.98 0.14 0.694 0.034 -5.758 0.071 OGLE-LMC-CEP-1490 5.97 0.36 1.783 0.012 3.570 0.047 5780 110 -4.79 0.11 -4.09 0.14 0.703 0.035 -5.894 0.068 OGLE-LMC-CEP-1494 5.77 0.39 1.668 0.014 3.360 0.047 5860 110 -4.25 0.11 -3.58 0.14 0.677 0.034 -5.308 0.076 OGLE-LMC-CEP-1513 6.08 0.35 1.789 0.011 3.554 0.045 5700 110 -4.77 0.10 -4.05 0.13 0.726 0.034 -5.905 0.065 OGLE-LMC-CEP-1526 5.54 0.39 1.722 0.013 3.460 0.046 5820 110 -4.51 0.11 -3.82 0.14 0.688 0.034 -5.584 0.073 OGLE-LMC-CEP-1539 6.22 0.37 1.910 0.012 3.687 0.055 5340 130 -5.15 0.13 -4.29 0.16 0.848 0.042 -6.460 0.075 OGLE-LMC-CEP-1553 6.03 0.39 1.719 0.013 3.432 0.046 5760 110 -4.45 0.10 -3.75 0.13 0.706 0.034 -5.552 0.071 OGLE-LMC-CEP-1559 5.30 0.43 1.552 0.015 3.108 0.050 5810 110 -3.63 0.12 -2.95 0.15 0.694 0.034 -4.720 0.084 OGLE-LMC-CEP-1560 5.41 0.43 1.593 0.015 3.202 0.050 5840 110 -3.86 0.12 -3.18 0.15 0.686 0.034 -4.933 0.084 OGLE-LMC-CEP-1580 5.50 0.42 1.665 0.015 3.333 0.048 5780 110 -4.20 0.11 -3.50 0.14 0.701 0.034 -5.291 0.080 OGLE-LMC-CEP-1590 5.34 0.41 1.638 0.014 3.291 0.048 5830 110 -4.09 0.11 -3.40 0.14 0.689 0.034 -5.159 0.079 OGLE-LMC-CEP-1608 5.37 0.36 1.845 0.012 3.645 0.051 5600 120 -5.01 0.12 -4.24 0.15 0.760 0.039 -6.193 0.071 OGLE-LMC-CEP-1614 5.43 0.42 1.623 0.015 3.221 0.049 5700 110 -3.93 0.12 -3.20 0.14 0.726 0.034 -5.054 0.082 OGLE-LMC-CEP-1636 5.67 0.36 1.714 0.012 3.434 0.045 5780 110 -4.45 0.10 -3.75 0.13 0.701 0.034 -5.540 0.067 OGLE-LMC-CEP-1647 5.22 0.37 1.779 0.012 3.569 0.045 5810 110 -4.81 0.10 -4.13 0.13 0.686 0.034 -5.881 0.067 OGLE-LMC-CEP-1658 5.21 0.40 1.546 0.014 3.104 0.048 5830 110 -3.62 0.11 -2.94 0.14 0.688 0.034 -4.698 0.078 OGLE-LMC-CEP-1667 5.41 0.42 1.703 0.014 3.433 0.047 5870 110 -4.44 0.11 -3.76 0.14 0.675 0.034 -5.494 0.077 OGLE-LMC-CEP-1719 6.08 0.40 1.848 0.013 3.642 0.071 5590 170 -5.01 0.17 -4.25 0.22 0.758 0.056 -6.197 0.091 OGLE-LMC-CEP-1737 5.17 0.42 1.561 0.015 3.109 0.050 5760 110 -3.64 0.12 -2.93 0.14 0.713 0.034 -4.752 0.082 OGLE-LMC-CEP-1748 5.86 0.38 1.723 0.012 3.454 0.045 5810 110 -4.50 0.10 -3.80 0.13 0.693 0.034 -5.578 0.069 OGLE-LMC-CEP-1757 5.39 0.39 1.571 0.014 3.146 0.048 5810 110 -3.72 0.11 -3.02 0.14 0.702 0.034 -4.815 0.077 OGLE-LMC-CEP-1778 5.37 0.41 1.624 0.014 3.254 0.048 5790 110 -4.00 0.11 -3.30 0.14 0.700 0.034 -5.086 0.078 OGLE-LMC-CEP-1785 5.56 0.40 1.665 0.014 3.330 0.047 5760 110 -4.19 0.11 -3.49 0.14 0.704 0.034 -5.291 0.076 OGLE-LMC-CEP-1791 5.34 0.41 1.554 0.014 3.116 0.048 5820 110 -3.65 0.11 -2.97 0.14 0.690 0.034 -4.731 0.079 OGLE-LMC-CEP-1794 5.20 0.41 1.598 0.015 3.267 0.049 6010 110 -3.99 0.11 -3.36 0.14 0.636 0.034 -4.991 0.081 OGLE-LMC-CEP-1797 5.08 0.41 1.602 0.014 3.187 0.047 5720 110 -3.84 0.11 -3.12 0.14 0.721 0.034 -4.960 0.079 OGLE-LMC-CEP-1799 5.42 0.42 1.635 0.014 3.288 0.048 5840 110 -4.08 0.11 -3.39 0.14 0.688 0.034 -5.149 0.080 OGLE-LMC-CEP-1831 5.48 0.41 1.675 0.014 3.401 0.048 5930 110 -4.34 0.11 -3.68 0.14 0.658 0.034 -5.364 0.077 OGLE-LMC-CEP-1846 5.15 0.40 1.545 0.014 3.116 0.048 5880 110 -3.64 0.11 -2.97 0.14 0.675 0.034 -4.697 0.077 OGLE-LMC-CEP-1851 5.21 0.42 1.572 0.015 3.193 0.049 5940 110 -3.82 0.11 -3.17 0.14 0.654 0.034 -4.847 0.082 OGLE-LMC-CEP-1866 5.85 0.36 1.744 0.012 3.473 0.046 5720 110 -4.56 0.10 -3.84 0.14 0.721 0.035 -5.679 0.068 OGLE-LMC-CEP-1870 5.79 0.43 1.697 0.015 3.399 0.048 5790 110 -4.37 0.11 -3.67 0.14 0.697 0.034 -5.452 0.082 OGLE-LMC-CEP-1887 5.45 0.42 1.671 0.014 3.361 0.048 5840 110 -4.26 0.11 -3.58 0.14 0.684 0.034 -5.329 0.079 OGLE-LMC-CEP-1892 5.32 0.41 1.644 0.014 3.278 0.047 5740 110 -4.06 0.11 -3.35 0.14 0.715 0.034 -5.175 0.078 OGLE-LMC-CEP-1899 5.36 0.40 1.579 0.014 3.200 0.048 5920 110 -3.84 0.11 -3.18 0.14 0.662 0.034 -4.880 0.078 OGLE-LMC-CEP-1903 5.73 0.38 1.723 0.013 3.422 0.048 5690 110 -4.44 0.11 -3.72 0.14 0.724 0.034 -5.567 0.075 OGLE-LMC-CEP-1904 5.17 0.41 1.583 0.015 3.237 0.049 6010 110 -3.92 0.11 -3.28 0.14 0.635 0.034 -4.913 0.081 OGLE-LMC-CEP-1909 5.11 0.41 1.557 0.014 3.151 0.048 5900 110 -3.73 0.11 -3.07 0.14 0.665 0.034 -4.767 0.079 OGLE-LMC-CEP-1910 5.51 0.37 1.805 0.012 3.666 0.053 5910 130 -5.04 0.12 -4.39 0.16 0.653 0.040 -6.060 0.075 OGLE-LMC-CEP-1922 6.00 0.40 1.701 0.014 3.463 0.048 5960 110 -4.49 0.11 -3.84 0.14 0.645 0.034 -5.494 0.078 OGLE-LMC-CEP-1926 5.74 0.48 1.695 0.017 3.416 0.051 5860 110 -4.39 0.12 -3.71 0.15 0.678 0.035 -5.449 0.091 OGLE-LMC-CEP-1927 5.43 0.45 1.648 0.016 3.315 0.050 5830 110 -4.14 0.12 -3.46 0.15 0.687 0.034 -5.213 0.086 OGLE-LMC-CEP-1933 5.79 0.38 1.800 0.012 3.599 0.048 5750 120 -4.88 0.11 -4.17 0.14 0.709 0.038 -5.986 0.067 OGLE-LMC-CEP-1939 5.70 0.52 1.695 0.018 3.403 0.051 5820 110 -4.37 0.12 -3.68 0.15 0.689 0.035 -5.443 0.094 OGLE-LMC-CEP-1942 5.98 0.36 1.750 0.012 3.469 0.045 5670 110 -4.55 0.10 -3.82 0.13 0.736 0.034 -5.699 0.067 OGLE-LMC-CEP-1945 5.39 0.35 1.749 0.011 3.467 0.047 5670 120 -4.56 0.11 -3.83 0.14 0.731 0.036 -5.697 0.066 OGLE-LMC-CEP-1954 5.43 0.38 1.876 0.012 3.599 0.057 5280 140 -4.92 0.13 -4.04 0.17 0.877 0.044 -6.283 0.076 OGLE-LMC-CEP-1956 5.47 0.38 1.786 0.012 3.540 0.045 5660 110 -4.76 0.10 -4.02 0.13 0.732 0.034 -5.888 0.067 OGLE-LMC-CEP-1957 6.63 0.35 1.767 0.011 3.509 0.046 5700 110 -4.66 0.10 -3.94 0.14 0.721 0.034 -5.775 0.067 OGLE-LMC-CEP-1983 5.03 0.36 1.723 0.013 3.399 0.048 5610 110 -4.40 0.11 -3.65 0.14 0.748 0.035 -5.558 0.071 OGLE-LMC-CEP-1984 5.47 0.45 1.665 0.016 3.341 0.050 5800 110 -4.21 0.12 -3.51 0.15 0.696 0.034 -5.290 0.086 OGLE-LMC-CEP-1986 5.47 0.46 1.639 0.016 3.284 0.051 5790 110 -4.07 0.12 -3.37 0.15 0.699 0.034 -5.157 0.090 OGLE-LMC-CEP-1990 5.30 0.45 1.576 0.016 3.157 0.050 5800 110 -3.76 0.12 -3.06 0.15 0.696 0.034 -4.842 0.086 OGLE-LMC-CEP-1999 5.39 0.43 1.587 0.015 3.198 0.049 5860 110 -3.85 0.11 -3.18 0.14 0.678 0.034 -4.909 0.082 OGLE-LMC-CEP-2013 5.35 0.43 1.574 0.015 3.172 0.050 5860 110 -3.79 0.12 -3.11 0.15 0.679 0.034 -4.845 0.085 OGLE-LMC-CEP-2015 6.45 0.39 1.731 0.013 3.507 0.047 5910 110 -4.62 0.11 -3.95 0.14 0.659 0.034 -5.640 0.074 OGLE-LMC-CEP-2017 5.33 0.42 1.629 0.015 3.299 0.049 5910 110 -4.09 0.12 -3.43 0.14 0.665 0.034 -5.126 0.083 OGLE-LMC-CEP-2018 5.64 0.36 1.741 0.012 3.482 0.046 5770 110 -4.58 0.10 -3.87 0.13 0.704 0.034 -5.670 0.069 OGLE-LMC-CEP-2022 5.49 0.43 1.681 0.014 3.394 0.048 5880 110 -4.34 0.11 -3.66 0.14 0.673 0.034 -5.386 0.079 OGLE-LMC-CEP-2027 5.33 0.44 1.608 0.015 3.248 0.048 5880 110 -3.99 0.11 -3.33 0.14 0.660 0.034 -5.020 0.082 OGLE-LMC-CEP-2028 6.04 0.35 1.784 0.012 3.543 0.047 5690 110 -4.74 0.11 -4.02 0.14 0.728 0.035 -5.876 0.068 OGLE-LMC-CEP-2036 5.50 0.42 1.613 0.015 3.275 0.049 5950 110 -4.03 0.11 -3.38 0.14 0.652 0.034 -5.046 0.082 OGLE-LMC-CEP-2042 5.89 0.36 1.747 0.012 3.493 0.046 5770 110 -4.60 0.11 -3.91 0.14 0.702 0.034 -5.703 0.071 OGLE-LMC-CEP-2050 5.91 0.36 1.754 0.012 3.516 0.047 5800 110 -4.66 0.11 -3.96 0.14 0.696 0.035 -5.739 0.069 OGLE-LMC-CEP-2051 5.39 0.37 1.739 0.012 3.484 0.046 5800 110 -4.57 0.11 -3.88 0.14 0.696 0.034 -5.663 0.070 OGLE-LMC-CEP-2066 5.99 0.36 1.764 0.012 3.548 0.048 5840 110 -4.73 0.11 -4.05 0.14 0.683 0.035 -5.799 0.069 OGLE-LMC-CEP-2090 5.62 0.36 1.742 0.012 3.480 0.045 5760 110 -4.57 0.10 -3.86 0.13 0.708 0.034 -5.674 0.068 OGLE-LMC-CEP-2105 5.31 0.40 1.620 0.014 3.246 0.047 5800 110 -3.98 0.11 -3.28 0.14 0.699 0.034 -5.065 0.077 OGLE-LMC-CEP-2109 6.27 0.37 1.729 0.012 3.475 0.046 5830 110 -4.55 0.10 -3.86 0.14 0.685 0.034 -5.615 0.069 OGLE-LMC-CEP-2113 5.41 0.44 1.614 0.016 3.228 0.050 5790 110 -3.94 0.12 -3.24 0.15 0.703 0.034 -5.030 0.086 OGLE-LMC-CEP-2121 5.39 0.44 1.583 0.017 3.188 0.052 5860 110 -3.82 0.12 -3.14 0.15 0.685 0.034 -4.888 0.091 OGLE-LMC-CEP-2132 5.54 0.42 1.619 0.015 3.234 0.049 5770 110 -3.95 0.11 -3.25 0.14 0.704 0.034 -5.048 0.081 OGLE-LMC-CEP-2152 5.35 0.42 1.674 0.014 3.334 0.048 5720 110 -4.21 0.11 -3.49 0.14 0.718 0.034 -5.329 0.080 OGLE-LMC-CEP-2170 5.86 0.40 1.708 0.014 3.397 0.050 5700 110 -4.38 0.12 -3.65 0.15 0.722 0.034 -5.496 0.080 OGLE-LMC-CEP-2171 5.50 0.46 1.621 0.017 3.237 0.053 5770 110 -3.96 0.13 -3.26 0.15 0.705 0.034 -5.056 0.093 OGLE-LMC-CEP-2174 6.11 0.36 1.787 0.012 3.568 0.049 5760 120 -4.79 0.11 -4.09 0.15 0.708 0.037 -5.901 0.070 OGLE-LMC-CEP-2177 5.26 0.41 1.558 0.014 3.136 0.048 5860 110 -3.70 0.11 -3.02 0.14 0.682 0.034 -4.761 0.080 OGLE-LMC-CEP-2194 5.11 0.44 1.651 0.015 3.354 0.048 5940 110 -4.23 0.11 -3.57 0.14 0.657 0.034 -5.248 0.081 OGLE-LMC-CEP-2204 5.95 0.36 1.764 0.012 3.548 0.047 5840 110 -4.73 0.11 -4.05 0.14 0.683 0.035 -5.801 0.069 OGLE-LMC-CEP-2205 5.44 0.47 1.684 0.016 3.387 0.052 5830 110 -4.32 0.12 -3.63 0.15 0.688 0.036 -5.396 0.089 OGLE-LMC-CEP-2225 6.05 0.35 1.748 0.011 3.467 0.045 5670 110 -4.55 0.10 -3.81 0.13 0.734 0.034 -5.693 0.066 OGLE-LMC-CEP-2226 5.39 0.41 1.616 0.014 3.250 0.048 5840 110 -3.98 0.11 -3.29 0.14 0.688 0.034 -5.052 0.080 OGLE-LMC-CEP-2234 5.22 0.40 1.611 0.014 3.237 0.047 5830 110 -3.95 0.11 -3.26 0.14 0.692 0.034 -5.028 0.077 OGLE-LMC-CEP-2244 5.22 0.42 1.586 0.015 3.167 0.049 5770 110 -3.78 0.12 -3.08 0.14 0.710 0.034 -4.887 0.083 OGLE-LMC-CEP-2249 5.79 0.45 1.700 0.016 3.463 0.052 5970 110 -4.49 0.12 -3.84 0.15 0.643 0.035 -5.495 0.089 OGLE-LMC-CEP-2262 5.97 0.35 1.768 0.012 3.530 0.046 5750 110 -4.71 0.10 -3.99 0.14 0.709 0.034 -5.812 0.067 OGLE-LMC-CEP-2265 5.53 0.41 1.623 0.014 3.274 0.048 5870 110 -4.04 0.11 -3.37 0.14 0.675 0.034 -5.091 0.079 OGLE-LMC-CEP-2269 5.73 0.36 1.739 0.012 3.472 0.047 5760 110 -4.56 0.11 -3.86 0.14 0.704 0.034 -5.656 0.070 OGLE-LMC-CEP-2281 5.38 0.42 1.569 0.015 3.179 0.049 5930 110 -3.79 0.11 -3.14 0.14 0.660 0.034 -4.828 0.081 OGLE-LMC-CEP-2284 5.23 0.42 1.556 0.015 3.160 0.049 5950 110 -3.74 0.11 -3.09 0.14 0.653 0.034 -4.767 0.082 OGLE-LMC-CEP-2298 5.32 0.41 1.563 0.014 3.165 0.048 5910 110 -3.76 0.11 -3.10 0.14 0.663 0.034 -4.797 0.079 OGLE-LMC-CEP-2305 5.46 0.44 1.634 0.016 3.282 0.049 5820 110 -4.06 0.12 -3.37 0.14 0.692 0.034 -5.140 0.084 OGLE-LMC-CEP-2308 5.63 0.40 1.677 0.014 3.356 0.047 5770 110 -4.26 0.11 -3.55 0.14 0.702 0.034 -5.353 0.077 OGLE-LMC-CEP-2318 5.62 0.49 1.611 0.018 3.212 0.055 5760 110 -3.90 0.13 -3.19 0.16 0.711 0.034 -5.003 0.099 OGLE-LMC-CEP-2329 6.17 0.44 1.697 0.015 3.461 0.051 5980 110 -4.49 0.12 -3.84 0.15 0.640 0.035 -5.483 0.085 OGLE-LMC-CEP-2335 5.38 0.41 1.624 0.014 3.275 0.047 5850 110 -4.04 0.11 -3.36 0.14 0.681 0.034 -5.099 0.078 OGLE-LMC-CEP-2337 5.55 0.41 1.885 0.013 3.635 0.071 5340 170 -5.01 0.16 -4.16 0.22 0.849 0.055 -6.331 0.091 OGLE-LMC-CEP-2340 5.26 0.39 1.602 0.014 3.248 0.048 5920 110 -3.96 0.11 -3.29 0.14 0.664 0.034 -4.993 0.077 OGLE-LMC-CEP-2349 5.61 0.48 1.639 0.017 3.285 0.052 5790 110 -4.08 0.12 -3.38 0.15 0.700 0.034 -5.165 0.093 OGLE-LMC-CEP-2353 5.41 0.49 1.615 0.018 3.279 0.053 5940 110 -4.04 0.12 -3.39 0.15 0.652 0.034 -5.059 0.095 OGLE-LMC-CEP-2354 5.38 0.45 1.595 0.016 3.193 0.052 5800 110 -3.85 0.12 -3.15 0.15 0.697 0.034 -4.934 0.090 OGLE-LMC-CEP-2376 5.29 0.42 1.644 0.015 3.297 0.048 5790 110 -4.10 0.11 -3.40 0.14 0.698 0.034 -5.188 0.080 OGLE-LMC-CEP-2401 5.49 0.37 1.644 0.012 3.170 0.046 5390 110 -3.83 0.10 -3.01 0.13 0.820 0.034 -5.108 0.069 OGLE-LMC-CEP-2417 5.23 0.45 1.556 0.016 3.143 0.051 5890 110 -3.71 0.12 -3.04 0.15 0.671 0.034 -4.758 0.090 OGLE-LMC-CEP-2418 5.40 0.43 1.586 0.015 3.177 0.050 5810 110 -3.81 0.12 -3.12 0.15 0.694 0.034 -4.889 0.084 OGLE-LMC-CEP-2425 5.65 0.38 1.740 0.013 3.476 0.047 5750 110 -4.57 0.11 -3.85 0.14 0.709 0.035 -5.666 0.074 OGLE-LMC-CEP-2454 5.29 0.42 1.613 0.015 3.253 0.049 5860 110 -3.98 0.11 -3.30 0.14 0.681 0.034 -5.045 0.082 OGLE-LMC-CEP-2490 5.36 0.40 1.594 0.014 3.227 0.048 5910 110 -3.91 0.11 -3.25 0.14 0.667 0.034 -4.955 0.079 OGLE-LMC-CEP-2519 5.23 0.39 1.570 0.014 3.181 0.048 5930 110 -3.79 0.11 -3.13 0.14 0.663 0.034 -4.830 0.077 OGLE-LMC-CEP-2530 5.54 0.42 1.605 0.015 3.227 0.050 5840 110 -3.93 0.12 -3.25 0.15 0.684 0.034 -4.996 0.083 OGLE-LMC-CEP-2543 5.49 0.40 1.591 0.014 3.211 0.048 5890 110 -3.88 0.11 -3.21 0.14 0.671 0.034 -4.930 0.078 OGLE-LMC-CEP-2544 5.51 0.38 1.806 0.012 3.610 0.051 5750 120 -4.91 0.12 -4.20 0.15 0.710 0.039 -6.029 0.074 OGLE-LMC-CEP-2551 5.17 0.41 1.600 0.014 3.269 0.048 5990 110 -4.00 0.11 -3.36 0.14 0.641 0.034 -4.996 0.080 OGLE-LMC-CEP-2568 5.44 0.40 1.630 0.014 3.288 0.047 5860 110 -4.07 0.11 -3.40 0.14 0.676 0.034 -5.124 0.075 OGLE-LMC-CEP-2571 5.37 0.40 1.604 0.014 3.217 0.048 5810 110 -3.90 0.11 -3.21 0.14 0.696 0.034 -4.985 0.077 OGLE-LMC-CEP-2596 5.16 0.42 1.621 0.014 3.259 0.048 5830 110 -4.00 0.11 -3.31 0.14 0.691 0.034 -5.081 0.080 OGLE-LMC-CEP-2598 5.35 0.41 1.648 0.014 3.291 0.048 5750 110 -4.10 0.11 -3.38 0.14 0.710 0.034 -5.203 0.078 OGLE-LMC-CEP-2600 5.41 0.41 1.620 0.014 3.257 0.048 5840 110 -4.00 0.11 -3.31 0.14 0.688 0.034 -5.070 0.079 OGLE-LMC-CEP-2604 5.43 0.41 1.650 0.014 3.290 0.048 5730 110 -4.10 0.11 -3.38 0.14 0.716 0.034 -5.209 0.080 OGLE-LMC-CEP-2610 5.68 0.44 1.700 0.015 3.411 0.048 5820 110 -4.39 0.11 -3.70 0.14 0.692 0.034 -5.466 0.080 OGLE-LMC-CEP-2612 5.50 0.44 1.666 0.016 3.323 0.050 5740 110 -4.18 0.12 -3.46 0.15 0.713 0.034 -5.286 0.086 OGLE-LMC-CEP-2620 5.29 0.43 1.567 0.015 3.130 0.050 5780 110 -3.69 0.12 -2.99 0.15 0.704 0.034 -4.790 0.084 OGLE-LMC-CEP-2637 5.23 0.44 1.563 0.016 3.194 0.051 6000 110 -3.81 0.12 -3.18 0.15 0.638 0.034 -4.815 0.088 OGLE-LMC-CEP-2638 5.70 0.40 1.623 0.014 3.234 0.048 5750 110 -3.95 0.11 -3.24 0.14 0.715 0.034 -5.064 0.079 OGLE-LMC-CEP-2663 5.42 0.42 1.594 0.015 3.195 0.049 5810 110 -3.85 0.12 -3.15 0.14 0.698 0.034 -4.935 0.082 OGLE-LMC-CEP-2675 5.36 0.39 1.716 0.014 3.429 0.050 5750 110 -4.45 0.11 -3.74 0.15 0.710 0.035 -5.547 0.077 OGLE-LMC-CEP-2676 6.16 0.40 1.708 0.014 3.450 0.047 5880 110 -4.48 0.11 -3.81 0.14 0.667 0.034 -5.516 0.077 OGLE-LMC-CEP-2760 5.19 0.41 1.591 0.014 3.175 0.048 5760 110 -3.80 0.11 -3.09 0.14 0.713 0.034 -4.914 0.079 OGLE-LMC-CEP-2765 5.83 0.37 1.814 0.012 3.566 0.045 5590 110 -4.83 0.10 -4.07 0.13 0.755 0.035 -6.002 0.066 OGLE-LMC-CEP-2768 5.31 0.41 1.614 0.014 3.220 0.048 5750 110 -3.92 0.11 -3.21 0.14 0.712 0.034 -5.026 0.078 OGLE-LMC-CEP-2775 5.61 0.36 1.770 0.012 3.580 0.046 5910 110 -4.83 0.10 -4.18 0.13 0.651 0.034 -5.846 0.067 OGLE-LMC-CEP-2812 5.97 0.37 1.778 0.012 3.549 0.050 5740 120 -4.76 0.11 -4.04 0.15 0.711 0.039 -5.862 0.068 OGLE-LMC-CEP-2813 5.54 0.37 1.738 0.012 3.496 0.047 5840 110 -4.60 0.11 -3.92 0.14 0.683 0.035 -5.669 0.070 OGLE-LMC-CEP-2826 5.27 0.40 1.618 0.014 3.249 0.047 5820 110 -3.98 0.11 -3.28 0.14 0.697 0.034 -5.063 0.077 OGLE-LMC-CEP-2871 5.35 0.46 1.698 0.016 3.418 0.049 5840 110 -4.41 0.12 -3.72 0.14 0.680 0.034 -5.466 0.087 OGLE-LMC-CEP-2884 5.45 0.43 1.810 0.014 3.600 0.054 5700 140 -4.90 0.12 -4.17 0.16 0.723 0.046 -6.025 0.075 OGLE-LMC-CEP-2903 5.24 0.38 1.596 0.013 3.234 0.047 5910 110 -3.92 0.11 -3.26 0.14 0.667 0.034 -4.964 0.073 OGLE-LMC-CEP-2934 5.29 0.43 1.708 0.016 3.439 0.048 5840 110 -4.46 0.11 -3.77 0.14 0.682 0.035 -5.520 0.083 OGLE-LMC-CEP-2941 5.35 0.46 1.552 0.016 3.085 0.052 5730 110 -3.59 0.12 -2.87 0.15 0.718 0.034 -4.703 0.090 OGLE-LMC-CEP-2971 5.52 0.40 1.630 0.014 3.271 0.047 5820 110 -4.04 0.11 -3.35 0.14 0.693 0.034 -5.117 0.077 OGLE-LMC-CEP-2999 5.05 0.37 1.648 0.013 3.208 0.046 5490 110 -3.94 0.11 -3.15 0.14 0.781 0.034 -5.150 0.072 OGLE-LMC-CEP-3024 5.41 0.46 1.782 0.013 3.545 0.045 5710 110 -4.76 0.10 -4.04 0.13 0.717 0.035 -5.874 0.070 OGLE-LMC-CEP-3028 5.36 0.47 1.631 0.017 3.324 0.051 5970 110 -4.15 0.12 -3.51 0.15 0.642 0.034 -5.147 0.091 OGLE-LMC-CEP-3039 5.57 0.50 1.560 0.019 3.128 0.055 5820 110 -3.68 0.13 -2.99 0.16 0.693 0.034 -4.76 0.10 OGLE-LMC-CEP-3064 5.32 0.40 1.602 0.014 3.196 0.048 5760 110 -3.86 0.11 -3.15 0.14 0.710 0.034 -4.963 0.077 OGLE-LMC-CEP-3092 5.72 0.39 1.635 0.014 3.308 0.047 5900 110 -4.12 0.11 -3.45 0.14 0.667 0.034 -5.160 0.076 OGLE-LMC-CEP-3150 5.46 0.40 1.610 0.014 3.231 0.047 5820 110 -3.94 0.11 -3.25 0.14 0.695 0.034 -5.020 0.077 OGLE-LMC-CEP-3176 5.55 0.46 1.630 0.018 3.272 0.054 5830 110 -4.04 0.13 -3.35 0.16 0.691 0.034 -5.118 0.096 OGLE-LMC-CEP-3185 5.41 0.45 1.610 0.017 3.273 0.051 5950 110 -4.02 0.12 -3.37 0.15 0.650 0.034 -5.039 0.090 OGLE-LMC-CEP-3198 5.70 0.55 1.593 0.021 3.204 0.056 5840 110 -3.87 0.14 -3.19 0.16 0.684 0.034 -4.93 0.11 OGLE-LMC-CEP-3202 5.65 0.64 1.649 0.025 3.334 0.065 5890 110 -4.18 0.16 -3.51 0.19 0.672 0.036 -5.22 0.13 OGLE-LMC-CEP-3236 5.37 0.49 1.564 0.018 3.121 0.055 5770 110 -3.67 0.13 -2.96 0.16 0.711 0.034 -4.77 0.10 OGLE-LMC-CEP-3260 5.73 0.42 1.685 0.015 3.358 0.048 5720 110 -4.27 0.11 -3.55 0.14 0.716 0.034 -5.383 0.080 OGLE-LMC-CEP-3285 6.18 0.36 1.772 0.012 3.550 0.049 5800 120 -4.74 0.11 -4.06 0.15 0.694 0.037 -5.831 0.070 OGLE-LMC-CEP-3317 6.05 0.36 1.769 0.011 3.512 0.046 5680 110 -4.66 0.10 -3.93 0.14 0.731 0.035 -5.805 0.066 OGLE-LMC-CEP-3335 5.89 0.41 1.742 0.016 3.475 0.057 5740 120 -4.57 0.13 -3.85 0.17 0.712 0.038 -5.670 0.094 OGLE-LMC-CEP-3423 5.11 0.42 1.599 0.014 3.179 0.048 5720 110 -3.82 0.11 -3.10 0.14 0.722 0.034 -4.941 0.079 OGLE-LMC-CEP-3453 5.04 0.40 1.539 0.014 3.067 0.048 5760 110 -3.54 0.11 -2.83 0.14 0.712 0.034 -4.646 0.077 OGLE-LMC-CEP-3484 5.82 0.36 1.743 0.012 3.470 0.047 5730 110 -4.55 0.11 -3.84 0.14 0.718 0.035 -5.671 0.071 OGLE-LMC-CEP-3487 5.88 0.42 1.758 0.014 3.513 0.053 5770 130 -4.66 0.12 -3.95 0.16 0.705 0.040 -5.756 0.080 OGLE-LMC-CEP-3518 5.75 0.36 1.752 0.012 3.479 0.047 5690 110 -4.58 0.11 -3.86 0.14 0.726 0.034 -5.715 0.070 OGLE-LMC-CEP-3533 6.05 0.42 1.885 0.013 3.652 0.075 5390 180 -5.04 0.17 -4.20 0.23 0.838 0.057 -6.343 0.095 OGLE-LMC-CEP-3565 6.17 0.38 1.789 0.013 3.570 0.053 5750 120 -4.81 0.12 -4.10 0.16 0.709 0.040 -5.917 0.076 OGLE-LMC-CEP-3646 5.71 0.36 1.783 0.013 3.577 0.051 5800 120 -4.82 0.12 -4.13 0.15 0.690 0.037 -5.897 0.073 OGLE-LMC-CEP-3677 5.94 0.37 1.756 0.013 3.490 0.048 5690 110 -4.61 0.11 -3.88 0.14 0.727 0.036 -5.743 0.073 OGLE-LMC-CEP-3832 5.63 0.37 1.849 0.012 3.569 0.057 5360 140 -4.84 0.13 -4.00 0.17 0.839 0.044 -6.149 0.076 OGLE-LMC-CEP-3960 5.44 0.35 1.793 0.012 3.565 0.048 5700 120 -4.80 0.11 -4.08 0.14 0.718 0.036 -5.920 0.068 OGLE-LMC-CEP-3991 5.83 0.41 1.733 0.013 3.488 0.049 5850 110 -4.58 0.11 -3.90 0.14 0.680 0.036 -5.643 0.076 OGLE-LMC-CEP-4033 6.06 0.36 1.818 0.012 3.603 0.050 5660 120 -4.89 0.11 -4.15 0.15 0.742 0.038 -6.045 0.070 OGLE-LMC-CEP-4041 5.43 0.45 1.624 0.016 3.246 0.049 5770 110 -3.98 0.12 -3.27 0.14 0.709 0.034 -5.081 0.087 OGLE-LMC-CEP-4042 5.29 0.42 1.587 0.015 3.166 0.049 5770 110 -3.78 0.12 -3.07 0.14 0.712 0.034 -4.890 0.083 OGLE-LMC-CEP-4062 5.38 0.45 1.567 0.017 3.169 0.052 5910 110 -3.77 0.12 -3.11 0.15 0.667 0.034 -4.813 0.092 OGLE-LMC-CEP-4094 5.40 0.45 1.567 0.016 3.149 0.052 5850 110 -3.73 0.12 -3.05 0.15 0.685 0.034 -4.799 0.090 OGLE-LMC-CEP-4143 5.70 0.39 1.822 0.013 3.618 0.056 5680 140 -4.94 0.13 -4.21 0.17 0.731 0.044 -6.090 0.078 OGLE-LMC-CEP-4153 5.84 0.35 1.794 0.012 3.557 0.048 5670 110 -4.78 0.11 -4.04 0.14 0.737 0.036 -5.928 0.069 OGLE-LMC-CEP-4176 5.85 0.35 1.780 0.011 3.562 0.047 5770 110 -4.78 0.11 -4.08 0.14 0.702 0.035 -5.874 0.067 OGLE-LMC-CEP-4194 5.86 0.37 1.774 0.012 3.558 0.049 5800 120 -4.77 0.11 -4.07 0.14 0.694 0.036 -5.853 0.071 OGLE-LMC-CEP-4211 5.98 0.35 1.788 0.012 3.568 0.049 5750 120 -4.80 0.11 -4.09 0.14 0.712 0.036 -5.910 0.069 OGLE-LMC-CEP-4249 5.43 0.46 1.578 0.017 3.188 0.052 5900 110 -3.82 0.12 -3.16 0.15 0.668 0.034 -4.865 0.092 OGLE-LMC-CEP-4257 5.18 0.43 1.585 0.016 3.222 0.051 5950 110 -3.89 0.12 -3.24 0.15 0.655 0.034 -4.912 0.088 OGLE-LMC-CEP-4274 5.46 0.45 1.653 0.015 3.316 0.048 5800 110 -4.15 0.11 -3.45 0.14 0.696 0.034 -5.235 0.083 OGLE-LMC-CEP-4281 5.34 0.45 1.658 0.015 3.332 0.048 5830 110 -4.19 0.11 -3.50 0.14 0.690 0.034 -5.264 0.082 OGLE-LMC-CEP-4287 5.79 0.45 1.714 0.016 3.429 0.052 5770 110 -4.44 0.12 -3.74 0.15 0.703 0.035 -5.531 0.088 OGLE-LMC-CEP-4293 5.49 0.45 1.592 0.017 3.209 0.052 5870 110 -3.87 0.12 -3.20 0.15 0.678 0.034 -4.932 0.090 OGLE-LMC-CEP-4316 5.31 0.36 1.742 0.012 3.453 0.049 5680 120 -4.52 0.11 -3.80 0.14 0.728 0.036 -5.654 0.071 OGLE-LMC-CEP-4317 6.06 0.37 1.844 0.012 3.671 0.056 5700 140 -5.07 0.13 -4.35 0.17 0.723 0.043 -6.206 0.077 OGLE-LMC-CEP-4319 5.80 0.40 1.706 0.014 3.416 0.048 5780 110 -4.40 0.11 -3.70 0.14 0.703 0.035 -5.500 0.079 OGLE-LMC-CEP-4330 5.33 0.40 1.634 0.014 3.267 0.046 5770 110 -4.03 0.11 -3.32 0.14 0.708 0.033 -5.132 0.075 OGLE-LMC-CEP-4396 5.48 0.44 1.613 0.016 3.232 0.050 5800 110 -3.94 0.12 -3.25 0.15 0.699 0.034 -5.031 0.086 OGLE-LMC-CEP-4402 5.87 0.35 1.788 0.011 3.571 0.049 5740 120 -4.81 0.11 -4.10 0.14 0.706 0.038 -5.911 0.067 OGLE-LMC-CEP-4409 5.63 0.37 1.702 0.013 3.360 0.047 5630 110 -4.29 0.11 -3.55 0.14 0.745 0.034 -5.445 0.072 OGLE-LMC-CEP-4414 5.85 0.40 1.682 0.013 3.362 0.046 5760 110 -4.27 0.11 -3.57 0.14 0.706 0.034 -5.371 0.074 OGLE-LMC-CEP-4440 5.42 0.40 1.629 0.014 3.256 0.046 5760 110 -4.00 0.11 -3.29 0.14 0.710 0.033 -5.105 0.075 OGLE-LMC-CEP-4465 5.33 0.43 1.567 0.016 3.135 0.050 5800 110 -3.70 0.12 -3.00 0.15 0.705 0.034 -4.795 0.086 OGLE-LMC-CEP-4470 5.35 0.44 1.577 0.016 3.181 0.051 5890 110 -3.80 0.12 -3.14 0.15 0.672 0.034 -4.856 0.090 OGLE-LMC-CEP-4474 5.45 0.46 1.662 0.016 3.333 0.049 5810 110 -4.20 0.11 -3.50 0.14 0.694 0.034 -5.278 0.085 OGLE-LMC-CEP-4475 5.31 0.40 1.584 0.014 3.170 0.049 5800 110 -3.79 0.11 -3.09 0.14 0.702 0.034 -4.880 0.080 OGLE-LMC-CEP-4476 5.39 0.46 1.654 0.015 3.340 0.048 5870 110 -4.20 0.11 -3.52 0.14 0.677 0.034 -5.254 0.083 OGLE-LMC-CEP-4484 5.21 0.43 1.647 0.015 3.274 0.050 5710 110 -4.06 0.12 -3.34 0.15 0.723 0.034 -5.184 0.084 OGLE-LMC-CEP-4504 5.31 0.41 1.594 0.015 3.208 0.049 5850 110 -3.87 0.11 -3.19 0.14 0.687 0.034 -4.944 0.081 OGLE-LMC-CEP-4512 6.10 0.36 1.793 0.013 3.569 0.058 5710 130 -4.80 0.13 -4.09 0.17 0.722 0.042 -5.929 0.081 OGLE-LMC-CEP-4524 5.37 0.42 1.603 0.015 3.203 0.050 5770 110 -3.87 0.12 -3.17 0.15 0.708 0.034 -4.972 0.083 OGLE-LMC-CEP-4544 4.86 0.36 1.752 0.012 3.439 0.046 5570 110 -4.50 0.10 -3.74 0.14 0.761 0.035 -5.689 0.066 OGLE-LMC-CEP-4600 6.01 0.49 1.887 0.017 3.646 0.088 5360 200 -5.03 0.20 -4.17 0.27 0.852 0.065 -6.35 0.11
ests_DF = pd.read_table('ML-OGLE_LMC_CEP.dat', sep='\s+')
var = 'logL'
mew = 1.8
ms = 20
plt.plot(DF['logP'], -2.5*DF[var].values + 4.77, '.',
mfc='white', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(DF['logP'], -2.5*DF[var].values + 4.77, '.', label='Models',
mfc='darkblue', mec='white', mew=mew, alpha=0.5, ms=ms)
plt.plot(logPs, -2.5*ests[:,X_columns.index(var)] + 4.77, '.',
mfc='white', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs, -2.5*ests[:,X_columns.index(var)] + 4.77, '.', label='Predicted',
mfc='#F97100', mec='white', mew=mew, alpha=0.6, ms=ms)
plt.xlabel('$\log\;P/$days')
plt.ylabel('Absolute Magnitude')
#plt.ylabel('$\log\;L/$L$_\odot$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-PM-predicted.pdf')#, bbox_inches='tight')
plt.show()
var = 'W'
mew = 1.4
ms = 18
for idx, star in DF.sample(frac=1, random_state=0).iterrows():
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms, label='')
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.', label='Models' if idx == 1 else '',
mfc='#F97100', mec='None', mew=mew, alpha=0.5, ms=ms-2)
for ii in range(len(logPs)):
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='Predicted' if ii == 1 else '',
mfc='darkblue', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('Wesenheit Index')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-W.pdf')#, bbox_inches='tight')
plt.show()
var = 'I_M0'
mew = 1.4
ms = 18
for idx, star in DF.sample(frac=1, random_state=0).iterrows():
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms, label='')
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.', label='Models' if idx == 1 else '',
mfc='#F97100', mec='None', mew=mew, alpha=0.5, ms=ms-2)
for ii in range(len(logPs)):
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='Predicted' if ii == 1 else '',
mfc='darkblue', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('$M_I$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-I.pdf')#, bbox_inches='tight')
plt.show()
var = 'V_M0'
mew = 1.4
ms = 18
for idx, star in DF.sample(frac=1, random_state=0).iterrows():
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms, label='')
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.', label='Models' if idx == 1 else '',
mfc='#F97100', mec='None', mew=mew, alpha=0.5, ms=ms-2)
for ii in range(len(logPs)):
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='Predicted' if ii == 1 else '',
mfc='darkblue', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('$M_V$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-V.pdf')#, bbox_inches='tight')
plt.show()
var = 'VI'
mew = 1.4
ms = 18
for idx, star in DF.sample(frac=1, random_state=0).iterrows():
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms, label='')
plt.plot(DF['logP'].iloc[idx], DF[var].iloc[idx], '.', label='Models' if idx == 1 else '',
mfc='#F97100', mec='None', mew=mew, alpha=0.5, ms=ms-2)
for ii in range(len(logPs)):
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], ests[:,X_columns.index(var)][ii], '.', label='Predicted' if ii == 1 else '',
mfc='darkblue', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('$V - I$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-VI.pdf')#, bbox_inches='tight')
plt.show()
var = 'logL'
mew = 1.4
ms = 18
for idx, star in DF.sample(frac=1, random_state=0).iterrows():
plt.plot(DF['M'].iloc[idx], DF[var].iloc[idx], '.',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms, label='')
plt.plot(DF['M'].iloc[idx], DF[var].iloc[idx], '.', label='Models' if idx == 1 else '',
mfc='#F97100', mec='None', mew=mew, alpha=0.5, ms=ms-2)
for ii in range(len(logPs)):
plt.plot(ests[:,X_columns.index('M')][ii], ests[:,X_columns.index(var)][ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(ests[:,X_columns.index('M')][ii], ests[:,X_columns.index(var)][ii], '.', label='Predicted' if ii == 1 else '',
mfc='darkblue', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.ylabel('$\log\;L/$L$_\odot$')
plt.xlabel('$M/$M$_\odot$')
plt.legend(loc='best')
#plt.xlim([0.4, 1.5])
#plt.savefig('CEP-LMC-VI.pdf')#, bbox_inches='tight')
plt.show()
Compare with observations
V_data = pd.read_table('/scratch/seismo/bellinger/asteroseismology/regression/classical/data/cep_lmc_v.dat', sep='\s+')
I_data = pd.read_table('/scratch/seismo/bellinger/asteroseismology/regression/classical/data/cep_lmc_i.dat', sep='\s+')
evi_data = pd.read_table('evi_lmc_ceph.dat', sep='\s+')
ev_mean_val = evi_data['ev_i'].mean()
from uncertainties import ufloat
actual_Ws = []
e_actual_Ws = []
actual_Is = []
actual_Vs = []
actual_VIs = []
for star_name in tqdm(star_names):
V = ufloat(V_data[V_data['ID'] == star_name]['A0'].iloc[0], V_data[V_data['ID'] == star_name]['eA0'].iloc[0])
I = ufloat(I_data[I_data['ID'] == star_name]['A0'].iloc[0], I_data[I_data['ID'] == star_name]['eA0'].iloc[0])
W = I - 1.55 * (V-I)
actual_Ws += [W.nominal_value]
e_actual_Ws += [W.std_dev]
ev = evi_data[evi_data['id'] == star_name]
if ev.shape[0] == 0:
ev = ev_mean_val
else:
ev = ev.iloc[0]['ev_i']
#A_V = 2.4*E(V-I)
#A_I = 1.41*E(V-I)
actual_Is += [I.nominal_value - 1.41*ev]
actual_Vs += [V.nominal_value - 2.4*ev]
actual_VIs += [(V-I).nominal_value]
actual_Ws = np.array(actual_Ws)
e_actual_Ws = np.array(e_actual_Ws)
actual_Is = np.array(actual_Is)
actual_Vs = np.array(actual_Vs)
actual_VIs = np.array(actual_VIs)
HBox(children=(IntProgress(value=0, max=325), HTML(value='')))
mew = 1.4 # marker edge width
ms = 18 # marker size
for ii in range(len(logPs)):
plt.plot(logPs[ii], actual_Is[ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], actual_Is[ii], '.', label='Observed' if ii == 1 else '',
mfc='#000000', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('$M_I$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-I-obs.pdf')#, bbox_inches='tight')
plt.show()
for ii in range(len(logPs)):
plt.plot(logPs[ii], actual_Vs[ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], actual_Vs[ii], '.', label='Observed' if ii == 1 else '',
mfc='#000000', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('$M_V$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-V-obs.pdf')
plt.show()
for ii in range(len(logPs)):
plt.plot(logPs[ii], actual_VIs[ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], actual_VIs[ii], '.', label='Observed' if ii == 1 else '',
mfc='#000000', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('$V-I$')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-VI-obs.pdf')#, bbox_inches='tight')
plt.show()
for ii in range(len(logPs)):
plt.plot(logPs[ii], actual_Ws[ii], '.', label='',
mfc='None', mec='white', mew=mew, alpha=1, ms=ms)
plt.plot(logPs[ii], actual_Ws[ii], '.', label='Observed' if ii == 1 else '',
mfc='#000000', mec='None', mew=mew, alpha=0.75, ms=ms-2)
plt.xlabel('$\log\;P/$days')
plt.ylabel('Wesenheit Index')
plt.legend(loc='best')
plt.xlim([0.4, 1.5])
plt.savefig('CEP-LMC-W-obs.pdf')#, bbox_inches='tight')
plt.show()
Estimate distances
plt.plot(DF['logP'], DF['W'], '.', c='gray', label='Models')
plt.plot(logPs, ests[:,X_columns.index('W')], '.', label='Predicted', c='red')
plt.plot(logPs, actual_Ws, '.', label='Actual', c='blue')
plt.xlabel('$\log\;P/$days')
plt.ylabel('Wesenheit Index')
plt.legend(loc='best')
plt.savefig('CEP-LMC-W-comp.pdf')
plt.show()
from uncertainties import unumpy
# 49.59 +/- 0.09_statistical +/- 0.054_systematic Kpc
pietrzynski = 5 * unumpy.log10(1000*ufloat(49.59, np.sqrt((0.09)**2 + (0.054)**2))) - 5
pietrzynski
18.47697054145555+/-0.0045959169367960516
Ws = ests[:,X_columns.index('W')]
e_Ws = e_ests[:,X_columns.index('W')]
print((actual_Ws - Ws).mean(), '+/-', (actual_Ws -Ws).std())
values = actual_Ws - Ws
weights = 1. / np.sqrt( np.array(e_Ws)**2 + np.array(e_actual_Ws)**2 + 0.89**2 )
average = np.average(values, weights=weights)
variance = np.average((values-average)**2, weights=weights)
print(average, '+/-', np.sqrt(variance))
18.683185206153095 +/- 0.1479352628858759 18.68317993439398 +/- 0.14797463537056807
inliers = [True for ii in range(len(actual_Ws))]
while True:
values = np.array(actual_Ws - ests[:,X_columns.index('W')])
weights = 1. / np.sqrt( e_ests[:,X_columns.index('W')]**2 + e_actual_Ws**2 + 0.047**2 )**2
average = np.average(values[inliers], weights=weights[inliers])
variance = np.average((values-average)[inliers]**2, weights=weights[inliers])
new_outliers = np.abs(values[inliers] - average)/np.sqrt(variance) > 5
if not np.any(new_outliers):
break
inliers = np.logical_not(np.abs(values - average)/np.sqrt(variance) > 5)
print(average, '+/-', np.sqrt(variance))
plt.scatter(logPs, actual_Ws - ests[:,X_columns.index('W')], c=np.logical_not(inliers))
#plt.plot(np.array(logPs)[inlier_mask], np.array(actual_Ws - Ws)[inlier_mask], '.')
#plt.plot(np.array(logPs)[outlier_mask], np.array(actual_Ws - Ws)[outlier_mask], '.')
plt.xlabel('$\log\;P/$days')
plt.ylabel('$W_{\\rm{actual}} - W_{\\rm{predicted}}$')
plt.show()
18.688798148600128 +/- 0.09343736583259395
plt.suptitle(' LMC: Cepheids', y=0.99)
plt.hist(np.array(actual_Ws - ests[:,X_columns.index('W')])[inliers])
plt.xlabel('Distance modulus: $W_{\\rm{actual}} - W_{\\rm{predicted}}$ [mag]')
plt.ylabel('Counts')
plt.xlim([17.8, 19.2])
plt.text(17.83, 78, 'Weighted mean:\n$18.688 \pm 0.093$ mag')
plt.savefig('distance_modulus_hist.pdf')
plt.show()
Use random forests to obtain feature importances
y_col_names = ['$\log\;P$',
'$I$ Amplitude', '$I$ Skewness', '$I$ Acuteness',
'$V$ Amplitude', '$V$ Skewness', '$V$ Acuteness',
'$I$ $A_1$', '$I$ $A_2$', '$I$ $A_3$',
'$V$ $A_1$', '$V$ $A_2$', '$V$ $A_3$']
rf = RandomForestRegressor(n_estimators=1024, random_state=1)
X = DF[y_columns]
rf.fit(X, DF['logL'])
importances = rf.feature_importances_
std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)
indices = np.argsort(importances)
plt.figure(figsize=(6,8))
plt.suptitle(' Cepheids: Luminosity', y=0.99)
rects1 = plt.barh(range(X.shape[1])[:-1], importances[indices][:-1],
color="r", #yerr=std[indices][1:],
align="center")
plt.yticks(range(X.shape[1])[:-1], [y_col_names[idx] for idx in indices][:-1])#, rotation='vertical')
plt.ylim([-1, X.shape[1]-1])
plt.xlabel('Feature importance')
plt.xlim([0, 0.16])
ax = plt.gca()
ax.set_xticks([0, 0.08, 0.16])
ax.set_xticklabels(['0%', '8%', '16%'])
plt.text(0.0972, -0.1, 'period: %.1f%%' % (importances[0]*100))
plt.text(0.04, -0.7, 'light curve structure: %.1f%%' % (sum(importances[1:])*100))
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('%.1f' % (height*100) + '%',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
plt.savefig('CEP-L-importances.pdf')
plt.show()
y_col_names = ['$\log\;P$',
'$I$ Amplitude', '$I$ Skewness', '$I$ Acuteness',
'$V$ Amplitude', '$V$ Skewness', '$V$ Acuteness',
'$I$ $A_1$', '$I$ $A_2$', '$I$ $A_3$',
'$V$ $A_1$', '$V$ $A_2$', '$V$ $A_3$']
rf = RandomForestRegressor(n_estimators=1024, random_state=1)
X = DF[y_columns]
rf.fit(X, DF['M'])
importances = rf.feature_importances_
std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)
indices = np.argsort(importances)
plt.figure(figsize=(6,8))
plt.suptitle(' Cepheids: Mass', y=0.99)
rects1 = plt.barh(range(X.shape[1])[:-1], importances[indices][:-1],
color="r", #yerr=std[indices][1:],
align="center")
plt.yticks(range(X.shape[1])[:-1], [y_col_names[idx] for idx in indices][:-1])#, rotation='vertical')
plt.ylim([-1, X.shape[1]-1])
plt.xlabel('Feature importance')
plt.xlim([0, 0.16])
ax = plt.gca()
ax.set_xticks([0, 0.08, 0.16])
ax.set_xticklabels(['0%', '8%', '16%'])
plt.text(0.0972, -0.1, 'period: %.1f%%' % (importances[0]*100))
plt.text(0.04, -0.7, 'light curve structure: %.1f%%' % (sum(importances[1:])*100))
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('%.1f' % (height*100) + '%',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
plt.savefig('CEP-M-importances.pdf')
plt.show()
y_col_names = ['$\log\;P$',
'$I$ Amplitude', '$I$ Skewness', '$I$ Acuteness',
'$V$ Amplitude', '$V$ Skewness', '$V$ Acuteness',
'$I$ $A_1$', '$I$ $A_2$', '$I$ $A_3$',
'$V$ $A_1$', '$V$ $A_2$', '$V$ $A_3$']
rf = RandomForestRegressor(n_estimators=1024, random_state=1)
X = DF[y_columns]
rf.fit(X, DF['Teff'])
importances = rf.feature_importances_
std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)
indices = np.argsort(importances)
plt.figure(figsize=(6,8))
plt.suptitle(' Cepheids: Effective Temperature', y=0.99)
rects1 = plt.barh(range(X.shape[1])[:-1], importances[indices][:-1],
color="r", #yerr=std[indices][1:],
align="center")
plt.yticks(range(X.shape[1])[:-1], [y_col_names[idx] for idx in indices][:-1])#, rotation='vertical')
plt.ylim([-1, X.shape[1]-1])
plt.xlabel('Feature importance')
plt.xlim([0, 0.16])
ax = plt.gca()
ax.set_xticks([0, 0.08, 0.16])
ax.set_xticklabels(['0%', '8%', '16%'])
plt.text(0.0972, -0.1, 'period: %.1f%%' % (importances[0]*100))
plt.text(0.04, -0.7, 'light curve structure: %.1f%%' % (sum(importances[1:])*100))
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('%.1f' % (height*100) + '%',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
plt.savefig('CEP-Teff-importances.pdf')
plt.show()
y_col_names = ['$\log\;P$',
'$I$ Amplitude', '$I$ Skewness', '$I$ Acuteness',
'$V$ Amplitude', '$V$ Skewness', '$V$ Acuteness',
'$I$ $A_1$', '$I$ $A_2$', '$I$ $A_3$',
'$V$ $A_1$', '$V$ $A_2$', '$V$ $A_3$']
rf = RandomForestRegressor(n_estimators=1024, random_state=1)
X = DF[y_columns]
rf.fit(X, DF['W'])
importances = rf.feature_importances_
std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)
indices = np.argsort(importances)
plt.figure(figsize=(6,8))
plt.suptitle(' Cepheids: Wesenehit', y=0.99)
rects1 = plt.barh(range(X.shape[1])[:-1], importances[indices][:-1],
color="r", #yerr=std[indices][1:],
align="center")
plt.yticks(range(X.shape[1])[:-1], [y_col_names[idx] for idx in indices][:-1])#, rotation='vertical')
plt.ylim([-1, X.shape[1]-1])
plt.xlabel('Feature importance')
plt.xlim([0, 0.16])
ax = plt.gca()
ax.set_xticks([0, 0.08, 0.16])
ax.set_xticklabels(['0%', '8%', '16%'])
plt.text(0.0972, -0.1, 'period: %.1f%%' % (importances[0]*100))
plt.text(0.045, -0.7, 'light curve structure: %.1f%%' % (sum(importances[1:])*100))
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('%.1f' % (height*100) + '%',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
plt.savefig('CEP-W-importances.pdf')
plt.show()
y_col_names = ['$\log\;P$',
'$I$ Amplitude', '$I$ Skewness', '$I$ Acuteness',
'$V$ Amplitude', '$V$ Skewness', '$V$ Acuteness',
'$I$ $A_1$', '$I$ $A_2$', '$I$ $A_3$',
'$V$ $A_1$', '$V$ $A_2$', '$V$ $A_3$']
rf = RandomForestRegressor(n_estimators=1024, random_state=1)
X = DF[y_columns]
rf.fit(X, DF['logR'])
importances = rf.feature_importances_
std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)
indices = np.argsort(importances)
plt.figure(figsize=(6,8))
plt.suptitle(' Cepheids: Radius', y=0.99)
rects1 = plt.barh(range(X.shape[1])[:-1], importances[indices][:-1],
color="r", #yerr=std[indices][1:],
align="center")
plt.yticks(range(X.shape[1])[:-1], [y_col_names[idx] for idx in indices][:-1])#, rotation='vertical')
plt.ylim([-1, X.shape[1]-1])
plt.xlabel('Feature importance')
plt.xlim([0, 0.16])
ax = plt.gca()
ax.set_xticks([0, 0.08, 0.16])
ax.set_xticklabels(['0%', '8%', '16%'])
plt.text(0.0972, -0.1, 'period: %.1f%%' % (importances[0]*100))
plt.text(0.045, -0.7, 'light curve structure: %.1f%%' % (sum(importances[1:])*100))
def autolabel(rects):
for rect in rects:
height = rect.get_height()
ax.annotate('%.1f' % (height*100) + '%',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
plt.savefig('CEP-logR-importances.pdf')
plt.show()
Compare performance of neural network with a random forest
ml = TransformedTargetRegressor(regressor=Pipeline(
[('scaler', RobustScaler()),
('mlp', MLPRegressor(hidden_layer_sizes=(100, 100),
max_iter=2000, activation='relu', solver='lbfgs', tol=1e-7))]),
transformer=RobustScaler())
lm = LinearRegression()
rf = RandomForestRegressor(n_estimators=1024, random_state=1)
np.random.seed(0)
cross_val_score(rf, DF[y_columns], DF['M'], cv=ShuffleSplit(n_splits=5, random_state=0), scoring='neg_mean_squared_error').mean()
-0.1271930454254147
np.random.seed(0)
cross_val_score(ml, DF[y_columns], DF['M'], cv=ShuffleSplit(n_splits=5, random_state=0), scoring='neg_mean_squared_error').mean()
-0.101913586103855
np.random.seed(0)
cross_val_score(lm, DF[y_columns], DF['M'], cv=ShuffleSplit(n_splits=5, random_state=0), scoring='neg_mean_squared_error').mean()
-0.2947592361576207