import pandas as pd
import numpy as np
import text_normalizer as tn
import model_evaluation_utils as meu
np.set_printoptions(precision=2, linewidth=80)
dataset = pd.read_csv(r'movie_reviews.csv')
# take a peek at the data
print(dataset.head())
reviews = np.array(dataset['review'])
sentiments = np.array(dataset['sentiment'])
# build train and test datasets
train_reviews = reviews[:35000]
train_sentiments = sentiments[:35000]
test_reviews = reviews[35000:]
test_sentiments = sentiments[35000:]
# normalize datasets
norm_train_reviews = tn.normalize_corpus(train_reviews)
norm_test_reviews = tn.normalize_corpus(test_reviews)
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
# build BOW features on train reviews
cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_range=(1,2))
cv_train_features = cv.fit_transform(norm_train_reviews)
# build TFIDF features on train reviews
tv = TfidfVectorizer(use_idf=True, min_df=0.0, max_df=1.0, ngram_range=(1,2),
sublinear_tf=True)
tv_train_features = tv.fit_transform(norm_train_reviews)
# transform test reviews into features
cv_test_features = cv.transform(norm_test_reviews)
tv_test_features = tv.transform(norm_test_reviews)
print('BOW model:> Train features shape:', cv_train_features.shape, ' Test features shape:', cv_test_features.shape)
print('TFIDF model:> Train features shape:', tv_train_features.shape, ' Test features shape:', tv_test_features.shape)
from sklearn.linear_model import SGDClassifier, LogisticRegression
lr = LogisticRegression(penalty='l2', max_iter=100, C=1)
svm = SGDClassifier(loss='hinge', n_iter=100)
# Logistic Regression model on BOW features
lr_bow_predictions = meu.train_predict_model(classifier=lr,
train_features=cv_train_features, train_labels=train_sentiments,
test_features=cv_test_features, test_labels=test_sentiments)
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_labels=lr_bow_predictions,
classes=['positive', 'negative'])
# Logistic Regression model on TF-IDF features
lr_tfidf_predictions = meu.train_predict_model(classifier=lr,
train_features=tv_train_features, train_labels=train_sentiments,
test_features=tv_test_features, test_labels=test_sentiments)
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_labels=lr_tfidf_predictions,
classes=['positive', 'negative'])
svm_bow_predictions = meu.train_predict_model(classifier=svm,
train_features=cv_train_features, train_labels=train_sentiments,
test_features=cv_test_features, test_labels=test_sentiments)
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_labels=svm_bow_predictions,
classes=['positive', 'negative'])
svm_tfidf_predictions = meu.train_predict_model(classifier=svm,
train_features=tv_train_features, train_labels=train_sentiments,
test_features=tv_test_features, test_labels=test_sentiments)
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_labels=svm_tfidf_predictions,
classes=['positive', 'negative'])
import gensim
import keras
from keras.models import Sequential
from keras.layers import Dropout, Activation, Dense
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
num_classes=2
# tokenize train reviews & encode train labels
tokenized_train = [tn.tokenizer.tokenize(text)
for text in norm_train_reviews]
y_tr = le.fit_transform(train_sentiments)
y_train = keras.utils.to_categorical(y_tr, num_classes)
# tokenize test reviews & encode test labels
tokenized_test = [tn.tokenizer.tokenize(text)
for text in norm_test_reviews]
y_ts = le.fit_transform(test_sentiments)
y_test = keras.utils.to_categorical(y_ts, num_classes)
# print class label encoding map and encoded labels
print('Sentiment class label map:', dict(zip(le.classes_, le.transform(le.classes_))))
print('Sample test label transformation:\n'+'-'*35,
'\nActual Labels:', test_sentiments[:3], '\nEncoded Labels:', y_ts[:3],
'\nOne hot encoded Labels:\n', y_test[:3])
# build word2vec model
w2v_num_features = 500
w2v_model = gensim.models.Word2Vec(tokenized_train, size=w2v_num_features, window=150,
min_count=10, sample=1e-3)
def averaged_word2vec_vectorizer(corpus, model, num_features):
vocabulary = set(model.wv.index2word)
def average_word_vectors(words, model, vocabulary, num_features):
feature_vector = np.zeros((num_features,), dtype="float64")
nwords = 0.
for word in words:
if word in vocabulary:
nwords = nwords + 1.
feature_vector = np.add(feature_vector, model[word])
if nwords:
feature_vector = np.divide(feature_vector, nwords)
return feature_vector
features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features)
for tokenized_sentence in corpus]
return np.array(features)
# generate averaged word vector features from word2vec model
avg_wv_train_features = averaged_word2vec_vectorizer(corpus=tokenized_train, model=w2v_model,
num_features=500)
avg_wv_test_features = averaged_word2vec_vectorizer(corpus=tokenized_test, model=w2v_model,
num_features=500)
# feature engineering with GloVe model
train_nlp = [tn.nlp(item) for item in norm_train_reviews]
train_glove_features = np.array([item.vector for item in train_nlp])
test_nlp = [tn.nlp(item) for item in norm_test_reviews]
test_glove_features = np.array([item.vector for item in test_nlp])
print('Word2Vec model:> Train features shape:', avg_wv_train_features.shape, ' Test features shape:', avg_wv_test_features.shape)
print('GloVe model:> Train features shape:', train_glove_features.shape, ' Test features shape:', test_glove_features.shape)
def construct_deepnn_architecture(num_input_features):
dnn_model = Sequential()
dnn_model.add(Dense(512, activation='relu', input_shape=(num_input_features,)))
dnn_model.add(Dropout(0.2))
dnn_model.add(Dense(512, activation='relu'))
dnn_model.add(Dropout(0.2))
dnn_model.add(Dense(512, activation='relu'))
dnn_model.add(Dropout(0.2))
dnn_model.add(Dense(2))
dnn_model.add(Activation('softmax'))
dnn_model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
return dnn_model
w2v_dnn = construct_deepnn_architecture(num_input_features=500)
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
SVG(model_to_dot(w2v_dnn, show_shapes=True, show_layer_names=False,
rankdir='TB').create(prog='dot', format='svg'))
batch_size = 100
w2v_dnn.fit(avg_wv_train_features, y_train, epochs=5, batch_size=batch_size,
shuffle=True, validation_split=0.1, verbose=1)
y_pred = w2v_dnn.predict_classes(avg_wv_test_features)
predictions = le.inverse_transform(y_pred)
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_labels=predictions,
classes=['positive', 'negative'])
glove_dnn = construct_deepnn_architecture(num_input_features=300)
batch_size = 100
glove_dnn.fit(train_glove_features, y_train, epochs=5, batch_size=batch_size,
shuffle=True, validation_split=0.1, verbose=1)
y_pred = glove_dnn.predict_classes(test_glove_features)
predictions = le.inverse_transform(y_pred)
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_labels=predictions,
classes=['positive', 'negative'])