# Runge phenomenon¶

Consider interpolating the following two functions on $[-1,1]$ $$f_1(x) = \exp(-5x^2), \qquad f_2(x) = \frac{1}{1 + 16 x^2}$$ We will try uniformly spaced points and Chebyshev points.

In :
from numpy import exp,linspace,polyfit,polyval,cos,pi
from matplotlib.pyplot import figure,plot,legend,axis,text


Let us first plot the two functions.

In :
xmin, xmax = -1.0, +1.0

f1 = lambda x: exp(-5.0*x**2)
f2 = lambda x: 1.0/(1.0+16.0*x**2)

xx = linspace(xmin,xmax,100,True)
figure(figsize(8,4))
plot(xx,f1(xx),xx,f2(xx))
legend(("$1/(1+16x^2)$", "$\exp(-5x^2)$"))

Out:
<matplotlib.legend.Legend at 0x10f118cd0>
In :
def interp(f,points):
xx = linspace(xmin,xmax,100,True);
ye = f(xx);

figure(figsize(10,8))
for i in range(1,7):
N = 2*i
subplot(3,2,i)
if points == 'uniform':
x = linspace(xmin,xmax,N+1,True)
else:
theta = linspace(0,pi,N+1, True)
x = cos(theta)
y = f(x);
P = polyfit(x,y,N);
yy = polyval(P,xx);
plot(x,y,'o',xx,ye,'--',xx,yy)
axis([xmin, xmax, -1.0, +1.1])
text(-0.1,0.0,'N = '+str(N))


Interpolate $f_1(x)$ on uniformly spaced points.

In :
interp(f1,'uniform')


Interpolate $f_2(x)$ on uniformly spaced points.

In :
interp(f2,'uniform')


The above results are not good. Let us try $f_2(x)$ on Chebyshev points.

In :
interp(f2,'chebyshev')


What about interpolating $f_1(x)$ on Chebyshev points ?

In :
interp(f1,'chebyshev')