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Abstract

In computer vision pixelwise dense prediction is the task of predicting a label for
each pixel in the image. Convolutional neural networks achieve good performance
on this task, while being computationally efficient. In this paper we carry these
ideas over to the problem of assigning a sequence of labels to a set of speech
frames, a task commonly known as framewise classification. We show that dense
prediction view of framewise classification offers several advantages and insights,
including computational efficiency and the ability to apply batch normalization.
When doing dense prediction we pay specific attention to strided pooling in time
and introduce an asymmetric dilated convolution, called time-dilated convolution,
that allows for efficient and elegant implementation of pooling in time. We show
results using time-dilated convolutions in a very deep VGG-style CNN with batch
normalization on the Hub5 Switchboard-2000 benchmark task. With a big n-gram
language model, we achieve 7.7% WER which is the best single model single-pass
performance reported so far.

1 Introduction

Deep convolutional networks [1] have seen tremendous sucess both in computer vision [2, 3, 4] and
speech recognition [5, 6, 7] over the last years. Many computer vision problems fall into one of
two problem types: the first is classification, where a single label is produced per image, the second
dense pixelwise prediction, where a label is produced for each pixel in the image. Examples of dense
prediciton are semantic segmentation, depth map prediction, optical flow, surface normal prediction,
etc. Efficient convolutional architectures allow to produce a full image sized output rather than
predicting the values for each pixel separately from a small patch centered around the pixel. In this
paper we argue that we should look at acoustic modeling in speech as a dense prediction task on
sequences. This is in contrast to the the usual viewpoint of “framewise classification”, indicating the
cross-entropy training stage where a context-window is used as input and the network predicts only
for the center frame. However, during all other stages, we want the acoustic model to be applied to a
sequence, and produce a sequence of predictions. This is the case during sequence training, test time,
or in an end-to-end training setting. Similar to convolutional architectures for dense prediction in
computer vision, we focus our efforts on convolutional architectures that process an utterance at once
and produce a sequence of labels as output, rather than “splicing” up the utterance, i.e. labeling each
frame independently from a small window around it.

There are four main advantages to convolutional architectures that allow efficient evaluation of full
utterance (without need of splicing) in this dense prediction viewpoint:

• Computational efficiency: processing a spliced utterance requires window_size times more
floating point operations.

• Batch normalization can easily be adopted during sequence training (or end to end training),
which we will show gives strong improvements (as outlined in [8]).
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• The main architectural novelty of this paper is that we can allow for strided pooling in
time. In the next two sections, we will adopt a recent technique from dense prediction,
named dilated convolutions, for CNN acoustic models to enable strided pooling in time.
Experiments and results for this new model are in section 4.

• We will show a unifying viewpoint with Stacked Bottleneck Networks, and discuss the
relevance for end-to-end models with convolutional layers in section 5.

2 Related work: Pooling in CNNs for dense prediction on images

Pooling with stride is an essential ingredient of any classification CNN, allowing to access more
context on higher feature maps, while reducing the spatial resolution before it is absorbed into the
fully connected layers. However, for dense pixelwise prediction tasks, it is less straightforward how
to deal with downsampling: on the one hand downsampling allows for a “global view” by having
large receptive fields at low resolution, on the other hand we also need detail on a small scale, i.e. we
need the high resolution information.

To incorporate both global and local information, downsampling pooling has been incorporated
in dense prediction networks in several ways. Firstly, many methods involve upsampling lower
resolution feature maps, usually combined with some higher resolution feature maps. In [9], an image
is processed at three different scales with three different CNNs, after which the output feature maps
are merged. The Fully Convolutional Networks (FCNs) from [10] use a VGG classification network
as basis, introducing skip connections to merge hi-res lower layers with upsampled low-res layers
from deeper in the network. SegNet [11] uses a encoder-decoder structure, in which upsampling
is done with max-unpooling [12], i.e. by remembering the max location of the encoder’s pooling
layers. A second way of using CNNs with strided pooling for dense prediction was proposed in [3]:
at every pooling layer with stride s× s, the input is duplicated s× s times, but shifted with offset
(∆x,∆y) ∈ [0 . . . s− 1]× [0 . . . s− 1]. After the convolutional stages, the output is then interleaved
to recover the full resolution. A third way (which we will use) is called spatial dilated convolutions,
which keeps the feature maps in their original resolution. The idea is to replace the pooling with stride
s by pooling with stride 1, then dilate all convolutions with a factor s, meaning that s−1

s values get
skipped. This was called filter rarefaction in [10], introduced as “d-regularly sparse kernels” in [13],
and dubbed spatial dilated convolutions in [14]. It was noted [3, 10] that this method is equivalent to
shift-and-interleave, though more intuitive. The recent WaveNet work [15] uses dilated convolutions
for a generative model of audio.

3 Time-dilated convolutions

Previous work on CNNs for acoustic modeling [5, 6] eliminated the possibility of strided pooling in
time because of the downsampling effect. Recent work [7, 8] shows a significant performance boost
by using pooling in time during cross-entropy training, however sequence training is prohibitively
expensive since an utterance has to be spliced into uttLen independent windows. By adapting
the notion of dense prediction, we propose to allow pooling in time while maintaining efficient
full-utterance processing, by using an asymmetric version of spatial dilated convolution with dilation
in the time direction but not in the frequency direction, which we appropriately call time-dilated
convolutions.

conv3,1

pool2,2

conv3,1

X (t-4, …, t+3)

CNN

y (t)

(a) Original CNN (XE)

conv3,1

pool2,2
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y (1, …, 10)

(b) Sequence: Problem

conv3,1

pool2,1
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X (1, …, 10)

CNN

y (1, …, 10)

(c) Solution

Figure 1: Example of simple CNN (1 conv, 1 pool, 1 conv layer). Pooling with stride 2 is replaced by
pooling with stride 1, while consecutive convolutions are dilated with a factor 2.
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The problem with strided pooling in time is that the length of the output sequence is shorter than
the length of the input sequence with a factor 2(p), assuming p pooling layers with stride 2. For
recurrent end-to-end networks typically a factor 4 size reduction is accepted [16, 17] which limits the
number of pooling layers to 2, while in the hybrid NN/HMM framework, pooling is not acceptable.
Essentially we need a way to do strided pooling in time, while keeping the resolution. We tackle this
problem with a 1D version of sparse kernels [13], or equivalently spatial dilated convolutions [14].

Consider the simple toy CNN (conv3, pool2-s2, conv3) in Figure 1 (a), which takes in a context
window of 8 frames and produces a single output. Let’s consider applying this CNN to a full
utterance of length 10 (padded to length 16), as in figure (b). The top row of blue outputs is
downsampled with factor 2 because of the strided pooling, so the output sequence length does not
match the number of targets (i.e. input size). The solution of this problem is visualized in Figure
1 (c). First, we pool without stride, which preserves the resolution after pooling. However, now
our consecutive convolutional layer needs to be modified; specifically the kernel has to skip every
other value, in order to ignore the new (dark blue) values which came between the values. This
is dilation (or sparsification) of the kernel with a factor 2 in the time direction. Formally a 1-D
discrete convolution ∗l with dilation l which convolves signal F with kernel k with size r is defined
as (F ∗l k)(p) =

∑
s+lt=p F (s)k(t), t ∈ [−r, r].

In general, the procedure to change a CNN with time-pooling from the cross-entropy training
(classification) to dense prediction stage for sequence training and testing is as follows. Change
pooling layers from stride s to stride 1, and multiply the dilation factor of all following convolutions
with factor s. After this, any convolution coming after p pooling layers with original stride s, will
have the dilation factor sp. Fully connected layers are equivalent to, and can be trivially replaced by,
convolutional layers with kernel 1× 1 (except the first convolution which has kernel size matching
the output of the conv stack before being flattened for the fully connected layers). This dilating
procedure is how a VGG classification network is adapted for semantic segmentation [13, 14].

Using time-dilated convolutions, the feature maps and output can keep the full resolution of the input,
while pooling with stride. With pooling, the receptive field in time of the CNN can be larger than the
same network without pooling. This allows to combine the performance gains of pooling [7], while
maintaining the computational efficiency and ability to apply batch normalization [8].

4 Experiments and results

We trained a VGG style CNN [4] in the hybrid NN/HMM setting on the 2000h Switchboard+Fisher
dataset. The architecture and training method is similar to our earlier papers [7, 8], and is based on
the setup described in [21]. Our input features are VTLN-warped logmel with ∆,∆∆, the outputs are
32k tied CD states from forced alignment. Table 1 fully specifies the CNN when training on windows
and predicting the center frame. Corresponding to the observations in [8], we do not pad in time,

Layer Output:
fmaps × f × T

Input window 3× 64× 48
conv 7× 7 64× 64× 42
pool 2× 1 64× 32× 42
conv 3× 3 64× 32× 40
conv 3× 3 64× 32× 38
conv 3× 3 64× 32× 36
pool 2× 1 64× 16× 36
conv 3× 3 128×16×34
conv 3× 3 128×16×32
conv 3× 3 128×16×30
pool 2× 1 128× 8× 30
conv 3× 3 256× 8× 28
conv 3× 3 256× 8× 26
conv 3× 3 256× 8× 24
pool 2× 2 256× 4× 12
conv 3× 3 512× 4× 10
conv 3× 3 512× 4× 8
conv 3× 3 512× 4× 6
pool 2× 2 512× 2× 3
3× FC 2048
FC 1024
FC 32000

Table 1: CNN architecture.

SWB CH
XE ST XE ST

Classic 512 CNN [18] 12.6 10.4
IBM 2016 RNN+VGG+LSTM [19] 8.6 † 14.4 †

MSR 2016 ResNet * [20] 8.9
MSR 2016 LACE * [20] 8.6
MSR 2016 BLSTM * [20] 8.7
VGG (pool, inefficient) [19] 10.2 9.4 16.3 16.0
VGG (no pool) [8] 10.8 9.7 17.1 16.7
VGG-10 + BN (no pool) [8] 10.8 9.5 17.0 16.3
VGG-13 + BN (no pool) 10.3 9.0 16.5 16.4
VGG-13 + BN + pool 9.5 8.5 15.1 15.4
VGG-13 + BN + pool (uncouple CH acwt) 14.8 15.2

Table 2: Results with small LM (4M n-grams)
SWB CH

IBM 2015 DNN+RNN+CNN [21] 8.8 † 15.3 †

IBM 2016 RNN+VGG+LSTM [19] 7.6 † 13.7 †

MSR 2016 ResNet [20] 8.6 14.8
MSR 2016 LACE [20] 8.3 14.8
MSR 2016 BLSTM [20] 8.7 16.2
VGG-13 + BN (no pool) 8.1 15.9
VGG-13 + BN + pool 7.7 14.5
VGG-13 + BN + pool (uncouple CH acwt) 14.4

Table 3: Results with big LM (36M n-grams)
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though we do pad in the frequency direction. Training followed the standard two-stage scheme, with
first 1600M frames of cross-entropy training (XE) followed by 310M frames of Sequence Training
(ST). XE training was done with SGD with nesterov acceleration, with learning rate decaying from
0.03 to 9e−4 over 600M frames. We use the data balancing from [7] with exponent γ = 0.8. We
report results on Hub5’00 (SWB and CH part) after decoding using the standard small 4M n-gram
language model with a 30.5k word vocabulary. We saw slight improvement in results when decoding
with exponent γ on the prior lower than what is used during training. As mentioned in section 3,
we use batch normalization in our network, where the mean and variance statistics are accumulated
over both the feature maps and the frequency direction. The selection of models, decoding prior and
acoustic weight happened by decoding on rt02 as heldout set.

The result after XE and ST are presented in Tables 2 and 3. Baseline with * from personal communi-
cation with the authors. Baseline with † means system combination. Note that the baselines from
[20] use slightly smaller LMs: 3.4M n-grams for small LM (table 2) and 16M n-grams for big LM
(table 3). We note that one typically does subsequent rescoring with more advanced language models
like RNN or LSTM LMs; this way in [22] a single model performance of 6.6 is achieved, starting
from 8.6. With just n-gram decoding, this result is to our knowledge the best published single model.

5 Relation to other models

Stacked bottleneck networks (SBN) [23, 24, 25] or hierarchical bottleneck networks [26] are a
influential acoustic model in hybrid NN/HMM speech recognition. SBNs are typically seen as two
consecutive DNNs, each stage separately trained discriminatively with a bottleneck (small hidden
layer). The first DNN sees the input features, while the second DNN gets the bottleneck features
from the first DNN as input. Typically, the second DNN gets 5 bottleneck features with stride 5, i.e.
features from position {−10,−5, 0, 5, 10} relative to the center [25]. In [24], it was pointed out that
this SBN is convolutional and one can backpropagate through both stages together.

In fact this multi-stage SBN architecture is a special case of a CNN with time-dilated convolution.
Specifically, the DNN is equivalent to a CNN with a large first kernel followed by all 1× 1 kernels.
The second DNN is exactly equivalent to a CNN with the first kernel having size 5 and dilation factor
5 in the time direction. The layers after the bottleneck in the first DNN form an auxilary classifier.
This realization prompts a number of directions in which the SBNs can be extended. Firstly, by
avoiding the large kernel in the first convolutional layer, it is possible to keep time and frequency
structure in the internal representations in future layers, enabling increased depth. Secondly, rather
than increasing the time-dilation factor to 5 at once, it seems more natural to gradually increase the
time-dilation factor throughout the depth of the network.

Convolutional networks are also used in end-to-end models for speech recognition. Both the CLDNN
architecture [17] and Deep Speech 2 (DS2) [16] combine a convolutional network as first stage with
LSTM and fully connected (DNN) output layers. In Wav2Letter [27], a competitive end-to-end
model is presented which is fully convolutional. Both DS2 and Wav2Letter do a certain amount of
downsampling through pooling or striding, which can be accepted when training with a CTC (or
AutoSeg [27]) criterion since it doesn’t require the output to be the same length as the input. However,
DS2 does report a degradation on English, which they work around using grapheme bigram targets.

The time-dilated convolutions we introduced, could improve these end to end models in two ways:
either, one could allow the same amount of pooling while keeping a higher resolution. Alternatively,
one could keep the same resolution, but expand the receptive field by adding more time-dilated
convolution layers, which gives access to a broader context in the CNN layers. In conclusion, this
work is both relevant to end-to-end models and to hybrid HMM/NN models.

6 Conclusion

We drew the parallel between dense prediction in computer vision and framewise sequence labeling,
both in the HMM/NN and end-to-end setting. This provided us with the tool (time-dilated convo-
lutions) to adopt pooling in time to CNN acoustic models, while maintaining efficient processing
and batch normalization on full utterances. On Hub5’00 we brought down the WER from 9.4% in
previous work to 8.5%, a 10% relative improvement. With a big (36M n-gram) language model, we
achieve 7.7% WER, the best single model single-pass performance reported so far.
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