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Abstract

Proofs in formal systems are inherently laborious, and it is difficult to present complete
proofs within formal systems without completely sacrificing the presentation. We implement
an intuitionistic type theory in Lean, an interactice proof assistant, and demonstrate its utility
in guiding, automating and organising formal proofs.
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1 The Intuitionistic Type Theory

1.1 Lean Syntax

Lean is an interactive theorem prover [1] based on the Calculus of Inductive Constructions[6] (CIC).
In Lean, everything has a type, and we denote this relationship, a : A, meaning a has type A. There
is a type of types called Type, a member of which is Prop, so can write Prop : Type. Any member
of Type can be defined to have members. In particular Prop has members, which are propositions.

1.2 ITT vs. LITT

We implement the intuitionistic type theory defined in Lambek and Scott, Introduction to Higher
Order Categorical Logic [2], which we abbreviate ITT, with the exception that we do not include
a type of natural numbers by default. We also made significant use of Daniel Murfet’s notes on
ITT in developing this type theory.

We abbreviate our Lean implentation of ITT by LITT. Where the ITT construction describes
an extendable type theory which can have more types, terms, deduction rules, and non-trivial
identifications of types and terms, we implement only the underlying pure type theory in LITT.

There are many subtleties about the definitions related to use of variables in terms, which
cannot be ignored in Lean, so our implementation diverges from Lambek and Scott in key places.
We present both definitions of each concept in parallel in order to contextualise the decisions we
make.

1.2.1 Meta Theories

A specification or discussion of a formal theory must always take place within some meta-theory.
For example, it is not possible to make a statement like “If p and q are propositions, then p ⇒
q is a proposition”, without any a priori semantics behind concepts like “If”, “and”, “then” -
and a structural understanding of such statements. Once you have a formal system, it is then
possible to specify and discuss other formal systems within it, and possibly even vice-versa. So
how do you get started? Essentially you have to rely on intuitively meaningful and simple decision
procedures, such as the rule above concerning proposition constructions. This is the notion of
“effective computability” and is the subject of the Church Turing thesis. For this project, our
meta-theory is the formal system, Lean, so these decision procedures are well-defined.

It is worth paying attention to the strength of the meta-theory used to specify a formal system,
and what features we may be asking of the meta-theory without realising. For example, one usually
expects to produce as many fresh “variables” as one needs when manipulating terms. Is this a
reasonable expectation? Maybe, maybe not, but it is worth spotlighting such manners. We benefit
from studying one formal system within another by making such subtleties explicit. In order to
not overshadow the main intentions with definitional subtleties, we present both the intuitive,
ITT definitions, and the concrete LITT definitions of each concept (though some are unique to
LITT).
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Our type theory manifests in Lean via 4 inductively defined types, the first of which is the type
of types. Lean itself already has a type Type, so we use the lowercase, type, for the type of types
in our theory. The relationship here is type : Type, i.e. “the type of type is Type”.

Since Lean has an extensible parser, for each definition, we define unicode-based notation to
make the syntax more readable. Examples will follow where needed.

Definition 1.1. (ITT) A type theory has a class of types, including basic types Ω,1, closed under
the following constructions

• If A is a type then PA is a type

• If A,B are types then A×B is a type

These types will be inhabited by terms/variables, and we introduce this relationship a : A,
meaning a is a term/variable of type A. For each type A, there is an unlimited supply of variables,
x : A.

Ω is thought of as the type of propositions, and 1 will have a unique inhabitant (up to provable
equivalence).

Definition 1.2. (LITT)

/- The inductive definition of a 8type8-/
inductive type : Type
| Unit | Omega | Prod (A B : type)| Pow (A : type)

Working within lean, we refine the a priori notion of a “class” of types to mean a Type called type,
which is inductively defined via four constructors. The first two take no arguments (they are basic
members of type), and the other two construct new types from old ones. We also define related
notation.

notation 8Ω8 := type.Omega
notation 818 := type.Unit
infix 8×8:max := type.Prod
notation 8P 8A :max := type.Pow A

#check type.Prod type.Omega (type.Pow type.Unit) -- type
#check Ω × (P 1) -- type

It’s important to note that there is no semantic content in either definition. Nothing yet con-
strains the Unit type to only have one member, nor the Omega type to be logical, nor the powerset
or product constructors to “make” the new type from old ones. It’s only once we declare what
constitutes a “proof” statement involving terms of these types that they adopt a consistent mean-
ing. The only feature we get at this point is definitional inequality between types with different
derivations, meanining there are no non-trivial identifications between types such as Pow Unit and
Omega.
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Definition 1.3. (LITT) A type theory has a class of terms1, and to each is associated a unique
type. We denote this relationship, a : A, meaning a is of type A. The class of terms is closed
under the following constructions (which can also be performed on variables). Let A,B be types
and (a : A), (b : B), (α : PA), (p, q, ϕ : Ω).

Basic Terms

• ∗ : 1 (“star”)

• > : Ω (“true/top”)

• ⊥ : Ω (“false/bottom”)

Propositional connectives

• p ∧ q : Ω (“conjunction”)

• p ∨ q : Ω (“disjunction”)

• p⇒ q : Ω (“implication”)

• a ∈ α : Ω (“elementhood”)

Quantifiers
Let x be a variable of type A.

• (∀x ∈ A) ϕ : Ω (“Universal Quantification”)

• (∃x ∈ A) ϕ : Ω (“Existential Quantification”)

• {x ∈ A | ϕ} : PA (“Set Comprehension”)

Pairs

• 〈a, b〉 : A×B

It is worth understanding the quantifier constructions in greater detail, as there is potential for
confusion in the use of the ∈-elementhood symbol.

Let A be a type, x a variable of type A and ϕ : Ω. Note that ϕ may or not contain x as a free
variable (see 1.3). Then the following are also terms,

• (∀x ∈ A) ϕ : Ω (“Universal Quantification”)

• (∃x ∈ A) ϕ : Ω (“Existential Quantification”)

• {x ∈ A | ϕ} : PA (“Set Comprehension”)

We have highlighted in red the purely-syntactic content introduced by each construction. In par-
ticular, the ∈ in ∀x ∈ A should not be confused with the elementhood propositional connective. It
is purely a syntactical feature to which indicates the type of the variable x being quantified over.

An important subtlety is that in declaring that the variable x has type A, we are assuming any
appearance of a variable with name x is actually the same variable with the same type, A. More
correctly, each type has (by meta-theoretical assumption) an unlimited supply of variables of each
type, and to each such variable is associated a unique type. In practice we would allow the use of a
variable name with different types, just not within the same term (or arrangement of terms to be
safe). However, we will need to be more careful once Lean is our metatheory.

1One should actually define preterms as we define terms and then account for α-equivalence (see 1.3). We skip this
discussion (noting we are defining “too many” terms) as our Lean interpretation avoids the need for α-equivalence
altogether.
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1.3 Variables

Definition 1.4. (ITT) To each term α we associate a finite set FV (α) called the free variables of
α. This set is defined recursively as follows.

• FV (∗) = ∅

• FV (>) = ∅

• FV (⊥) = ∅

• FV (p ∧ q) = FV (p) ∪ FV (q)

• FV (p ∨ q) = FV (p) ∪ FV (q)

• FV (p⇒ q) = FV (p) ∪ FV (q)

• FV (a ∈ α) = FV (a) ∪ FV (α)

• FV ((∀x ∈ A)ϕ) = FV (ϕ) \ {x}

• FV ((∃x ∈ A)ϕ) = FV (ϕ) \ {x}

• FV ({x ∈ A | ϕ}) = FV (ϕ) \ {x}

Within the term φ, the free occurences of the variable x are said to be captured by a quantifier
in the expressions (∀x ∈ A)ϕ, (∃x ∈ A)ϕ, {x ∈ A | ϕ}. A term with no variables is called closed.

Definition 1.5. (ITT) For any term ϕ and variables x, y of some type, by ϕ[y/x], we mean the
resulting term when all free occurences of x are replaced with y.

We define an equivalence relation =α as the smallest equivalence relation on terms, closed under
all term-formation rules, and for any variables x, y : A, ϕ : Ω,

• (∀x ∈ A)ϕ =α (∀y ∈ A)ϕ[y/x]

• (∃x ∈ A)ϕ =α (∀y ∈ A)ϕ[y/x]

• {x ∈ A | ϕ} =α {x ∈ A | ϕ[y/x]}

as long as no free occurence of x would become captured by a quantifier in ϕ[y/x].

It is necessary to form α-equivalence classes of the terms (they would be called preterms) we
defined in ITT, in order to identify (what we intend to be) semantically equivalent terms. Alter-
natively, we could leave α-equivalent terms distinct, and add a proof-formation rule that allows
conversion between such terms. In practice (in LITT) we avoid the need for α-equivalence entirely
by using De Bruijn indices.

1.4 De Bruijn Indices

The usual named-variable approach to quantification excels in readability, but lacks canonicity.
Consider the α-equivalent terms ϕ1 = {x1 ∈ A | (∃y1 ∈ A)(∀z1 ∈ A) . . . x1 . . . z1 . . . y1}, and
ϕ2 = {x2 ∈ A | (∃y2 ∈ A)(∀z2 ∈ A) . . . x2 . . . z2 . . . y2} denoting some quantified terms where
x1, y1, z1, x2, y2, z2 are free variables that become captured by the shown quantifiers. If we pay
attention to the structure of these expressions, we notice we can canonically name each variable by
the index counting the number of quantifiers structurally “between” each variable and its quantifier
(given only one occurence of that variable). Essentially, each variable “points” to its intended

5



quantifier, and we remove the naming at the quantifer itself in order to account for multiple instances
of the same variable at different depths. Our resulting term looks like this, and the indices used
here are called De Bruijn indices [4].

{A | (∃A)(∀A) . . . 2 . . . 0 . . . 1}

Note now that the syntax of the inner terms are not yet typed - the index chooses which
quantifier will capture it’s variable, and the quantifier decides the type of the variable. With the
goal of eliminating the need for the α-equivalence via De Bruijn indices, this motivates the type-less
terms we introduce in LITT.

Definition 1.6. (LITT)

inductive term : Type
| star : term
| top : term
| bot : term
| and : term → term → term
| or : term → term → term
| imp : term → term → term
| elem : term → term → term
| pair : term → term → term
| var : N → term
| comp : type → term → term
| all : type → term → term
| ex : type → term → term

Here we define the Type of terms. Note that the constructors here are largely independent of
type, which is odd, since it is natural to define terms along with the type that they inhabit, as we
did in 1.3. The lack of this constraint allows the creation of ill-formed terms such as and star star

(but not things like and star ex - since that does not type-check).
We would like to say something akin to the meta-theoretic star : Unit. The problem here

is that Unit : type is a member of the type type : Type, but is not a type itself, so we cannot
construct members of it.

There are two solutions here. We could parametrise term by type, such that term : type →
Type, and allowing each constructor to constrain the type of the input terms, for example pair (A

B): term A → term B → term (A × B) and star : term Unit. However, the former solution
would require the term.var constructor to decide on a type, which can’t be known until it is
quantified over - so we run into the same issue. In order to simplify and separate the grammar of
terms and well-formedness of terms, we allow untyped construction of terms and where necessary,
require a proof of its well-formedness.

Accompanying these constructors are notational shorthands.2 Since some of these notational
operators place input terms within quantifiers, we need to lift the free-variables (uncaptured de-

2Some of these symbols are reserved in Lean, and in practice we actually use slight variations, but we present the
most ideal notation here.
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bruijn indices) in the term to avoid unintended capture. We provide only the type signature of
lift here (a more in depth discussion of lifting can be found in [4] ).

notation 8?8 := term.star
notation 8>8 := term.top
notation 8⊥8 := term.bot
infix 8 ∧ 8 :50 := term.and
infix 8 ∨ 8 :50 := term.or
infix 8 =⇒ 8:50 := term.imp

def iff (p q: term) := (p =⇒ q) ∧ (q =⇒ p)
infix 8 ⇔ 8:50 := iff

infix ∈ := term.elem
notation 8{ 8 A 8 | 8 ϕ 8 }8 := term.comp A ϕ

notation 8〈8 a 8,8 b 8〉8 := term.pair a b

notation 8∀8 := term.all
notation 8∃8 := term.ex

/- Coerce natural numbers to variables -/
instance nat_coe_var : has_coe N term := 〈term.var〉

-- Now we can write (term.var 0) as just ↑0
#reduce ∃ Ω ↑0 -- term.all type.Omega (term.var 0)
#reduce ↑1 ∨ ∃ Ω ↑2 -- term.or (term.var 1) (term.ex type.Omega (term.var 2))

-- 8lift d k ϕ8 increases all variable indices in 8ϕ′ at least 8k′ by 8d′

def lift (d : N) : N → term → term := sorry
notation 8^8 := lift 1 0

-- Leibniz equality
def eq (A:type) (a1 a2 : term) : term

:= ∀ (P A) $ ((^ a1) ∈ ↑0) ⇔ ((^ a2) ∈ ↑0)
notation a 8 '[8:max A 8] 8:0 b := eq A a b

-- example
#reduce ↑2 '[1] ↑0 -- ∀ (P 1) ( (↑3 ∈ ↑0) ⇔ (↑1 ∈ ↑0) )

-- 8subst n b ϕ8 replaces the 8n8th free variable in 8ϕ8 by 8b8

def subst : N → term → term → term
:= sorry -- definition ommitted

notation 8[8 ϕ 8 / 8 b 8]8 := subst 0 b ϕ

-- examples
constants p q r : term
#reduce p ∧ (q ∨ r) -- term.and p (term.or q r)
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#reduce ∃ 1 ([↑0 / p] ∧ ∀ 1 (↑1 '[1] ↑0))
-- term.ex type.Unit (term.and p (term.all (type.Pow type.Unit) (iff
(term.elem (term.var 2) (term.var 0)) (term.elem (term.var 1) (term.var
0)))))

Definition 1.7. We inductively define a family of meta-theoretic propositions, that is, members of
Prop3. The parameters that appear in braces on the left side of each :, are dependent types to the
type of each constructor.4

def context : list type

inductive WF : context → type → term → Prop
| star {Γ} : WF Γ 1 ?
| top {Γ} : WF Γ Ω >
| bot {Γ} : WF Γ Ω ⊥
| and {Γ p q} : WF Γ Ω p → WF Γ Ω q → WF Γ Ω (p ∧ q)
| or {Γ p q} : WF Γ Ω p → WF Γ Ω q → WF Γ Ω (p ∨ q)
| imp {Γ p q} : WF Γ Ω p → WF Γ Ω q → WF Γ Ω (p =⇒ q)
| elem {Γ A a α} : WF Γ A a → WF Γ (P A) α → WF Γ Ω (a ∈ α)
| pair {Γ A B a b} : WF Γ A a → WF Γ B b → WF Γ (A × B) 〈a,b〉
| var {Γ A n} : (Γ.nth n = some A) → WF Γ A (var n)
| comp {Γ A ϕ} : WF (A::Γ) Ω ϕ → WF Γ (P A) {A | ϕ}
| all {Γ A ϕ} : WF (A::Γ) Ω ϕ → WF Γ Ω (∀ A ϕ)
| ex {Γ A ϕ} : WF (A::Γ) Ω ϕ → WF Γ Ω (∃ A ϕ)

Given Γ : context, A : type, a : term, we have just defined WF Γ A a to be the proposition
that a is a well-formed term of type A in context Γ. Each constructor produces a member of some
WF Γ A a, that is, a proof of WF Γ A a. For example, given any context, we can summon a proof
that ? is well-formed of type 1 in that context just by declaring WF.star. Well-formedness proofs of
terms made from propositional connectives (and pairs) require proofs that each term is well-formed
in the same context.

What is a context?
Since De Bruijn index-variables are not typed, we must use provide a mapping of free-variable-

indices to types, in order to prevent conflicting types among variables when quantifying. Since such
a mapping is just a function [n] → type for some natural number n, we can just a use a list of
types, where the De Bruijn index n maps to the nth type in the list. To introduce a proof that a
variable term of some A : type is well-formed via WF.var : (Γ.nth n = some A) → WF Γ A

(var n), we must provide a proof that the n’th type in the context is infact A. To introduce a proof
that a quantified statement like ∀ A ϕ is well-formed of type Ω, we must provide a proof that ϕ is
well-formed to WF.all, where A is appended to the start of the context - so any variable captured

3Prop is the type of Propositions in Lean - it’s the meta-theoretic equivalent of Ω. Members P : Prop are
propositions, and members p : P are proofs of P

4These are implicit arguments to the constructor, and are inferred other arguments provided to the constructor.
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by this quantifier has type A.5 Similar constructions apply to the existential and set-comprehension
constructions.

Definition 1.8. Given a finite set Γ of free-variables of any types, an ITT has a relation, Γ-
entailment, on pairs of propositional terms ϕ, ψ : Ω, such that FV (ϕ), FV (ψ) ⊆ Γ. We write such
a relation ϕ `Γ ψ, and abbreviate ϕ `∅ ψ to ϕ ` ψ, > `Γ ψ to `Γ ψ and > ` ψ to ` ψ.

Such a Γ-entailment must contain certain axiomatic relations, as well as certain deduction rules
which each determine that entailment can be deduced from one or more other entailments. We do
not state them all here, as they will just be repeated in the next definition.

A proof of some Γ-entailment, ϕ `Γ ψ is a deduction tree beginning with one or more axiomatic
relations.

Definition 1.9. (LITT)
We define Γ-entailment ϕ `Γ ψ as the inductively defined relation entails : context →

term → term → Prop.

inductive entails : context → term → term → Prop
| axm {Γ} {p} : WF Γ Ω p → entails Γ p p
| vac {Γ} {p} : WF Γ Ω p → entails Γ p >
| abs {Γ} {p} : WF Γ Ω p → entails Γ ⊥ p
| and_intro {Γ} {p q r} : entails Γ p q → entails Γ p r → entails Γ p (q ∧ r)
| and_left {Γ} (p q r) : entails Γ p (q ∧ r) → entails Γ p q
| and_right {Γ} (p q r) : entails Γ p (q ∧ r) → entails Γ p r
| or_intro {Γ} {p q r} : entails Γ p r → entails Γ q r → entails Γ (p ∨ q) r
| or_left {Γ} (p q r) : entails Γ (p ∨ q) r → entails Γ p r
| or_right {Γ} (p q r) : entails Γ (p ∨ q) r → entails Γ q r
| imp_to_and {Γ} {p q r} : entails Γ p (q =⇒ r) → entails Γ (p ∧ q) r
| and_to_imp {Γ} {p q r} : entails Γ (p ∧ q) r → entails Γ p (q =⇒ r)
| weakening {Γ} {p q ∆} : entails Γ p q → entails (Γ ++ ∆) p q
| cut {Γ} (p c q) : entails Γ p c → entails Γ c q → entails Γ p q
| all_elim {Γ} {p ϕ A} : entails Γ p (∀ A ϕ) → entails (A::Γ) (^p) ϕ
| all_intro {Γ} {p ϕ} (A) : entails (A::Γ) (^p) ϕ → entails Γ p (∀ A ϕ)
| ex_elim {Γ} {p ϕ A} : entails Γ p (∃ A ϕ) → entails (A::Γ) (^p) ϕ
| ex_intro {Γ} {p ϕ} (A) : entails (A::Γ) (^p) ϕ → entails Γ p (∃ A ϕ)

/- equality of powerset terms is determined by elementhood (dollar signs make
application right-associative for less brackets)-/

| extensionality {A} : entails [] >
$ ∀ (P A) $ ∀ (P A) $ ∀ A
$ ((↑0 ∈ ↑2) ⇔ (↑0 ∈ ↑1)) =⇒ (↑1 '[P A] ↑0)

/- Provably equivalent propositions are equal -/
| prop_ext : entails [] > $ ∀[Ω,Ω] $ (↑1 ⇔ ↑0) =⇒ (↑1 '[Ω] ↑0)

/- ? is unique up to provable equivalence -/
| star_unique : entails [] > $ ∀ 1 (↑0 '[1] ?)

5This also lifts all other variables in the context, to correspond to deeper De-Bruijn indices, since we have passed
through a quantifier.
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/- Any term of a product type has a pair representation -/
| pair_rep {A B} : entails [] >

$ ∀ (A × B) $ ∃[A,B] $ ↑2 '[A × B] 〈↑1,↑0〉

/- Terms of product type are distinguished pairwise -/
| pair_distinct {A B} : entails [] >

$ ∀ A $ ∀ B $ ∀ A $ ∀ B
$ (〈↑3,↑2〉 '[A × B] 〈↑1,↑0〉)

=⇒ ((↑3 '[A] ↑1) ∧ (↑2 '[B] ↑0))

/- Entailments on free variables hold for any well-formed substitution -/
| sub {Γ} (B b p q) : WF Γ B b

→ entails (B::Γ) p q
→ entails Γ [p / b] [q / b]

/- Set comprehension terms are populated precisely by all terms satisfying the condition
Note: we must lift { A | ϕ } so it doesn′t have ↑0 free -/

| comp {Γ} (A ϕ) : WF (A::Γ) Ω ϕ → entails Γ > (∀ A
$ (↑0 ∈ (^ { A | ϕ })) ⇔ ϕ))

Things to note:

• The role of the finite set of free variables Γ, from which both associated terms must source
their free-variables from, is now fulfilled by a context, which we defined earlier to establish
well-formedness on terms.

• Of the 24 constructors, only 5 request a proof of well-formedness of any of the terms appearing
in the resulting entailment. These 5 are exactly those through which a new term can be
introduced, after which well-formedness is preserved between proofs. The relevant theorem
here can be stated and proved precisely in Lean, as we demonstrate in 2.3.

We introduce notation for entails. The double turnstile we use is usually distinguished from
the single turnstile to represent truth in a model - but our usage is to avoid confusion with Lean’s
own usage for presenting goals (see 2.1).

prefix 8�8:1 := entails [] >
infix 8 � 8:50 := entails []

-- Allows the parser to directly extract the context list
notation ϕ8 �[8 Γ:(foldr 8,8 (h t, list.cons h t) list.nil) 8] 8 ψ := entails Γ ϕ ψ
notation 8�[8 Γ:(foldr 8,8 (h t, list.cons h t) list.nil) 8] 8 ψ := entails Γ > ψ

variables p q ϕ ψ : term

#reduce � (p ∨ ¬p) -- entails [] > (or p (imp p ⊥))
#reduce q � (p ∨ ¬p) -- entails [] q (or p (imp p ⊥))
#reduce �[Ω,1] p -- entails [Ω, 1] > p
#reduce q �[Ω,1] p -- entails [Ω, 1] q p
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1.5 Semantics

Through definition 1.9, we have introduced a means of making assertions about well-formed terms
in the type theory. For example, given any term ϕ : term, as long as we can produce an h :

WF [] Ω ϕ (a proof of its well-formedness in the empty context), we can construct a proof of
entailment proposition Prop, entails [] ϕ ϕ (the ITT entailment ϕ ` ϕ), like this:

lemma phi_ent_phi : entails [] ϕ ϕ := entails.axm h

Similarly, we can also construct a proof of entails [] ϕ >, like this:

lemma phi_ent_top : entails [] ϕ > := entails.vac h

Using both of these, we can show entails [] ϕ (ϕ ∧ >).

lemma phi_ent_phi_and_top : entails [] ϕ (ϕ ∧ >)
:= entails.and_intro phi_ent_phi phi_ent_top

Although it’s called entails - what makes entails Γ ϕ ψ mean entailment of ψ from ϕ
in context Γ, and what it the logical content of the associated terms? For now, it’s just some
parametrised proposition - which can be proven for some term parameters via the constructors. One
perspective is to first trust that the term constructions mean what we think they mean, and that
well-formed terms of type Ω are in fact propositions. This interpretation then justifies viewing the
entailment constructors as valid deduction rules about entailment, including entails.and_intro

used in the above example. If we inductively suppose the intended meaning of entails [] ϕ ϕ
and entails [] ϕ >, then proofs of these constitute a proof entails [] ϕ (ϕ ∧ >).

Alternatively, we can trust the intended meaning of entails Γ ϕ ψ (and Ω), and then inter-
rogate each term construction and derive their meaning from the way they can appear in provable
entailments. For example, we can derive the meaning of ∧ (which is term.and) via the following
constructors.

entails.and_intro {Γ} {p q r} : entails Γ p q → entails Γ p r → entails Γ p (q ∧ r)
entails.and_left {Γ} (p q r) : entails Γ p (q ∧ r) → entails Γ p q
entails.and_right {Γ} (p q r) : entails Γ p (q ∧ r) → entails Γ p r

This injection of semantics into terms and entailment happens simultaenously - neither is prior.

2 Proofs in LITT

Formal proofs of entailment in ITT are inherently laborious. The axioms and rules of deduction
are presented minimally and serve only the purpose of forcing an interpretable meaning onto terms,
and many “obvious” consequences of this interpretation require decent sized proofs supporting
them. Upon attempting to perform a proof of any theorem with substantial “logical content”, it
is impossible to avoid frequent detours in proving various associated lemmas. Such lemmas are
frequently “obvious”, and it becomes extremely tempting to leave them out altogether, in order to
not distract from the central proof.

Since a key point of studying formal systems is demonstrating their ability to
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2.1 Tactic Proofs

Typically, a proof is constructed backwards, that is, starting at the conclusion, recognising if the
conclusion is an axiom, and otherwise applying some deduction rule in reverse to produce one or
more new “sub-conclusions”/“goals” to prove. Repeating this process (intelligently), if we eliminate
all of the goals as axioms, we can terminate and claim a proof.

This describes exactly the process of performing an interactive tactic proof in Lean. At each
point in the proof, Lean presents us with the current goal to prove, and we can invoke any con-
structor or lemma whose conclusion can be unified with the goal. As an example, we prove lemma

phi_ent_phi_and_top : entails [] ϕ (ϕ ∧ >) again.

1 lemma phi_ent_phi_and_top (h : WF [] Ω ϕ): ϕ � (ϕ ∧ >) :=
2 begin
3 apply entails.and_intro,
4 apply entails.axm,
5 exact h,
6 apply entails.vac,
7 exact h
8 end

The tactic environment appears between begin and end. At the beginning of line 3, we are
presented with this goal state in a separate windows.

1 goal
ϕ : term,
h : WF [] Ω ϕ
` ϕ � ϕ ∧ >

It outlines the two hypotheses we have access to (that ϕ is a term and h is a proof of its well-
formedness) and the goal we need to prove, ϕ � ϕ ∧ >. After applying entails.and_intro :

entails Γ p q → entails Γ p r → entails Γ p (q ∧ r), the goal is unified with the con-
clusion and is replaced with two goals, which are exactly the (unified) hypotheses needed to apply
entails.intro.

2 goals
ϕ : term,
h : WF [] Ω ϕ
` ϕ � ϕ

ϕ : term,
h : WF [] Ω ϕ
` ϕ � >

The tactic proof then applies the relevant constructors as needed to solve the resulting goals,
and the proof h of the hypotheses WF [] Ω ϕ is applied as needed.

This environment for theorem proving allows us to control the non-linearity of much larger
proofs, since the task of keeping track of auxilliary goals to prove is handled entirely by Lean, and
we can just deconstruct and prove each goal as they are presented. Another powerful programming
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pattern we can utilise is the organisation of “helper-functions” (lemmas) into libraries. Whenever
we are presented a goal which is “obvious”, we can extract it out as a lemma and invoke it directly
(sometimes automatically) in the tactic proof. Such techniques allow us to construct proofs of
entailments which are both focused and clean in their presentation (sidelining trivial sub-goals),
while still being completely formally verified.

2.2 Automated Well-Formedness Proofs

We demonstrate the power of interactive theorem proving by largely automating the process of
proving well-formedness, which arises frequently when proving entailment. Suppose we want to
prove, from some A : type, that the conclusion term of the extensionality axiom is a closed well-
formed term. We demonstrated half of the proof of this lemma here,

lemma WF.extensionality {A : type} : WF [] Ω $ ∀′ (P A) $ ∀′ (P A) $ (∀′ A $
(↑0 ∈ ↑2) ⇔ (↑0 ∈ ↑1)) =⇒ (↑1 '[P A] ↑0)

:=
begin

apply WF.all, apply WF.all, apply WF.imp,
{ apply WF.all, apply WF.and,

{ apply WF.imp,
{ apply WF.elem,
-- refl solves equalities which are definitionally equal
-- in this case 8` [A, P A, P A].nth 0 = some A8

apply WF.var, refl,
apply WF.var, refl },

{ apply WF.elem,
apply WF.var, refl,
apply WF.var, refl }

},
{ apply WF.imp,

{ apply WF.elem,
apply WF.var, refl,
apply WF.var, refl },

{ apply WF.elem,
apply WF.var, refl,
apply WF.var, refl }

},
},

sorry -- Goal is : 8` WF [P A, P A] Ω (↑1 '[P A] ↑0)8′
end

This becomes intractable to have to manually construct such a proof for every term of substantial
structure. The key observation is that there is a canonical choice of well-formedness constructor to
apply at each step of these proofs. This makes it appropriate to use one of Lean’s many tactics,
called apply_rules, which takes a list of rules and repeatedly calls apply with the appropriate rule
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until it can no longer make progress.6

By tagging all of the constructors with a WF_rules identifier, we can reduce the previous proof
to the following.

lemma WF.extensionality {A : type} : WF [] Ω $ ∀′ (P A) $ ∀′ (P A) $ (∀′ A $
(↑0 ∈ ↑2) ⇔ (↑0 ∈ ↑1)) =⇒ (↑1 '[P A] ↑0)

:=
begin

apply_rules WF_rules, all_goals {refl}
end

This tactic is incredibly useful, and allows us to greatly reduce the size of proofs without sacri-
ficing proof-completeness. A key example is the following inductive proof.

2.3 Entailments Preserve Well-Formedness

We prove that any proven entailment can contain only well-formed terms. Of the 24 inductive cases
to be proven, 12 of them are solved automatically by lines 5 and 6.

1 lemma WF.proof_terms {Γ} {p q} : entails Γ p q → WF Γ Ω p ∧ WF Γ Ω q :=
2 begin
3 intro ent,
4 induction ent,
5 any_goals {split;apply_rules WF_rules;refl},
6 any_goals {split; simp ∗ at ∗;apply_rules WF_rules;refl},
7 case entails.and_left : _ _ _ _ _ ih {exact 〈ih.1, WF.and_left ih.2〉},
8 case entails.and_right : _ _ _ _ _ ih {exact 〈ih.1, WF.and_right ih.2〉},
9 case entails.or_left : _ _ _ _ _ ih {split, any_goals {simp ∗ at ∗},

10 exact WF.or_left ih.1},
11 case entails.or_right : _ _ _ _ _ ih {split, any_goals {simp ∗ at ∗},
12 exact WF.or_right ih.1},
13 case entails.imp_to_and : _ _ _ _ _ ih {split, apply WF.and,
14 exact ih.1, exact WF.imp_left ih.2,
15 exact WF.imp_right ih.2},
16 case entails.and_to_imp : _ _ _ _ _ ih {split, exact WF.and_left ih.1,
17 apply WF.imp,
18 exact WF.and_right ih.1, exact ih.2},
19 case entails.weakening : _ _ _ _ _ ih {split; apply WF.add_context, tidy},
20 case entails.all_elim : _ _ _ _ _ ih {exact 〈WF.lift_once ih.1,
21 WF.all_elim ih.2〉},
22 case entails.all_intro : _ _ _ _ _ ih {exact 〈WF.drop ih.1, WF.all ih.2〉},
23 case entails.ex_elim : _ _ _ _ _ ih {exact 〈WF.lift_once ih.1, WF.ex_elim ih.2〉},
24 case entails.ex_intro : _ _ _ _ _ ih {exact 〈WF.drop ih.1, WF.ex ih.2〉},
25 case entails.sub : Γ B b p q wfb ent ih {
26 suffices : ∀ p, WF (B :: Γ) Ω p → WF Γ Ω ([p // b]),
27 from 〈this p ih.1, this q ih.2〉,
28 intros _ wfp, exact WF.subst wfb wfp
29 },

6It also looks in the goal state for proofs for hypotheses which are precisely the goal to be proven.
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30 end

3 LITT is a category

The Intuitionistic Type Theory we have presented has an associated category, whose construction
is analagous to forming the category of sets from ZF-set theory. In the following theorem we delay
the definitions of term-sets, graphs and their composition until the LITT presentation.

Theorem 3.1. Given an ITT, L, there is an associated category T (L), whose objects are equiv-
alence classes of term-sets and morphisms are equivalence classes of graphs between term-sets. In
both cases, equivalence is defined by provable equality of terms, that is, α and α′ are equivalent iff.
` α = α′ (similarly for graphs).

It is possible to form equivalence classes of the relevant terms in Lean7, but we will not present
this here to simplify the presentation. Instead we work directly with closed terms, and present
statements of the lemmas of equivalence.

Definition 3.2. (LITT) The following definitions define the relevant term-sets graphs and compo-
sition.

/- Closed terms are well-formed in the empty context -/
def closed : type → term → Prop := WF []

/-! ### tset -/

/- Closed terms of type P A.
An α : tset A is basically a set of A′s, i.e. "term-set" -/

def tset (A: type) : Type := {α : term // WF [] (P A) α} -- subtype
construction

/-! ### graph -/

/- F is a tset representing the graph of a function from α to β -/
-- Note: 8⊆[-]8 and 8α × β8 have derived meanings
def is_graph {A B: type} (α : tset A) (β : tset B) (F : tset (A × B)) : Prop :=

(� (F ⊆[P A] (α × β))) -- F is a subset of the product (of terms, not just
types)
∧

(� (∀ A ((↑0 ∈ α) =⇒ (∃!′ B $ 〈↑1,↑0〉 ∈ F)))) -- F is functional

/- The Type of graphs - defined via subtpe of tset (A × B) satisfying 8

is_graph8-/
def graph {A B} (α : tset A) (β : tset B) : Type

:= {F : tset (A × B) // is_graph α β F}

7via the quotient construction
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-- the identity graph
def diagonal {A} (α : tset A) : graph α α :=

( graph.mk
( tset.mk (A × A) ({ A × A | ∃ A (↑1 '[A X A] 〈↑0,↑0〉)})

(by apply_rules [WF_rules, WF.closed_add_context];refl)
)

)
(by sorry)

/-! ### composition -/

variables {A B C D : type}
variable {α : tset A}
variable {β : tset B}
variable {η : tset C}
variable {δ : tset D}

/- The underlying term of the composition of two graphs -/
def composition_term (F : graph α β) (G : graph β η) : term :=

{ A × C | -- all d : A × C such that
∃[A,C] -- ∃ a c,
(

(↑2 '[A × C] 〈↑1,↑0〉) -- d = 〈a,c〉
∧
(∃ B ((〈↑2,↑0〉 ∈ F) ∧ (〈↑0, ↑1〉 ∈ G))) -- ∃ b, 〈a,b〉 ∈ F ∧ 〈b,c〉 ∈ G

)
}

/- The composition construction produces a closed term -/
def WF.composition (F : graph α β) (G : graph β η) : closed (P (A × C))

(composition_term F G)
:= by WF_prover;refl

/- The graph which is the composition of two graphs
Note we define F ◦ G as what would usually be G ◦ F (this is just the Lean

convention) -/
def composition (F : graph α β) (G : graph β η) : graph α η :=

(graph.mk (tset.mk (A × C) (composition_term F G) (WF.composition F G)))
(by sorry) -- Proof of 8is_graph8

We can now state the relevant theorems which demonstrate that term-sets and graphs form the
relevant category T (L). We employ this use of sorry in Lean as a placeholder for missing proofs.

Definition 3.3. (LITT)
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/- (F ◦ G) ◦ H ' F ◦ (G ◦ H) -/
theorem associativity (F : graph α β) (G : graph β η) (H : graph η δ) :
� (composition (composition F G) H '[P (A × D)] composition F (composition
G H))
:= sorry

/- F ◦ ∆_β ' F -/
theorem comp_id (F : graph α β) : � composition F (diagonal β) ' F
:= sorry

/- ∆_α ◦ F ' F -/
theorem id_comp (F : graph α β) : � composition (diagonal α) F ' F
:= sorry

4 Conclusion

We have successfully translated Lambek and Scott’s ITT[2], into a well-defined formal system
LITT in Lean. In this implementation we formally defined the inductive types, type, term of the
type theory, as well as the inductive propositions WF, entails, which reason about well-formedness
and entailments of terms, and simultaenously force the intended semantic interpretation on types

and terms. We have also circumvented the need for α-equivalence by use of De Bruijn indices [4].
Lean proves to be a viable option for a more careful analysis of formal systems, such as ITT.

Being able to organise “obvious” lemmas as libraries of functions allows us to control the otherwise-
intractable scale of formal proofs, while presenting them in a clean focused manner. Throughout we
have seen the value in extending the parser to user defined notation - which greatly improves the
readability of terms in proofs. Lean’s tactic mode allows inherently non-linear proofs to be carried
out in an interactive, goal-based procedure, allowing the programmer/mathematician to prove one
goal at a time without having to manually keep track of goals.

Now that we have stated the relevant theorems needed to show that this type theory has a
natural associated category, the next step is to develop the foundational libraries of “obvious”
lemmas needed to prove these theorems - and then prove them.
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