
Algorithms for the GER Representation of Pos

Supervisors - Harald Søndergaard, Peter Schachte

March 8, 2019

1 Purpose

This project provides an imperative implementation of the GER representation described by R.
Bagnara and P. Schachte in [1].The implementation, which we refer to as the FR representation,
was developed as an extension of an existing ROBDD library written by Schachte, for use in
a groundness analyser. The purpose of the F component (representing Ground and Equivalent
variables) is to reduce the size of the ROBDDs by extracting redundant information. Therefore,
the primary problems to solve in this project were (1) How best to represent F, and (2) how to
implement the standard binary operations (and, or, implies), while preserving F information from
the operands and extracting consequential F information.

2 Definitions

We represent a boolean function φ as a pair (F,R), where F is an equivalence relation on V ars ∪
{>,⊥}, and R is an ROBDD.

2.a Semantics

• S(F,R) = S(F) ∧ S(R)

• SF (F) =
∧
{x↔ y|(x, y) ∈ F} (Note: x↔ > ≡ x, and x↔ ⊥ ≡ ¬x)

• SR(R) = varR ∧ S(Rthen) ∨ ¬varR ∧ SRelse

• SR(0) = ⊥

• SR(1) = >

2.b Invariants

To preserve the canonical form inherited from the ROBDD, we enforce the following invariants on
any given (F,R) pair.

• ∀x ∈ V ars : ((∃y ∈ V ars : (y < x) ∧ S(F,R) � x↔ y) ⇒ x /∈ dep(R))

Essentially, for any set of equivalent variables entailed by S(F,R), either only the least variable
in the set appears in the ROBDD, or none do.

1

• ∀x ∈ V ars : (S(F,R) � x ∨ S(F,R) � ¬x) ⇒ x /∈ dep(R)

• SF (F) ≡ ⊥ ⇔ SR(R) ≡ ⊥

The following invariants are redundant, given the previous properties, however they are in-
cluded for clarity.

• ∀x, y ∈ V ars : S(F,R) � x↔ y ⇒ (SF (F) � x↔ y ∧ SR(R) 2 x↔ y)

• ∀x ∈ V ars : S(F,R) � x ⇒ (SF (F) � x ∧ SR(R) 2 x)

• ∀x ∈ V ars : S(F,R) � ¬x ⇒ (SF (F) � ¬x ∧ SR(R) 2 ¬x)

Lastly we must canonicalise the F-representation of ⊥ (The below implementation will explain
how it is possible to represent a contradiction).

• SF (F) � ⊥ ⇒ ∀x, y ∈ V ars : (x, y) ∈ F

Therefore, the canonical representations of > and ⊥ are (I,1) and (T,0), where I, T are the
identity and total relations, and 1,0 are the true and false ROBDDs.

3 F implementation

The first structure we considered to represent F was a table representation of the relation, imple-
mented as an array of bitsets, where bit y in bitset x is a 1-bit iff (x, y) ∈ F (a 0-bit otherwise).
With a reasonable limit of 62 variables, this would mean an array of 64 bitsets, each 64 bits long,
with table coordinates 0 and 1 reserved for ⊥ and > respectively. This data structure would provide
extremely logical conjunction and disjunction operations on equivalence relations, being a simple
inclusive-OR or AND operation on the bits. However, this structure loses transitivity under con-
junction and holds a massive amount of redundant information. For example, if w, x, y & z are all
equivalent, the table tells us w is equivalent to x, y, z, x is equivalent to w, y, z, y is equivalent to
w, x, z etc.

3.a Union-Find F-Equivalence

Noting transitivity as a priority, we instead opted for a union-find data structure. F is represented
as an array of variables, where F [x] = y iff (x ≤ y and (x, y) ∈ F). In this situation, y is considered
the parent of x, being a smaller-equivalent variable (so parent(x) = F [x]). Again we reserve 0 and
1 as variable indexes for ⊥ and > respectively, but will refer to them by name below for clarity
(instead of index). The least-equivalent variable we call the root of x, and can be found through
repeated iteration of array indexing (F [F [F [....F [x]]]]), until a fixed point is reached (the parent of
a root is itself). This data structure can be visualised as clustered DAGs, where each cluster is an
equivalence class, and the sink node in each cluster is the root variable node of that equivalence
class.

2

Figure 1: An example F-equivalence

x ⊥ > 2 3 4 5 6 7 8

F [x] ⊥ > 2 3 2 3 3 6 2

2

4 8

3

5 6

7

>

⊥

1: function union-simple(a, b)
2: if root(a) < root(b) then
3: F [root(b)]← root(a))
4: else if root(a) > root(b) then
5: F [root(a)]← root(b))

Two variables x and y are therefore equivalent iff root(x) = root(y). To ensure that any
equivalence class does not have more than one root (sink) node, we implement the union algorithm
so that the roots of the inputs are linked, rather than the inputs themselves.

The use of this function for unifying variables gives us transitivity for free, as we can check
equivalence of variables by checking if root(a) = root(b). The condition that ensures the larger
root is parented by the smaller root imposes a strict ordering on the variables along any path to the
root node, such that the root of any variable is always the least variable in it’s entire equivalence
class. This is valuable, as it allows us to pick a canonical representative of each equivalence class
for use in the ROBDD.

This data structure functions correctly using only the union algorithm (and its primitive root
algorithm) , however, unifying many variables in descending order can lead to long chains of vari-
ables, which leaves our test for equivalence algorithm at O(n) time to find the roots and compare.
To avoid this, we would like to link child nodes directly to their roots wherever possible, therefore
shortening the path from any grandchild-nodes. This is done during the root-finding algorithm,
find(x), which, after following a path from a child node to the root-node, recursively links every
node along that path directly to the root.

We update the union algorithm to use find. Employing find every time a root is needed
amortises the look-up cost, but we still have a worst case complexity of O(n), in the case where

3

1: function find(x)
2: if F [F [x]] 6= F [x] then . Check if x’s parent isn’t a root
3: F [F [x]]← find(F [x]) . Link x’s parent directly to the root

4: F [x] = F [F [x]]
5: return F [x]

many variables are linked in descending order. Other implementations of this structure will often
compare the rank/size of the roots to ensure the root of the smaller group of nodes is pointed to
the root of the larger, keeping the majority of paths short. This metric gives an amortised constant
time find operation, however, we would then have to scan the array in linear time to determine
the correct least-equivalent variable.

1: function union(a, b)
2: a root, b root← find(a), find(b)
3: if a root < b root then
4: F [b root]← a root
5: else if a root > b root then
6: F [a root]← b root

Figure 2: The result of calling union(7,8) on the equivalence from Fig 1.

x ⊥ > 2 3 4 5 6 7 8

F [x] ⊥ > 2 2 2 3 3 3 2

2

4 8

3

5 6 7>

⊥

The following functions naturally arises from union and find.

• entail(x) := union(>, x)

• disentail(x) := union(⊥, x)

• are equivalent(x, y) := (find(x) = find(y))

4

• is entailed(x) := (find(x) = >)

• is disentailed(x) := (find(x) = ⊥)

Lastly, we redefine SF such that if is disentailed(>) is true, then SF (F) = ⊥. This hap-
pens if either entail(x) is called where is disentailed(x) is true, or disentail(x) is called where
is entailed(x) is true. In terms of the actual code, we use a special pointer value for the false-
equivalence, to which any equivalence is converted as soon as a contradiction occurs. This avoids
the need to write the total equivalence to the entire array (as specified under the invariances), and
allows the false-equivalence to be recognised and passed efficiently.

3.b Equivalence operations

In order to perform logical operations on (F,R) pairs, we must first define them on Equivalences.

3.b.1 equiv and

The logical AND of two equivalences, F, G, is the transitive closure of their union. For example
(ignoring symmetry) if x ↔ y ∈ F and y ↔ z ∈ G, then x ↔ y, y ↔ z, x ↔ z should all be in
equiv and(F,G).

To simplify the access of root variables, we first apply the algorithm flatten to both F and G.

1: function flatten(F)
2: for x in V ars do
3: find(x)

To perform the union, we allocate a new Equivalence H to write the result, and proceed in
ascending order along the F and G arrays in parallel. For each variable index x, we inspect it’s root
in F , rootF(x) and its root in G, rootG(x) (remember these are just F [x] and G[x] because of the
flatten calls). If rootF(x) and rootG(x) are different, we have 3 different variables we must unify.
Writing either of these roots of x at H[x] will lose the connection to the other, so we must first unify
the roots in H. This means simply finding the smaller of the roots of the F and G roots in H, i.e.
common root = min(H[rootF(x)], H[rootF(x)]). This will always be defined, because rootF(x)
and rootG(x) must both be smaller than x and we have already assigned parents for every variable
up to x in H. We now set H[rootF(x)], H[rootF(x)] and H[x] all equal to common root, and we
have the unification. Now any variable linked to rootF(x) or rootG(x) in either F or G will be
transitively linked to common root. For the case where rootF(x) rootG(x), we can actually use
this same process, as we are essentially just writing H[F [x]] to H[x] instead of just F [x]], which
points x directly to its root, rather than going through F [x]. One extra step The below algorithm
is presented in simple form, but can be easily expanded to reduce the amount of redundant writing.

1: function equiv and(F,G)
2: allocate equiv(H)
3: for x in V ars do
4: H[x], H[F [x]], H[G[x]]←min(H[F [x]], H[G[x]])

5

3.b.2 equiv or

The logical OR of two equivalences is a bit more complicated, as we must only retain the variable
equivalences found in both F and G. The complication arises in the fact that 2 variables can share
an equivalence class in both F and G, but those classes need not have the same root variable.
Therefore we cannot just intersect roots.

The below is a clear example of what should happen. 4 and 7 are linked to each-other in both
Equivalences, however in F their root is 2, and in G it’s 3.

x 2 3 4 5 6 7

F [x] 2 3 2 3 3 2

G[x] 2 3 3 3 2 3

(F ∨G)[x] 2 3 4 3 6 4

2

4 7

3

4 5

3

2

4

7

F

G

2 3

F ∨G

65

76

5

6

So how do we recognise this situation? Firstly we apply flatten to both F and G so we can see
the roots directly. Now if we look each (rootF(x), rootG(x)) as an ordered pair, we can recognise
the unique signature of each equivalence class resulting from the intersection of F and G. The job
of the algorithm is to find the least variable for each signature, and write that as the root of all
other variables with the same signature. This can be done in O(n2) time by looking back through
the array every time to find the least variable with the same signature, but we can do better by
using a hash table. For each x in V ars (ascending), we check the hash table for a stored root-
value at (rootF(x), rootG(x)), writing it at H[x] if it exists. Otherwise this is the first variable
with signature (rootF(x), rootG(x)), and must be the root of any later variables with the same
signature. Therefore we store x at key (rootF(x), rootG(x)) in the hash-table and write x at H[x].

6

1: function equiv or(F,G)
2: allocate equiv(H)
3: init hash table(T)
4: for x in V ars do
5: if T [F [x]] [G [x]] is valid variable then
6: H[x]← T [F [x]] [G [x]]
7: else
8: H[x]← x
9: T [F [x]] [G [x]]← x

4 Canonicalisation

Before we can implement binary operations on (F,R) pairs, we need algorithms for canonicalisation
to ensure that the invariant properties described in section 2.b hold.

We define two similar functions: canon ROBDD(R) and canon wrt(F,R).

4.a canon ROBDD

This function takes any ROBDD, R, and returns a canonicalised pair (F,R′), such that S(F,R′) ≡
SR(R). There are two stages for this function. We first extract all equivalent, entailed and disen-
tailed variables from the ROBDD storing them in the new F component of the returned pair, then
we minimise the ROBDD with respect to the equivalent variables in F , leaving only root variables
in the ROBDD (if necessary).

1: function canon ROBDD(R)
2: if is terminal(R) then
3: if R = 0 then return (false equivalence, 0)
4: else return (true equivalence, 1)

5: else
6: F ← extract equivs(R)
7: R′ ← self minimise(F,R)
8: return (F,R′)

4.a.1 extract equivs

As is natural for any ROBDD algorithm, we extract the Equivalences recursively. For terminal
nodes, we return the appropriate trivial Equivalence. For non-terminal nodes, R, we check if either
child node is the terminal 0-node. This either entails or disentails Rvar, so we recursively retrieve
the equivalences found on the non-zero child-node and add the relevant entailment/disentailment
of Rvar. Otherwise we can neither say Rvar is definitely true or definitely false. In this case, we
intend to intersect the equivalences found on Rthen and Relse (those variables that are equivalent
regardless of Rvar’s value). Not only this, we also need to recognise variables that are entailed
when Rvar is true and disentailed when Rvar is false (these variables are logically equivalent to

7

Rvar). Both of these jobs are handled by equiv then or else(R, then, else), which identical to
equiv or(F,G), except when the signature (rootthen(x), rootelse(x)) is (>,⊥), it writes Rvar.

1: function extract equivs(R)
2: if is terminal(R) then
3: if R = 0 then return identity equivalence
4: else if R = 1 then return false equivalence

5: else
6: if Relse = 0 then
7: result← extract equivs(Rthen)
8: result.entail(Rvar)
9: return result

10: else if Rthen = 0 then
11: result← extract equivs(Relse)
12: result.disentail(Rvar)
13: return result
14: else
15: equiv then← extract equivs(Rthen)
16: equiv else ← extract equivs(Relse)
17: return equiv then or else(R, equiv then, equiv else)

4.a.2 self minimise

After extracting the equivalences into the F -structure, we need to remove them from the ROBDD
to enforce the invariant property that only F store this information. minimise(F,R) does this job
recursively, returning the most “reduced” ROBDD, R′, such that S(F,R) ≡ S(F,R′). For example,
if SR(R) ≡ w ∧ (x↔ y) ∧ (y ∨ z), then F = extract equivs(R) would be semantically w ∧ x↔ y.
After calling R′ = minimise(F,R), we want R′ to simply represent x∨ z. This is because, both w
and x ↔ y are already represented by F , and to keep it canonical, we need to have the ROBDD
represent x ∨ z rather than y ∨ z, as x is the least variable equivalent to y.

Since the equivalence information is still present in ROBDD, we can easily remove entailed,
disentailed, or non-root-variables by restricting those variables to the appropriate boolean value.
While executing, if the current node is non-terminal and either entailed or disentailed in F then
one of it’s children must be the zero-node, so we simply replace it with the non-zero child. We do
the same thing when we find a node, R, where Rvar 6= F.find(Rvar), as a choice must have been
made for Rvar’s root-variable along the path to this node, meaning one of children of R must be
the zero-node. For all other non-terminal nodes, R, which are root-variables of their equivalence
classes (possibly singleton sets), we simply minimise both children nodes, then reconstruct the node
with make node to preserve the reduced nature of the ROBDD.

Note this algorithm is equivalent to performing existential quantification over every non-root
variable in the Equivalence (see the projection algorithms in [2]).

8

1: function self minimise(F,R)
2: if is terminal(R) then return R
3: else
4: root var ← F.find(Rvar)
5:

6: if root var 6= Rvar then
7: if Relse = 0 then return self minimise(Rthen)
8: else return self minimise(Relse)

9:

10: else
11: return make node(Rvar,minimise aux(F,Rthen), ,minimise aux(F,Relse))

1: function minimise wrt(F,R)
2: entailed[]← init zeroes()
3: disentailed[]← init zeroes()
4: return minimise aux(F,R, entailed, disentailed)
5:

6: function minimise aux(F,R, entailed[], disentailed[])
7: if is terminal(R) then return R
8: else
9: root var ← F.find(Rvar)

10:

11: if root var = > or entailed[root var] = true then
12: return minimise aux(F,Rthen, entailed, disentailed)
13:

14: else if root var = ⊥ or disentailed[root var] = true then
15: return minimise aux(F,Relse, entailed, disentailed)
16: else
17:

18: entailed[root var] = true
19: new then← minimise aux(F,Rthen, entailed, disentailed)
20: entailed[root var] = false
21:

22: disentailed[root var] = true
23: new else← minimise aux(F,Relse, entailed, disentailed)
24: entailed[root var] = false
25:

26: return make node(Rvar, new then, new else)

9

References

[1] R. Bagnara and P. Schachte. Efficient Implementations of Pos

[2] R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-Based Imple-
mentations of Pos.

10

