Q1: for $0 \leq t<D T_{s}$

Figure 1: Circuit when S1, S3 are turned -ON and S2 is turned -OFF

Q2: for $D T_{s} \leq t<T_{s}$

Figure 2: Circuit when S1, S3 are turned -OFF and S2 is turned -ON

Q3

Three main assumptions which can be used to simplify the analysis of a switching circuit.

1. Steady state operation: At each cycle the operation of the circuit is identical.
2. Small ripple approximation: Therefore $v_{o}(t)=V_{o}+v_{\text {ripple }}(t)$ is simplified into $v_{o}(t)=V_{o}$ using the fact that $\left|v_{\text {ripple }}(t)\right| \ll V_{o}$ which is caused by non-ideal filtering.
3. Sufficiently large capacitance: Throughout the operation capacitors will maintain constant voltages.

Consider the operation of the circuit for $0 \leq t<D T_{s}$

* Associated Voltages

Since the S_{1} switch is ON, positive and negative terminals of the source are directly connected to the positive and negative terminals of the inductor (L) respectively.

$$
\begin{equation*}
v_{L}=V_{g} \tag{1}
\end{equation*}
$$

Since the S_{3} switch is also ON, positive terminal of the capacitor C is connected to the negative terminals of the capacitor C_{o} and resistor R_{o}. While negative terminal of the capacitor C is connected to the positive terminals of the capacitor C_{o} and resistor R_{o}. In addition to that as C_{o} and R_{o} are in parallel $v_{C_{o}}=V_{o}$.

Using the Kirchhoff voltage Low to that loop,

$$
v_{C}+V_{o}=0 \quad \therefore v_{C}=-V_{o}
$$

Consider the operation of the circuit for $D T_{s} \leq t<T_{s}$

* Associated Voltages

Using the Kirchhoff voltage Low,

$$
V_{g}=v_{L}+v_{C}
$$

Since we assume sufficiently large capacitance, change in v_{C} is negligible from the previous state of the circuit.

$$
\therefore V_{g}=v_{L}+\left(-V_{o}\right)
$$

Rearranging,

$$
\begin{equation*}
v_{L}=V_{g}+V_{o} \tag{2}
\end{equation*}
$$

From equations (1) and (2),

$$
v_{L}= \begin{cases}V_{g} & \text { for } 0 \leq t<D T_{s} \\ V_{g}+V_{o} & \text { for } D T_{s} \leq t<T_{s}\end{cases}
$$

As we are analyzing a switching circuit which has the ability to invert and step-up its supply voltage, $\left|V_{g}\right|<\left|V_{o}\right|$ and $V_{o}<0$. Which implies $V_{g}+V_{o}<0$.

Figure 3: Inductor voltage $v_{L}(t)$

Since voltage drop across an inductor is related to the current through it according the following differential equation, graph of the i_{L} can be directly deduced from the graph of the v_{L}.

$$
v_{L}=L \cdot \frac{d i_{L}}{d t}
$$

Figure 4: Inductor current $i_{L}(t)$
In the above figure I_{L} denotes the average inductor current.

Q5

Using inductor volt-second balance,

$$
\begin{aligned}
<V_{L}(t)>=0= & \frac{1}{T_{s}} \cdot \int_{0}^{T_{s}} V_{L}(t) d t \\
& =\int_{0}^{D T_{s}} V_{L}(t) d t+\int_{D T_{s}}^{T_{s}} V_{L}(t) d t \\
& =\int_{0}^{D T_{s}} V_{g} d t+\int_{D T_{s}}^{T_{s}} V_{g}+V_{o} d t \\
& =V_{g} \cdot D T_{s}+\left(V_{g}+V_{o}\right) \cdot\left(T_{s}-D T_{s}\right) \\
& =V_{g} \cdot D+\left(V_{g}+V_{o}\right) \cdot(1-D) \\
& =V_{g}+V_{o} \cdot(1-D) \\
& \therefore V_{o}=-\frac{V_{g}}{1-D}
\end{aligned}
$$

Q6

S1

- ON Current $\left(i_{S_{1}}\right)$

As described below in the part "S3", $i_{S_{3}}$ is positive in the marked direction. Therefore according to the Kirchhoff Current Low, $i_{C}+i_{S_{3}}=0$ and it implies i_{C} is negative in the marked direction(actual direction is the opposite of the marked direction). As v_{L} is positive i_{L} is positive in the marked direction. Because of these reasons, according to the K.C.L, $i_{S_{1}}=i_{L}+\left(-i_{C}\right)$ and it is positive in the marked direction in Fig.1.

- Blocking Voltage $\left(v_{S_{1}}\right)$

From Fig.2, positive and negative terminals of the switch are connected to the positive and negative terminals of the capacitor C. Therefore $v_{S_{1}}=v_{C}$. From the calculations of the Question 04, $v_{C}=-V_{o}$ and V_{o} is negative. Therefore $v_{S_{1}}$ is positive.

- ON Current $\left(i_{S_{2}}\right)$

When considering the loop consist of the Source,inductor, capacitor (C) and the switch S_{2} in Fig.2, it is obvious that $i_{S_{2}}$ is positive in the given direction.

- Blocking Voltage $\left(v_{S_{2}}\right)$

From Fig.1, $v_{S_{2}}=v_{C_{o}}=V_{o}$. Since V_{o} is negative, $v_{S_{2}}$ is also negative.

S3

- ON Current $\left(i_{S_{3}}\right)$

Since V_{o} and $v_{C_{o}}$ are negative in the marked direction, their currents are also in the direction opposite to the marked direction. Therefore according to the Kirchhoff Current Low, $i_{S_{3}}=$ $-\left(i_{C_{o}}+I_{o}\right)$. Which results $i_{S_{3}}$ to be positive in the marked direction in Fig.1.

- Blocking Voltage $\left(v_{S_{3}}\right)$

From Fig.2, $v_{S_{3}}=V_{o}$ as positive and negative terminals of the switch are connected to the positive and negative terminals of the R_{o} respectively. Since V_{o} is negative, $v_{S_{3}}$ is also negative.

Switch	ON-current	Blocking Voltage	Suitable Semiconductor Device
S1	$i_{S_{1}}>0$	$v_{S_{1}}>0$	FET
S2	$i_{S_{2}}>0$	$v_{S_{2}}<0$	Diode
S3	$i_{S_{3}}>0$	$v_{S_{3}}<0$	Diode

Table 1: Summary of the Proposed Semiconductors according to the catalog developed in the class

Figure 5: Final Switching Circuit with the Proposed Semiconductors: The control signal is supplied to the Gate terminal (G) of the FET.

