Q1: for $0 \le t < DT_s$

Figure 1: Circuit when S1, S3 are turned -ON and S2 is turned -OFF

Q2: for $DT_s \leq t < T_s$

Figure 2: Circuit when S1, S3 are turned -OFF and S2 is turned -ON

$\mathbf{Q3}$

Three main assumptions which can be used to simplify the analysis of a switching circuit.

- 1. Steady state operation: At each cycle the operation of the circuit is identical.
- 2. Small ripple approximation: Therefore $v_o(t) = V_o + v_{ripple}(t)$ is simplified into $v_o(t) = V_o$ using the fact that $|v_{ripple}(t)| \ll V_o$ which is caused by non-ideal filtering.
- 3. Sufficiently large capacitance: Throughout the operation capacitors will maintain constant voltages.

 $\mathbf{Q4}$

Consider the operation of the circuit for $0 \le t < DT_s$

* Associated Voltages

Since the S_1 switch is ON, positive and negative terminals of the source are directly connected to the positive and negative terminals of the inductor(L) respectively.

$$v_L = V_g \tag{1}$$

Since the S_3 switch is also ON, positive terminal of the capacitor C is connected to the negative terminals of the capacitor C_o and resistor R_o . While negative terminal of the capacitor C is connected to the positive terminals of the capacitor C_o and resistor R_o . In addition to that as C_o and R_o are in parallel $v_{C_o} = V_o$.

Using the Kirchhoff voltage Low to that loop,

$$v_C + V_o = 0 \qquad \therefore v_C = -V_o$$

Consider the operation of the circuit for $DT_s \leq t < T_s$

* Associated Voltages

Using the Kirchhoff voltage Low,

$$V_g = v_L + v_C$$

Since we assume sufficiently large capacitance, change in v_C is negligible from the previous state of the circuit. $\therefore V_q = v_L + (-V_o)$

Rearranging,

$$v_L = V_g + V_o \tag{2}$$

From equations (1) and (2),

$$v_L = \begin{cases} V_g & \text{for } 0 \le t < DT_s \\ V_g + V_o & \text{for } DT_s \le t < T_s \end{cases}$$

As we are analyzing a switching circuit which has the ability to invert and step-up its supply voltage, $|V_g| < |V_o|$ and $V_o < 0$. Which implies $V_g + V_o < 0$.

Figure 3: Inductor voltage $v_L(t)$

Since voltage drop across an inductor is related to the current through it according the following differential equation, graph of the i_L can be directly deduced from the graph of the v_L .

Figure 4: Inductor current $i_L(t)$

In the above figure I_L denotes the average inductor current.

$\mathbf{Q5}$

Using inductor volt-second balance,

$$\langle V_L(t) \rangle = 0 = \frac{1}{T_s} \int_0^{T_s} V_L(t) dt$$
$$= \int_0^{DT_s} V_L(t) dt + \int_{DT_s}^{T_s} V_L(t) dt$$
$$= \int_0^{DT_s} V_g dt + \int_{DT_s}^{T_s} V_g + V_o dt$$
$$= V_g DT_s + (V_g + V_o) (T_s - DT_s)$$
$$= V_g D + (V_g + V_o) (1 - D)$$
$$= V_g + V_o (1 - D)$$
$$\therefore V_o = -\frac{V_g}{1 - D}$$

$\mathbf{Q6}$

 $\mathbf{S1}$

• ON Current (i_{S_1})

As described below in the part "**S3**", i_{S_3} is positive in the marked direction. Therefore according to the Kirchhoff Current Low, $i_C + i_{S_3} = 0$ and it implies i_C is negative in the marked direction(actual direction is the opposite of the marked direction). As v_L is positive i_L is positive in the marked direction. Because of these reasons, according to the K.C.L, $i_{S_1} = i_L + (-i_C)$ and it is positive in the marked direction in Fig.1.

• Blocking Voltage (v_{S_1})

From Fig.2, positive and negative terminals of the switch are connected to the positive and negative terminals of the capacitor C. Therefore $v_{S_1} = v_C$. From the calculations of the Question 04, $v_C = -V_o$ and V_o is negative. Therefore v_{S_1} is positive.

- S2
 - ON Current (i_{S_2})

When considering the loop consist of the Source, inductor, capacitor(C) and the switch S_2 in Fig.2, it is obvious that i_{S_2} is positive in the given direction.

• Blocking $Voltage(v_{S_2})$

From Fig.1, $v_{S_2} = v_{C_o} = V_o$. Since V_o is negative, v_{S_2} is also negative.

$\mathbf{S3}$

• ON $\operatorname{Current}(i_{S_3})$

Since V_o and v_{C_o} are negative in the marked direction, their currents are also in the direction opposite to the marked direction. Therefore according to the Kirchhoff Current Low, $i_{S_3} = -(i_{C_o} + I_o)$. Which results i_{S_3} to be positive in the marked direction in Fig.1.

• Blocking $Voltage(v_{S_3})$

From Fig.2, $v_{S_3} = V_o$ as positive and negative terminals of the switch are connected to the positive and negative terminals of the R_o respectively. Since V_o is negative, v_{S_3} is also negative.

\mathbf{Switch}	ON- current	Blocking Voltage	Suitable Semiconductor Device
S1	$i_{S_1} > 0$	$v_{S_1} > 0$	FET
S2	$i_{S_2} > 0$	$v_{S_2} < 0$	Diode
S3	$i_{S_3} > 0$	$v_{S_3} < 0$	Diode

Table 1: Summary of the Proposed Semiconductors according to the catalog developed in the class

Figure 5: Final Switching Circuit with the Proposed Semiconductors: The control signal is supplied to the Gate terminal (G) of the FET.