ASSIGNMENT 04 - Amplifier Design

Thalagala B.P.

Note: The thermal voltage V_{T} is approximated to be 20 mV in the Assignment and the given set of specifications are given below.

Supply voltage $V_{C C}$	24 V DC
Load R_{L}	16Ω
Overall voltage gain $A_{v}=\frac{v_{O}}{v_{i n}}$	120
Stage 1 output	Maximum voltage swing
Stage 2 output	Class A operation
Transistor 1 current gain β_{1}	100
Transistor 1 BE voltage $V_{B E_{1}}$	0.6 V
Transistor 2 current gain β_{2}	400
Transistor 2 BE voltage $V_{B E_{2}}$	0.5 V

Q1

Let the quiescent emitter current of the output leg be $I_{E_{2}}$. Since we assume the Class A operation of the transistor Q_{2}, the bias point $V_{C E_{2}}=V_{C C} / 2$.

$$
\therefore I_{E_{2}}=\frac{V_{C C} / 2}{R_{L}}=\frac{V_{C C}}{2 . R_{L}}=\frac{24 \mathrm{~V}}{2.16 \Omega}=750 \mathrm{~mA}
$$

Q2

- Collector-emitter current ratio $\left(\alpha_{2}\right)$

$$
\alpha_{2}=\frac{\beta_{2}}{\beta_{2}+1}=\frac{400}{400+1}=0.9975
$$

- Collector current $\left(I_{C_{2}}\right)$

$$
I_{C_{2}}=\alpha_{2} \cdot I_{E_{2}}=0.9975 \times 750 m A=748.1297 \mathrm{~mA}
$$

- Transconductance $\left(g_{m_{2}}\right)$

$$
g_{m_{2}}=\frac{I_{C_{2}}}{V_{T}}=\frac{748.1297 \mathrm{~mA}}{20 \mathrm{mV}}=37.4065 \mathrm{~S}
$$

- Intrinsic emitter resistance $\left(r_{e_{2}}\right)$

$$
r_{e_{2}}=\frac{\alpha_{2}}{g_{m_{2}}}=\frac{0.9975}{37.4065 S}=0.0267 \Omega
$$

Q3

Consider the voltage gain of stage 2 of the amplifier, $\frac{v_{O}}{v_{i n_{2}}}$. Then,

$$
A_{v_{2}}=\frac{v_{O}}{v_{i n_{2}}}=\frac{R_{L}}{r_{e_{2}}+R_{L}}=\frac{16 \Omega}{16+0.0267 \Omega}=0.9983
$$

Q4

Let the base current of Q_{2} be $I_{B_{2}}$,

$$
I_{B_{2}}=\frac{1}{\beta_{2}} \cdot I_{C_{2}}=\frac{1}{400} \times 748.1297 \mathrm{~mA}=1.8703 \mathrm{~mA}
$$

Q5

Since $V_{B B_{2}}=V_{B E_{2}}+V_{R_{L}}=0.5+12=12.5 V$ and $I_{R_{B_{4}}}=I_{B_{2}} / 9=1.8703 \mathrm{~mA} / 9=0.2078 \mathrm{~mA}$,

$$
\therefore R_{B_{4}}=\frac{V_{B B_{2}}}{I_{R_{B_{4}}}}=\frac{12.5 \mathrm{~V}}{0.2078 \mathrm{~mA}}=60.15 \mathrm{k} \Omega
$$

Therefore voltage drop across $R_{B_{3}}, V_{R_{B_{3}}}=24-12.5=11.5 \mathrm{~V}$ and $I_{R_{B_{3}}}=I_{B_{2}}+I_{R_{B_{4}}}=I_{B_{2}}+I_{B_{2}} / 9=$ $\frac{10}{9} . I_{B_{2}}=\frac{10}{9} \times 1.8703 \mathrm{~mA}=2.078 \mathrm{~mA}$.

$$
\therefore R_{B_{3}}=\frac{V_{R_{B_{3}}}}{I_{R_{B_{3}}}}=\frac{11.5 \mathrm{~V}}{2.078 \mathrm{~mA}}=5.5338 \mathrm{k} \Omega
$$

Q6

From the Question 03 of the Assignment 02, input resistance of stage $2\left(R_{i n_{2}}\right)$ can be written as follows.

$$
\begin{aligned}
R_{i n_{2}} & =\left(R_{B_{3}} / / R_{B_{4}}\right) / /\left[\left(\beta_{2}+1\right)\left(r_{e_{2}}+R_{L}\right)\right] \\
& =(5.5338 \mathrm{k} \Omega / / 60.15 \mathrm{k} \Omega) / /((400+1) \times(16+0.0267)) \\
& =5.0676 \mathrm{k} \Omega / /((400+1) \times(16+0.0267)) \\
& =2833.3954 \Omega
\end{aligned}
$$

Q7

- Collector current $\left(I_{C_{1}}\right)$,

$$
I_{C_{1}}=\frac{1}{500} \times I_{C_{2}}=\frac{1}{500} \times 748.1297 \mathrm{~mA}=1.4963 \mathrm{~mA}
$$

- Transconductance $\left(g_{m_{1}}\right)$

$$
g_{m_{1}}=\frac{I_{C_{1}}}{V_{T}}=\frac{1.4963 m A}{20 m V}=0.0748 S
$$

Q8

Since the Overall voltage gain $A_{v}=\frac{v_{0}}{v_{i n}}=120$ and the voltage gain of stage 2 of the amplifier is $A_{v_{2}}=0.9983$, the required gain of stage 1 is,

$$
A_{v_{1}}=\frac{A_{v}}{A_{v_{2}}}=120 / 0.9983=120.2043
$$

From the Question 05 of the Assignment 02, voltage gain of stage 1 of the amplifier cam be written as follows. And therefore $R_{C_{1}}$ can be directly calculated from it.

$$
\begin{aligned}
-A_{v_{1}} & =-g_{m_{1}} \cdot\left(R_{C_{1}} / / R_{i n_{2}}\right) \\
120.2043 & =0.0748\left(R_{C_{1}} / / 2833.3954 \Omega\right) \\
\therefore R_{C_{1}} & =3712.7730 \Omega
\end{aligned}
$$

Since Stage 1 output is specified to have a maximum voltage swing, then $V_{C E_{2}}=V_{C C} / 2=12 V$. By using the result of Question 02 of the Assignment 01 and using the fact that $I_{E_{1}}=\frac{\beta_{1}+1}{\beta_{1}} \cdot I_{C_{1}}$

$$
\begin{aligned}
V_{C C} & =I_{C_{1}} \cdot R_{C_{1}}+V_{C E_{1}}+I_{E_{1}} \cdot R_{E_{1}} \\
I_{E_{1}} \cdot R_{E_{1}} & =V_{C C}-V_{C E_{1}}-I_{C_{1}} \cdot R_{C_{1}} \\
\frac{\beta_{1}+1}{\beta_{1}} \cdot I_{C_{1}} \cdot R_{E_{1}} & =V_{C C}-V_{C E_{1}}-I_{C_{1}} \cdot R_{C_{1}} \\
R_{E_{1}} & =\frac{\beta_{1}}{\beta_{1}+1} \times\left[\frac{V_{C C}-V_{C E_{1}}-I_{C_{1}} \cdot R_{C_{1}}}{I_{C_{1}}}\right] \\
& =\frac{100}{100+1} \times\left[\frac{24 V-12 V-1.4963 \mathrm{~mA} \times 3712.7730 \Omega}{1.4963 \mathrm{~mA}}\right] \\
& =4264.3655 \Omega
\end{aligned}
$$

Q9

Let the base current of Q_{1} be $I_{B_{1}}$,

$$
I_{B_{1}}=\frac{1}{\beta_{1}} \cdot I_{C_{1}}=\frac{1}{100} \times 1.4963 \mathrm{~mA}=14.963 \mu \mathrm{~A}
$$

Since the design decision has made to make $I_{R_{B_{2}}}=I_{B_{1}} / 9=14.963 \mu A / 9=1.6626 \mu A$ and $V_{B B_{1}}=$ $V_{B E_{1}}+V_{R_{E_{1}}}=V_{B E_{1}}+I_{E_{1}} \cdot R_{E_{1}}=0.6+6.4446 \mathrm{~V}=7.0446 \mathrm{~V}$.

$$
\therefore R_{B_{2}}=\frac{V_{B B_{1}}}{I_{R_{B_{2}}}}=\frac{7.0446 \mathrm{~V}}{1.6626 \mathrm{\mu} A}=4.2374 \mathrm{M} \Omega
$$

Therefore voltage drop across $R_{B_{1}}, V_{R_{B_{1}}}=24-7.0446=16.9554 \mathrm{~V}$ and $I_{R_{B_{1}}}=I_{B_{1}}+I_{R_{B_{2}}}=I_{B_{1}}+I_{B_{1}} / 9=$ $\frac{10}{9} . I_{B_{1}}=\frac{10}{9} \times 14.963 \mu A=16.6256 \mu A$.

$$
\therefore R_{B_{1}}=\frac{V_{R_{B_{1}}}}{I_{R_{B_{1}}}}=\frac{16.9554 \mathrm{~V}}{16.6256 \mathrm{\mu} A}=1.0198 \mathrm{M} \Omega
$$

Q10

From Question 04 of the Assignment 03, where V_{p} is the peak value of the AC signal at the load.

$$
\begin{aligned}
P_{L, A C} & =\frac{V_{p}^{2}}{2 . R_{L}} \\
4 W & =\frac{V_{p}^{2}}{2 \times 16} \\
\therefore V_{p} & =8 \sqrt{2}=11.3137 \mathrm{~V}
\end{aligned}
$$

Since the total gain of the amplifier is 120 , peak value of the AC signal at the input is $V_{p} / 120=\frac{8 \sqrt{2}}{120}=$ $\frac{\sqrt{2}}{15}=94.28 \mathrm{mV}$. Assume $v_{i n}$ is a pure sinusoidal signal with an angular velocity of ω then it can be written as,

$$
\therefore v_{i n}=94.28 \sin (\omega . t) m V
$$

Q11

Let corresponding peak voltage at the R_{L} to a small signal input having a peak voltage of 85 mV be V_{p}. Then,

$$
V_{p}=85 \mathrm{mV} \times 120=10.2 \mathrm{~V}
$$

Form the Question 06 of the Assignment 03 , efficiency of the output leg ($\eta_{\text {output leg }}$),

$$
\begin{aligned}
\eta_{\text {output leg }} & =\frac{V_{p}^{2}}{V_{C C}^{2}} \\
& =\frac{10.2^{2}}{24^{2}} \\
& =0.180625 \\
\therefore \eta_{\text {output leg }} & =18.0625 \%
\end{aligned}
$$

