$\mathbf{Q1}$

In the following figure $i_{C_2} = \alpha i_{E_2}$ is the same as $i_{C_2} = \beta_2 . i_{B_2}$ where β_2 is the DC current-gain of the Q_2 transistor while V_T is the thermal equivalent voltage. Moreover the relationship between the i_{C_2} and the v_{BE_2} can be written as follows, where I_{s_2} is the saturation current of the Q_2 transistor.

$$i_{C_2} = \alpha i_{E_2} = I_{s_2} \cdot e^{v_{BE_2}/V_T}$$

Figure 1: AC Large-Signal Equivalent Circuit for the Output Leg

$\mathbf{Q2}$

Relationship between the v_{in_2} and time(t) is defined as $v_{in_2} = \overline{V_P} \cdot \sin(\omega \cdot t)$, where $\overline{V_P}$ is the peak amplitude and ω is the angular velocity.

Figure 2: v_{in_2} vs time

Relationship between the $v_L(v_O)$ and time can be derived as follows. Where V_p is the peak amplitude of the ac component of the v_O . Since the voltage gain of stage 2 of the amplifier is $R_L/[r_e + R_L]$ there will be no phase shift between v_{in_2} and the v_O . Therefore the ac component of the v_O can be directly written as follows.

Figure 3: v_L or v_O vs time

An expression for the i_{E_2} can be derived as follows. Where I_p is the peak ac current component through R_L . Here again v_O and i_{e_2} will be in-phase sinusoidal signals since resistor is a linear device and i_{e_2} can be expressed as a function of *sine* as follows.

$$\begin{split} i_{E_2} &= I_{E_2} + i_{e_2} \\ &= I_{E_2} + \frac{V_p}{R_L} \cdot \sin(\omega . t) \\ &= I_{E_2} + I_p \cdot \sin(\omega . t) \\ &= dc \ component + ac \ component \end{split}$$

Figure 4: i_{E_2} vs time

Relationship between i_{B_2} and i_{E_2} can be written as follows. $i_{E_2} = (\beta_2 + 1) \cdot i_{B_2}$ where β_2 is the DC current-gain of the Q_2 and I_{B_p} is the peak amplitude of the ac component of the i_{B_2} . Therefore,

$$\begin{aligned} (\beta_2 + 1) .i_{B_2} &= i_{E_2} \\ i_{B_2} &= \frac{1}{\beta_2 + 1} .i_{E_2} \\ &= \frac{1}{\beta_2 + 1} . \left[I_{E_2} + I_p . \sin(\omega . t) \right] \\ &= \frac{1}{\beta_2 + 1} .I_{E_2} + \frac{1}{\beta_2 + 1} .I_p . \sin(\omega . t) \\ &= I_{B_2} + I_{B_p} . \sin(\omega . t) \\ &= dc \ component + ac \ component \end{aligned}$$

Figure 5: i_{B_2} vs time

By applying Kirchhoff's voltage low to the *collector-emitter circuit*, $V_{CC} = v_{CE_2} + i_{E_2} R_L$ and through rearranging this following expression can be obtained.

$$\begin{aligned} v_{CE_2} &= V_{CC} - i_{E_2}.R_L \\ &= V_{CC} - (I_{E_2} + i_{e_2}).R_L \\ &= V_{CC} - I_{E_2}.R_L - i_{e_2}.R_L \\ &= (V_{CC} - I_{E_2}.R_L) - V_p \sin(\omega.t) \\ &= dc \ component + ac \ component \end{aligned}$$

Figure 6: v_{CE_2} vs time

$\mathbf{Q3}$

Derivation of the expressions was done in the previous part.

$$v_{CE_2} = (V_{CC} - I_{E_2} \cdot R_L) - V_p \sin(\omega \cdot t)$$

DC component = $(V_{CC} - I_{E_2}.R_L)$ AC component = $-V_p \sin(\omega .t)$

$$i_{E_2} = I_{E_2} + I_p \sin(\omega t)$$

DC component = I_{E_2} AC component = $I_p . \sin(\omega . t)$

$\mathbf{Q4}$

Let the average power delivered to the load R_L be P_L and the period of the sine waveform be $T = \frac{2\pi}{\omega}$.

$$P_{L} = \frac{1}{T} \cdot \int_{0}^{T} (i_{E_{2}})^{2} \cdot R_{L} dt$$

$$= \frac{1}{T} \cdot \int_{0}^{T} (I_{E_{2}} + I_{p} \cdot \sin(\omega \cdot t))^{2} \cdot R_{L} dt$$

$$= \frac{1}{T} \cdot \int_{0}^{T} \left[(I_{E_{2}})^{2} + (I_{p} \cdot \sin(\omega \cdot t))^{2} + 2 \cdot I_{E_{2}} \cdot I_{p} \cdot \sin(\omega \cdot t) \right] \cdot R_{L} dt$$

$$= \frac{1}{T} \cdot \left[\int_{0}^{T} (I_{E_{2}})^{2} \cdot R_{L} dt + \int_{0}^{T} 2 \cdot I_{E_{2}} \cdot I_{p} \cdot \sin(\omega \cdot t) \cdot R_{L} dt + \int_{0}^{T} \frac{I_{p}^{2} \cdot R_{L}}{2} dt - \int_{0}^{T} \frac{I_{p}^{2} \cdot R_{L} \cdot \cos(2 \cdot \omega \cdot t)}{2} dt \right]$$

Over a period the average power of a sinusoidal signal is zero. Therefore the second and the fourth terms vanish.

:
$$P_L = I_{E_2}^2 \cdot R_L + \frac{I_p^2 \cdot R_L}{2}$$

Since $V_p = I_p R_L$, the above expression can also be written as follows.

$$P_L = I_{E_2}^2 \cdot R_L + \frac{V_p^2}{2 \cdot R_L}$$
$$= P_{L,DC} + P_{L,AC}$$

$\mathbf{Q5}$

Let the average power delivered to the output leg of the amplifier from DC power supply be P_{DC} . Note that the total current through the output leg is approximated to be i_{E_2} . Therefore,

$$P_{DC} = \frac{1}{T} \cdot \int_0^T i_{E_2} \cdot V_{CC} dt$$

= $\frac{1}{T} \cdot \int_0^T (I_{E_2} + I_p \cdot \sin(\omega \cdot t)) \cdot V_{CC} dt$
= $\frac{1}{T} \cdot \left[\int_0^T I_{E_2} \cdot V_{CC} dt + \int_0^T I_p \cdot \sin(\omega \cdot t) \cdot V_{CC} dt \right]$

As mentioned previously over a period the average power of a sinusoidal signal is zero. Therefore the second term vanishes.

$$\therefore P_{DC} = I_{E_2} V_{CC}$$

Assume the *Class A operation* of the transistor Q_2 . Then at the bias point $V_{CE_2} = V_{CC}/2$ and

:
$$I_{E_2} = \frac{V_{CE_2}}{R_L} = \frac{V_{CC}/2}{R_L} = \frac{V_{CC}}{2.R_L}$$

$$\therefore P_{DC} = I_{E_2} \cdot V_{CC}$$
$$= \frac{V_{CC}}{2 \cdot R_L} \cdot V_{CC}$$
$$= \frac{V_{CC}^2}{2 \cdot R_L}$$

Let the efficiency of the output leg be $\eta_{output \ leg}$,

$$\eta_{output \ leg} = \frac{AC \ Power \ at \ the \ load(P_{out})}{Input \ Power(P_{in})}$$
$$= \frac{P_{L,AC}}{P_{DC}}$$
$$= \frac{V_p^2}{2.R_L} \div \frac{V_{CC}^2}{2.R_L}$$
$$= \frac{V_p^2}{V_{CC}^2}$$

$\mathbf{Q7}$

Let overall efficiency of the amplifier be $\eta_{overall}$, total power consumed by the amplifier circuit be P_{total} and total current drained by the amplifier circuit from the source be I_{total} . Then from the Question 6 of Assignment 01- DC Analysis,

$$P_{total} = V_{CC}.I_{total}$$

= $V_{CC}. \left[I_{R_{B_1}} + I_{R_{B_3}} + I_{C_1} + I_{C_2} \right]$

Therefore,

$$\eta_{overall} = \frac{AC \ Power \ at \ the \ load(P_{out})}{Total \ Input \ Power(P_{total})}$$
$$= \frac{P_{L,AC}}{P_{total}}$$
$$= \frac{V_p^2}{2.R_L} \div \left[V_{CC} \cdot \left(I_{R_{B_1}} + I_{R_{B_3}} + I_{C_1} + I_{C_2} \right) \right]$$
$$= \frac{V_p^2}{2.R_L \cdot V_{CC} \cdot \left(I_{R_{B_1}} + I_{R_{B_3}} + I_{C_1} + I_{C_2} \right)}$$