ASSIGNMENT 03 - Power Analysis
 Thalagala B.P. 180631J

Q1

In the following figure $i_{C_{2}}=\alpha i_{E_{2}}$ is the same as $i_{C_{2}}=\beta_{2} . i_{B_{2}}$ where β_{2} is the DC current-gain of the Q_{2} transistor while V_{T} is the thermal equivalent voltage. Moreover the relationship between the $i_{C_{2}}$ and the $v_{B E_{2}}$ can be written as follows, where $I_{s_{2}}$ is the saturation current of the Q_{2} transistor.

$$
i_{C_{2}}=\alpha i_{E_{2}}=I_{s_{2}} \cdot e^{v_{B E_{2}} / V_{T}}
$$

Figure 1: AC Large-Signal Equivalent Circuit for the Output Leg

Q2

Relationship between the $v_{i n_{2}}$ and $\operatorname{time}(t)$ is defined as $v_{i n_{2}}=\overline{V_{P}} \cdot \sin (\omega \cdot t)$, where $\overline{V_{P}}$ is the peak amplitude and ω is the angular velocity.

Figure 2: $v_{i n_{2}}$ vs time

Relationship between the $v_{L}\left(v_{O}\right)$ and time can be derived as follows. Where V_{p} is the peak amplitude of the ac component of the v_{O}. Since the voltage gain of stage 2 of the amplifier is $R_{L} /\left[r_{e}+R_{L}\right]$ there will be no phase shift between $v_{i n_{2}}$ and the v_{O}. Therefore the ac component of the v_{O} can be directly written as follows.

$$
\begin{aligned}
v_{L}=v_{O} & =i_{E_{2}} \cdot R_{L} \\
& =\left(I_{E_{2}}+i_{e_{2}}\right) \cdot R_{L} \\
& =I_{E_{2}} \cdot R_{L}+i_{e_{2}} \cdot R_{L} \\
& =I_{E_{2}} \cdot R_{L}+V_{p} \sin (\omega \cdot t) \\
& =d c \text { component }+ \text { ac component }
\end{aligned}
$$

Figure 3: v_{L} or v_{O} vs time
An expression for the $i_{E_{2}}$ can be derived as follows. Where I_{p} is the peak ac current component through R_{L}. Here again v_{O} and $i_{e_{2}}$ will be in-phase sinusoidal signals since resistor is a linear device and $i_{e_{2}}$ can be expressed as a function of sine as follows.

$$
\begin{aligned}
i_{E_{2}} & =I_{E_{2}}+i_{e_{2}} \\
& =I_{E_{2}}+\frac{V_{p}}{R_{L}} \cdot \sin (\omega \cdot t) \\
& =I_{E_{2}}+I_{p} \cdot \sin (\omega \cdot t) \\
& =d c \text { component }+ \text { ac component }
\end{aligned}
$$

Figure 4: $i_{E_{2}}$ vs time

Relationship between $i_{B_{2}}$ and $i_{E_{2}}$ can be written as follows. $i_{E_{2}}=\left(\beta_{2}+1\right) \cdot i_{B_{2}}$ where β_{2} is the DC current-gain of the Q_{2} and $I_{B_{p}}$ is the peak amplitude of the ac component of the $i_{B_{2}}$.
Therefore,

$$
\begin{aligned}
\left(\beta_{2}+1\right) \cdot i_{B_{2}} & =i_{E_{2}} \\
i_{B_{2}} & =\frac{1}{\beta_{2}+1} \cdot i_{E_{2}} \\
& =\frac{1}{\beta_{2}+1} \cdot\left[I_{E_{2}}+I_{p} \cdot \sin (\omega \cdot t)\right] \\
& =\frac{1}{\beta_{2}+1} \cdot I_{E_{2}}+\frac{1}{\beta_{2}+1} \cdot I_{p} \cdot \sin (\omega \cdot t) \\
& =I_{B_{2}}+I_{B_{p}} \cdot \sin (\omega \cdot t) \\
& =d c \text { component }+ \text { ac component }
\end{aligned}
$$

Figure 5: $i_{B_{2}}$ vs time
By applying Kirchhoff's voltage low to the collector-emitter circuit, $V_{C C}=v_{C E_{2}}+i_{E_{2}} \cdot R_{L}$ and through rearranging this following expression can be obtained.

$$
\begin{aligned}
v_{C E_{2}} & =V_{C C}-i_{E_{2}} \cdot R_{L} \\
& =V_{C C}-\left(I_{E_{2}}+i_{e_{2}}\right) \cdot R_{L} \\
& =V_{C C}-I_{E_{2}} \cdot R_{L}-i_{e_{2}} \cdot R_{L} \\
& =\left(V_{C C}-I_{E_{2}} \cdot R_{L}\right)-V_{p} \sin (\omega \cdot t) \\
& =d c \text { component }+ \text { ac component }
\end{aligned}
$$

Figure 6: $v_{C E_{2}}$ vs time

Derivation of the expressions was done in the previous part.

$$
v_{C E_{2}}=\left(V_{C C}-I_{E_{2}} \cdot R_{L}\right)-V_{p} \sin (\omega . t)
$$

DC component $=\left(V_{C C}-I_{E_{2}} \cdot R_{L}\right)$
AC component $=-V_{p} \sin (\omega . t)$

$$
i_{E_{2}}=I_{E_{2}}+I_{p} \cdot \sin (\omega \cdot t)
$$

DC component $=I_{E_{2}}$
AC component $=I_{p} \cdot \sin (\omega \cdot t)$

Q4

Let the average power delivered to the load R_{L} be P_{L} and the period of the sine waveform be $T=\frac{2 \pi}{\omega}$.

$$
\begin{aligned}
P_{L} & =\frac{1}{T} \cdot \int_{0}^{T}\left(i_{E_{2}}\right)^{2} \cdot R_{L} d t \\
& =\frac{1}{T} \cdot \int_{0}^{T}\left(I_{E_{2}}+I_{p} \cdot \sin (\omega \cdot t)\right)^{2} \cdot R_{L} d t \\
& =\frac{1}{T} \cdot \int_{0}^{T}\left[\left(I_{E_{2}}\right)^{2}+\left(I_{p} \cdot \sin (\omega \cdot t)\right)^{2}+2 \cdot I_{E_{2}} \cdot I_{p} \cdot \sin (\omega \cdot t)\right] \cdot R_{L} d t \\
& =\frac{1}{T} \cdot\left[\int_{0}^{T}\left(I_{E_{2}}\right)^{2} \cdot R_{L} d t+\int_{0}^{T} 2 \cdot I_{E_{2}} \cdot I_{p} \cdot \sin (\omega \cdot t) \cdot R_{L} d t+\int_{0}^{T} \frac{I_{p}^{2} \cdot R_{L}}{2} d t-\int_{0}^{T} \frac{I_{p}^{2} \cdot R_{L} \cdot \cos (2 \cdot \omega \cdot t)}{2} d t\right]
\end{aligned}
$$

Over a period the average power of a sinusoidal signal is zero. Therefore the second and the fourth terms vanish.

$$
\therefore P_{L}=I_{E_{2}}^{2} \cdot R_{L}+\frac{I_{p}^{2} \cdot R_{L}}{2}
$$

Since $V_{p}=I_{p} R_{L}$, the above expression can also be written as follows.

$$
\begin{aligned}
P_{L} & =I_{E_{2}}^{2} \cdot R_{L}+\frac{V_{p}^{2}}{2 \cdot R_{L}} \\
& =P_{L, D C}+P_{L, A C}
\end{aligned}
$$

Q5

Let the average power delivered to the output leg of the amplifier from DC power supply be $P_{D C}$. Note that the total current through the output leg is approximated to be $i_{E_{2}}$. Therefore,

$$
\begin{aligned}
P_{D C} & =\frac{1}{T} \cdot \int_{0}^{T} i_{E_{2}} \cdot V_{C C} d t \\
& =\frac{1}{T} \cdot \int_{0}^{T}\left(I_{E_{2}}+I_{p} \cdot \sin (\omega \cdot t)\right) \cdot V_{C C} d t \\
& =\frac{1}{T} \cdot\left[\int_{0}^{T} I_{E_{2}} \cdot V_{C C} d t+\int_{0}^{T} I_{p} \cdot \sin (\omega \cdot t) \cdot V_{C C} d t\right]
\end{aligned}
$$

As mentioned previously over a period the average power of a sinusoidal signal is zero. Therefore the second term vanishes.

$$
\therefore P_{D C}=I_{E_{2}} \cdot V_{C C}
$$

Assume the Class A operation of the transistor Q_{2}. Then at the bias point $V_{C E_{2}}=V_{C C} / 2$ and

$$
\begin{aligned}
\therefore I_{E_{2}}=\frac{V_{C E_{2}}}{R_{L}} & =\frac{V_{C C} / 2}{R_{L}}=\frac{V_{C C}}{2 \cdot R_{L}} \\
\therefore P_{D C} & =I_{E_{2}} \cdot V_{C C} \\
& =\frac{V_{C C}}{2 \cdot R_{L}} \cdot V_{C C} \\
& =\frac{V_{C C}^{2}}{2 \cdot R_{L}}
\end{aligned}
$$

Let the efficiency of the output leg be $\eta_{\text {output }}$ leg,

$$
\begin{aligned}
\eta_{\text {output leg }} & =\frac{A C \text { Power at the } \operatorname{load}\left(P_{\text {out }}\right)}{\text { Input } \operatorname{Power}\left(P_{\text {in }}\right)} \\
& =\frac{P_{L, A C}}{P_{D C}} \\
& =\frac{V_{p}^{2}}{2 . R_{L}} \div \frac{V_{C C}^{2}}{2 . R_{L}} \\
& =\frac{V_{p}^{2}}{V_{C C}^{2}}
\end{aligned}
$$

Q7

Let overall efficiency of the amplifier be $\eta_{\text {overall }}$, total power consumed by the amplifier circuit be $P_{\text {total }}$ and total current drained by the amplifier circuit from the source be $I_{\text {total }}$. Then from the Question 6 of Assignment 01- DC Analysis,

$$
\begin{aligned}
P_{\text {total }} & =V_{C C} \cdot I_{\text {total }} \\
& =V_{C C} \cdot\left[I_{R_{B_{1}}}+I_{R_{B_{3}}}+I_{C_{1}}+I_{C_{2}}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\eta_{\text {overall }} & =\frac{\text { AC Power at the load }\left(P_{\text {out }}\right)}{\text { Total Input Power }\left(P_{\text {total }}\right)} \\
& =\frac{P_{L, A C}}{P_{\text {total }}} \\
& =\frac{V_{p}^{2}}{2 \cdot R_{L}} \div\left[V_{C C} \cdot\left(I_{R_{B_{1}}}+I_{R_{B_{3}}}+I_{C_{1}}+I_{C_{2}}\right)\right] \\
& =\frac{V_{p}^{2}}{2 \cdot R_{L} \cdot V_{C C} \cdot\left(I_{R_{B_{1}}}+I_{R_{B_{3}}}+I_{C_{1}}+I_{C_{2}}\right)}
\end{aligned}
$$

