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Foreword

This book was specially prepared by Ariel Caticha, from SUNY-Albany, for a
tutorial on the subject of Entropic Inference and the Foundations of Physics, to
be presented at EBEB-2012, the 11th Brazilian Meeting on Bayesian Statistics,
held on March 18-22 at Amparo, São Paulo.

The organizing committee of EBEB 2012 had some goals for this conference,
including:

• To publish high quality proceedings, in the hope of transforming the char-
acter of the EBEB meetings, from the current – national meeting with
some important international guests, to a future – international meeting
with an active participation of the local scientific community.

• To promote the interaction of the statistics community with researchers
from other areas. This includes statistical model development for foreign
application areas, but also comprises learning, incorporation or adaptation
by statistical science of new forms of probabilistic modeling or alternative
uncertainty representations originated in other fields.

• To have some in-depth tutorials, including the production of textbooks
and other didactic materials. These tutorials should benefit all of us,
but are specially intended for upper level under-graduate and graduate
students trying to acquire familiarity with new areas of research.

Ariel Caticha, in collaboration with the SUNY-Albany Information Physics
/ Bayesian Statistics group, helped us to accomplish all of the aforementioned
goals. For their efforts, we are very grateful.

Julio Michael Stern,
for the EBEB 2012 Organizing Committee,
São Paulo, February 22, 2012.
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Preface

Science consists in using information about the world for the purpose of pre-
dicting, explaining, understanding, and/or controlling phenomena of interest.
The basic difficulty is that the available information is usually insufficient to
attain any of those goals with certainty. A central concern in these lectures will
be the problem of inductive inference, that is, the problem of reasoning under
conditions of incomplete information.

Our goal is twofold. First, to develop the main tools for inference — proba-
bility and entropy — and to demonstrate their use. And second, to demonstrate
their importance for physics. More specifically our goal is to clarify the con-
ceptual foundations of physics by deriving the fundamental laws of statistical
mechanics and of quantum mechanics as examples of inductive inference. Per-
haps all physics can be derived in this way.

The level of these lectures is somewhat uneven. Some topics are fairly ad-
vanced — the subject of recent research — while some other topics are very
elementary. I can give two related reasons for including both in the same book.
The first is pedagogical: these are lectures — the easy stuff has to be taught
too. More importantly, the standard education of physicists includes a very
inadequate study of probability and even of entropy. The result is a widespread
misconception that these “elementary” subjects are trivial and unproblematic
— that the real problems of theoretical and experimental physics lie elsewhere.

As for the second reason, it is inconceivable that the interpretations of prob-
ability and of entropy would turn out to bear no relation to our understanding
of physics. Indeed, if the only notion of probability at our disposal is that of
a frequency in a large number of trials one might be led to think that the en-
sembles of statistical mechanics must be real, and to regard their absence as an
urgent problem demanding an immediate solution — perhaps an ergodic solu-
tion. One might also be led to think that analogous ensembles are needed in
quantum theory perhaps in the form of parallel worlds. Similarly, if the only
available notion of entropy is derived from thermodynamics, one might end up
thinking that entropy is some physical quantity that can be measured in the
lab, and that it has little or no relevance beyond statistical mechanics.

It is very worthwhile to revisit the “elementary” basics because usually the
basics are not elementary at all, and even more importantly, because they are
so fundamental.
Acknowledgements: Most specially I am indebted to C. R. Rodŕıguez and to
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N. Caticha, whose views on these matters have profoundly influenced my own,
but I have also learned much from discussions with many colleagues and friends:
D. Bartolomeo, C. Cafaro, V. Dose, K. Earle, R. Fischer, A. Garrett, A. Giffin,
P. Goggans, A. Golan, M. I. Gomez, P. Goyal, M. Grendar, D. T. Johnson,
K. Knuth, S. Nawaz, R. Preuss, T. Seidenfeld, J. Skilling, R. Spekkens, and
C.-Y. Tseng. I would also like to thank all the students who over the years
have taken my course on Information Physics; their questions and doubts have
very often helped clear my own questions and doubts. I would also like to
express my special gratitude to Julio Stern for his continued encouragement to
get my lectures published and to J. Stern, C. A. de Bragança Pereira, A. Polpo,
M. Lauretto and M. A. Diniz, organizers of EBEB 2012 for undertaking their
publication.

Albany, February 2012.



Chapter 1

Inductive Inference and
Physics

The process of drawing conclusions from available information is called infer-
ence. When the available information is sufficient to make unequivocal, unique
assessments of truth we speak of making deductions: on the basis of a certain
piece of information we deduce that a certain proposition is true. The method
of reasoning leading to deductive inferences is called logic. Situations where the
available information is insufficient to reach such certainty lie outside the realm
of logic. In these cases we speak of doing inductive inference, and the methods
deployed are those of probability theory and entropic inference.

1.1 Probability

The question of the meaning and interpretation of the concept of probability has
long been controversial. Needless to say the interpretations offered by various
schools are at least partially successful or else they would already have been
discarded. But the different interpretations are not equivalent. They lead people
to ask different questions and to pursue their research in different directions.
Some questions may become essential and urgent under one interpretation while
totally irrelevant under another. And perhaps even more important: under
different interpretations equations can be used differently and this can lead to
different predictions.

The frequency interpretation

Historically the frequentist interpretation has been the most popular: the prob-
ability of a random event is given by the relative number of occurrences of the
event in a sufficiently large number of identical and independent trials. The
appeal of this interpretation is that it seems to provide an empirical method to
estimate probabilities by counting over the ensemble of trials. The magnitude
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of a probability is obtained solely from the observation of many repeated trials
and does not depend on any feature or characteristic of the observers. Proba-
bilities interpreted in this way have been called objective. This view dominated
the fields of statistics and physics for most of the 19th and 20th centuries (see,
e.g., [von Mises 1957]).

One disadvantage of the frequentist approach has to do with matters of rigor:
what precisely does one mean by ‘random’? If the trials are sufficiently identical,
shouldn’t one always obtain the same outcome? Also, if the interpretation is to
be validated on the basis of its operational, empirical value, how large should
the number of trials be? Unfortunately, the answers to these questions are
neither easy nor free from controversy. By the time the tentative answers have
reached a moderately acceptable level of sophistication the intuitive appeal of
this interpretation has long been lost. In the end, it seems the frequentist
interpretation is most useful when left a bit vague.

A more serious objection is the following. In the frequentist approach the
notion of an ensemble of trials is central. In cases where there is a natural
ensemble (tossing a coin, or a die, spins in a lattice, etc.) the frequency inter-
pretation seems natural enough. But for many other problems the construction
of an ensemble is at best highly artificial. For example, consider the probability
of there being life in Mars. Are we to imagine an ensemble of Mars planets and
solar systems? In these cases the ensemble would be purely hypothetical. It
offers no possibility of an empirical determination of a relative frequency and
this defeats the original goal of providing an objective operational interpretation
of probabilities as frequencies. In yet other problems there is no ensemble at
all: consider the probability that the nth digit of the number π be 7. Are we to
imagine alternative universes with different values for the number π? It is clear
that there a number of interesting problems where one suspects the notion of
probability could be quite useful but which nevertheless lie outside the domain
of the frequentist approach.

The Bayesian interpretations

According to the Bayesian interpretations, which can be traced back to Bernoulli
and Laplace, but have only achieved popularity in the last few decades, a proba-
bility reflects the confidence, the degree of belief of an individual in the truth of
a proposition. These probabilities are said to be Bayesian because of the central
role played by Bayes’ theorem – a theorem which is actually due to Laplace.
This approach enjoys several advantages. One is that the difficulties associated
with attempting to pinpoint the precise meaning of the word ‘random’ can be
avoided. Bayesian probabilities are not restricted to repeatable events; they
allow us to reason in a consistent and rational manner about unique, singular
events. Thus, in going from the frequentist to the Bayesian interpretations the
domain of applicability and therefore the usefulness of the concept of probability
is considerably enlarged.

The crucial aspect of Bayesian probabilities is that different individuals may
have different degrees of belief in the truth of the very same proposition, a



1.1 Probability 3

fact that is described by referring to Bayesian probabilities as being subjective.
This term is somewhat misleading because there are (at least) two views on
this matter, one is the so-called subjective Bayesian or personalistic view (see,
e.g., [Savage 1972; Howson Urbach 1993; Jeffrey 2004]), and the other is the
objective Bayesian view (see e.g. [Jeffreys 1939; Cox, 1946; Jaynes 1985, 2003;
Lucas 1970]). For an excellent elementary introduction with a philosophical
perspective see [Hacking 2001]. According to the subjective view, two reason-
able individuals faced with the same evidence, the same information, can legiti-
mately differ in their confidence in the truth of a proposition and may therefore
assign different probabilities. Subjective Bayesians accept that an individual
can change his or her beliefs, merely on the basis of introspection, reasoning, or
even revelation.

At the other end of the Bayesian spectrum, the objective Bayesian view
considers the theory of probability as an extension of logic. It is said then
that a probability measures a degree of rational belief. It is assumed that the
objective Bayesian has thought so long and hard about how probabilities are
assigned that no further reasoning will induce a revision of beliefs except when
confronted with new information. In an ideal situation two different individuals
will, on the basis of the same information, assign the same probabilities.

Subjective or objective?

Whether Bayesian probabilities are subjective or objective is still a matter of
dispute. Our position is that they lie somewhere in between. Probabilities will
always retain a “subjective” element because translating information into prob-
abilities involves judgments and different people will inevitably judge differently.

On the other hand, it is a presupposition of thought itself that some beliefs
are better than others — otherwise why go through the trouble of thinking? And
they are “objectively” better in that they provide better guidance about how
to cope with the world. The adoption of better beliefs has real consequences.
Similarly, not all probability assignments are equally useful and it is plausible
that what makes some assignments better than others is that they represent
or reflect some objective feature of the world. One might even say that what
makes them better is that they provide a better guide to the “truth”. It is
the conviction that posterior probabilities are somehow objectively better than
prior probabilities that provides the justification for going through the troubles
of gathering information and using it to update our beliefs.

We shall find that while the subjective element in probabilities can never be
completely eliminated, the rules for processing information, that is, the rules
for updating probabilities, are themselves quite objective. This means that
the new information can be objectively processed and incorporated into our
posterior probabilities. Thus, it is quite possible to continuously suppress the
subjective elements while enhancing the objective elements as we process more
and more information.

Thus, probabilities can be characterized by both subjective and objective
elements and, ultimately, it is their objectivity that makes probabilities use-
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ful. There is much to be gained by rejecting the sharp subjective/objective
dichotomy and replacing it with a continuous spectrum of intermediate possi-
bilities.1

1.2 Designing a framework for inductive infer-
ence

A common hope in both science and philosophy has been to find a secure foun-
dation for knowledge on which to build science, mathematics, and philosophy.
So far the search has not been successful and everything indicates that such in-
dubitable foundation is nowhere to be found. Accordingly, we adopt a pragmatic
attitude: there are ideas about which we can have greater or lesser confidence,
and from these we can infer the plausibility of others; but there is nothing about
which we can have full certainty and complete knowledge.

Inductive inference in its Bayesian/entropic form is a framework designed
for the purpose of coping with the world in a rational way in situations where
the information available is incomplete. The framework must solve two related
problems. First, it must allow for convenient representations of states of partial
knowledge — this is handled through the introduction of probabilities. Second,
it must allow us to update from one state of knowledge to another when new
information becomes available — this is handled through the introduction of
relative entropy as the tool for updating. The theory of probability cannot be
separate from a theory for updating probabilities.

The framework for inference will be constructed by a process of eliminative
induction. The objective is to design the appropriate tools, which in our case,
means designing the theory of probability and entropy. The different ways in
which probabilities and entropies are defined and handled will lead to different
inference schemes and one can imagine a vast variety of possibilities. To select
one we must first have a clear idea of the function that those tools are supposed
to perform, that is, we must specify design criteria or design specifications that
the desired inference framework must obey. Finally, in the eliminative part of
the process one proceeds to systematically rule out all those inference schemes
that fail to comply with the design criteria — that is, that fail to perform as
desired.

There is no implication that an inference framework designed in this way is
in any way “true”, or that it succeeds because it achieves some special intimate
agreement with reality. Instead, the claim is pragmatic: the method succeeds to
the extent that the inference framework works as designed and its performance
will be deemed satisfactory as long as it leads to scientific models that are
empirically adequate. Whatever design criteria are chosen, they are meant to
be only provisional — just like everything else in science, there is no reason to
consider them immune from further change and improvement.

1This position bears a resemblance to the rejection of the fact/value dichotomy advocated
in [Putnam 1991, 2003].
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The pros and cons of eliminative induction have been the subject of con-
siderable philosophical research (e.g. [Earman 1992; Hawthorne 1993; Godfrey-
Smith 2003]). On the negative side, eliminative induction, like any other form
of induction, is not guaranteed to work. On the positive side, eliminative in-
duction adds an interesting twist to Popper’s scientific methodology. According
to Popper scientific theories can never be proved right, they can only be proved
false; a theory is corroborated only to the extent that all attempts at falsifying
it have failed. Eliminative induction is fully compatible with Popper’s notions
but the point of view is just the opposite. Instead of focusing on failure to
falsify one focuses on success: it is the successful falsification of all rival theories
that corroborates the surviving one. The advantage is that one acquires a more
explicit understanding of why competing theories are eliminated.

In chapter 2 we address the problem of the design and construction of prob-
ability theory as a tool for inference. In other words, we show that degrees of
rational belief, those measures of plausibility that we require to do inference,
should be manipulated and calculated according to the ordinary rules of the
calculus of probabilities.

The problem of designing a theory for updating probabilities is addressed
mostly in chapter 6 and then completed in chapter 8. We discuss the central
question “What is information?” and show that there is a unique method to
update from an old set of beliefs codified in a prior probability distribution into
a new set of beliefs described by a new, posterior distribution when the informa-
tion available is in the form of a constraint on the family of acceptable posteriors.
In this approach the tool for inference is entropy. A central achievement is the
complete unification of Bayesian and entropic methods.

1.3 Entropic Physics

Once the framework of entropic inference has been constructed we deploy it to
clarify the conceptual foundations of physics.

Prior to the work of Jaynes it was suspected that there was a connection
between thermodynamics and information theory. But the connection took the
form of an analogy between the two fields: Shannon’s information theory was
designed to be useful in engineering2 while thermodynamics was meant to be
“true” by virtue of reflecting “laws of nature”. The gap was enormous; to this
day many still think that the analogy is purely accidental. With the work of
Jaynes, however, it became clear that the connection is not an accident: the cru-
cial link is that both situations involve reasoning with incomplete information.
This development was significant for many subjects — engineering, statistics,
computation — but for physics the impact of such a change in perspective is
absolutely enormous: thermodynamics and statistical mechanics provided the
first example of a fundamental theory that, instead of being a direct image of
nature, should be interpreted as a scheme for inference about nature. Beyond

2Even as late as 1961 Shannon expressed doubts that information theory would ever find
application in fields other than communication theory. [Tribus 1978]
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the impact on statistical mechanics itself, the obvious question is: Are there
other examples? The answer is yes.

Our goal in chapter 5 is to provide an explicit discussion of statistical me-
chanics as an example of entropic inference; the chapter is devoted to discussing
and clarifying the foundations of thermodynamics and statistical mechanics.
The development is carried largely within the context of Jaynes’ MaxEnt for-
malism and we show how several central topics such as the equal probability
postulate, the second law of thermodynamics, irreversibility, reproducibility,
and the Gibbs paradox can be considerably clarified when viewed from the in-
formation/inference perspective.

In chapters 9 and 10 we explore new territory. These chapters are devoted
to deriving quantum theory as an example of entropic inference. The challenge
is that the theory involves dynamics and time in a fundamental way. It is
significant that the full framework of entropic inference derived in chapters 6 an
8 is needed here — the old entropic methods developed by Shannon and Jaynes
are no longer sufficient.

The payoff is considerable. A vast fraction of the quantum formalism is
derived and the entropic approach offers new insights into many topics that
are central to quantum theory: the interpretation of the wave function, the
wave-particle duality, the quantum measurement problem, the introduction and
interpretation of observables other than position, including momentum, the cor-
responding uncertainty relations, and most important, it leads to a theory of
entropic time. The overall conclusion is that the laws of quantum mechanics are
not laws of nature; they are rules for processing information about nature.



Chapter 2

Probability

Our goal is to establish the theory of probability as the general theory for
reasoning on the basis of incomplete information. This requires us to tackle
two different problems. The first problem is to figure out how to achieve a
quantitative description of a state of partial knowledge. Once this is settled we
address the second problem of how to update from one state of knowledge to
another when new information becomes available.

Throughout we will assume that the subject matter – the set of propositions
the truth of which we want to assess – has been clearly specified. This question
of what it is that we are actually talking about is much less trivial than it might
appear at first sight.1 Nevertheless, it will not be discussed further.

The first problem, that of describing or characterizing a state of partial
knowledge, requires that we quantify the degree to which we believe each propo-
sition in the set is true. The most basic feature of these beliefs is that they form
an interconnected web that must be internally consistent. The idea is that in
general the strengths of one’s beliefs in some propositions are constrained by
one’s beliefs in other propositions; beliefs are not independent of each other. For
example, the belief in the truth of a certain statement a is strongly constrained
by the belief in the truth of its negation, not-a: the more I believe in one, the
less I believe in the other.

The second problem, that of updating from one consistent web of beliefs
to another when new information becomes available, will be addressed for the
special case that the information is in the form of data. The basic updating
strategy reflects the conviction that what we learned in the past is valuable,
that the web of beliefs should only be revised to the extent required by the data.
We will see that this principle of minimal updating leads to the uniquely natural
rule that is widely known as Bayes’ rule. (More general kinds of information
can also be processed using the minimal updating principle but they require a
more sophisticated tool, namely, relative entropy. This topic will be extensively

1Consider the example of quantum mechanics: Are we talking about particles, or about
experimental setups, or both? Are we talking about position variables, or about momenta, or
both? Or neither? Is it the position of the particles or the position of the detectors?
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explored later.) As an illustration of the enormous power of Bayes’ rule we will
briefly explore its application to data analysis.

2.1 The design of probability theory

Science requires a framework for inference on the basis of incomplete informa-
tion. We will show that the quantitative measures of plausibility or degrees of
belief that are the tools for reasoning should be manipulated and calculated
using the ordinary rules of the calculus of probabilities — and therefore proba-
bilities can be interpreted as degrees of belief.

The procedure we follow differs in one remarkable way from the traditional
way of setting up physical theories. Normally one starts with the mathematical
formalism, and then one proceeds to try to figure out what the formalism might
possibly mean; one tries to append an interpretation to it. This is a very difficult
problem; historically it has affected not only statistical physics — what is the
meaning of probabilities and of entropy — but also quantum theory — what is
the meaning of wave functions and amplitudes. Here we proceed in the opposite
order, we first decide what we are talking about, degrees of belief or degrees of
plausibility (we use the two expressions interchangeably) and then we design
rules to manipulate them; we design the formalism, we construct it to suit
our purposes. The advantage of this approach is that the issue of meaning, of
interpretation, is settled from the start.

2.1.1 Rational beliefs?

Before we proceed further it may be important to emphasize that the degrees
of belief discussed here are those held by an idealized rational agent that would
not be subject to the practical limitations under which we humans operate.
Different individuals may hold different beliefs and it is certainly important to
figure out what those beliefs might be — perhaps by observing their gambling
behavior — but this is not our present concern. Our objective is neither to assess
nor to describe the subjective beliefs of any particular individual. Instead we
deal with the altogether different but very common problem that arises when
we are confused and we want some guidance about what we are supposed to
believe. Our concern here is not so much with beliefs as they actually are, but
rather, with beliefs as they ought to be — at least as they ought to be to deserve
to be called rational. We are concerned with the ideal standard of rationality
that we humans ought to attain at least when discussing scientific matters.

The concept of rationality is notoriously difficult to pin down. One thing we
can say is that rational beliefs are constrained beliefs. The essence of rationality
lies precisely in the existence of some constraints — not everything goes. We
need to identify some normative criteria of rationality and the difficulty is to
find criteria that are sufficiently general to include all instances of rationally
justified belief. Here is our first criterion of rationality:
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The inference framework must be based on assumptions that have wide
appeal and universal applicability.

Whatever guidelines we pick they must be of general applicability — otherwise
they fail when most needed, namely, when not much is known about a problem.
Different rational agents can reason about different topics, or about the same
subject but on the basis of different information, and therefore they could hold
different beliefs, but they must agree to follow the same rules. What we seek
here are not the specific rules of inference that will apply to this or that specific
instance; what we seek is to identify some few features that all instances of
rational inference might have in common.

The second criterion is that

The inference framework must not be self-refuting.

It may not be easy to identify criteria of rationality that are sufficiently general
and precise. Perhaps we can settle for the more manageable goal of avoiding
irrationality in those glaring cases where it is easily recognizable. And this is
the approach we take: rather than providing a precise criterion of rationality
to be carefully followed, we design a framework with the more modest goal
of avoiding some forms of irrationality that are perhaps sufficiently obvious to
command general agreement. The basic desire is that the web of rational beliefs
must avoid inconsistencies. If a quantity can be inferred in two different ways
the two ways must agree. As we shall see this requirement turns out to be
extremely restrictive.

Finally,

The inference framework must be useful in practice — it must allow quan-
titative analysis.

Otherwise, why bother?
Whatever specific design criteria are chosen, one thing must be clear: they

are justified on purely pragmatic grounds and therefore they are meant to be
only provisional. Rationality itself is not immune to change and improvement.
Given some criteria of rationality we proceed to construct models of the world,
or better, models that will help us deal with the world — predict, control, and
explain the facts. The process of improving these models — better models are
those that lead to more accurate predictions, more accurate control, and more
lucid and encompassing explanations of more facts, not just the old facts but
also of new and hopefully even unexpected facts — may eventually suggest
improvements to the rationality criteria themselves. Better rationality leads
to better models which leads to better rationality and so on. The method of
science is not independent from the contents of science.

2.1.2 Quantifying rational belief

In order to be useful we require an inference framework that allows quantitative
reasoning. The first obvious question concerns the type of quantity that will
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represent the intensity of beliefs. Discrete categorical variables are not adequate
for a theory of general applicability; we need a much more refined scheme.

Do we believe proposition a more or less than proposition b? Are we even
justified in comparing propositions a and b? The problem with propositions
is not that they cannot be compared but rather that the comparison can be
carried out in too many different ways. We can classify propositions according
to the degree we believe they are true, their plausibility; or according to the
degree that we desire them to be true, their utility; or according to the degree
that they happen to bear on a particular issue at hand, their relevance. We
can even compare propositions with respect to the minimal number of bits that
are required to state them, their description length. The detailed nature of
our relations to propositions is too complex to be captured by a single real
number. What we claim is that a single real number is sufficient to measure
one specific feature, the sheer intensity of rational belief. This should not be
too controversial because it amounts to a tautology: an “intensity” is precisely
the type of quantity that admits no more qualifications than that of being more
intense or less intense; it is captured by a single real number.

However, some preconception about our subject is unavoidable; we need
some rough notion that a belief is not the same thing as a desire. But how
can we know that we have captured pure belief and not belief contaminated
with some hidden desire or something else? Strictly we can’t. We hope that
our mathematical description captures a sufficiently purified notion of rational
belief, and we can claim success only to the extent that the formalism proves to
be useful.

The inference framework will capture two intuitions about rational beliefs.
First, we take it to be a defining feature of the intensity of rational beliefs that
if a is more believable than b, and b more than c, then a is more believable than
c. Such transitive rankings can be implemented using real numbers we are again
led to claim that

Degrees of rational belief (or, as we shall later call them, probabilities)
are represented by real numbers.

Before we proceed further we need to establish some notation. The following
choice is standard.

Notation

For every proposition a there exists its negation not-a, which will be denoted ã.
If a is true, then ã is false and vice versa.

Given any two propositions a and b the conjunction “a and b” is denoted
ab or a ∧ b. The conjunction is true if and only if both a and b are true.

Given a and b the disjunction “a or b” is denoted by a ∨ b or (less often)
by a+ b. The disjunction is true when either a or b or both are true; it is false
when both a and b are false.

Typically we want to quantify the degree of belief in a ∨ b and in ab in the
context of some background information expressed in terms of some proposition
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c in the same universe of discourse as a and b. Such propositions we will write
as a ∨ b|c and ab|c.

The real number that represents the degree of belief in a|b will initially
be denoted [a|b] and eventually in its more standard form p(a|b) and all its
variations.

Degrees of rational belief will range from the extreme of total certainty,
[a|a] = vT , to total disbelief, [ã|a] = vF . The transitivity of the ranking scheme
implies that there is a single value vF and a single vT .

The representation of OR and AND

The inference framework is designed to include a second intuition concerning
rational beliefs:

In order to be rational our beliefs in a∨b and ab must be somehow related
to our separate beliefs in a and b.

Since the goal is to design a quantitative theory, we require that these relations
be represented by some functions F and G,

[a ∨ b|c] = F ([a|c], [b|c], [a|bc], [b|ac]) (2.1)

and
[ab|c] = G([a|c], [b|c], [a|bc], [b|ac]) . (2.2)

Note the qualitative nature of this assumption: what is being asserted is the
existence of some unspecified functions F and G and not their specific functional
forms. The same F and G are meant to apply to all propositions; what is being
designed is a single inductive scheme of universal applicability. Note further
that the arguments of F and G include all four possible degrees of belief in a
and b in the context of c and not any potentially questionable subset.

The functions F and G provide a representation of the Boolean operations
and and or. The requirement that F and G reflect the appropriate associative
and distributive properties of the Boolean and and or turns out to be extremely
constraining. Indeed, we will show that there is essentially a single representa-
tion that is equivalent to probability theory. (All allowed representations are
equivalent to each other.)

In section 3 the associativity of or is shown to lead to a constraint that
requires the function F to be equivalent to the sum rule for probabilities. In
section 4 we focus on the distributive property of and over or and the corre-
sponding constraint leads to the product rule for probabilities.2

2Our subject is degrees of rational belief but the algebraic approach followed here [Caticha
2009] can be pursued in its own right irrespective of any interpretation. It was used in
[Caticha 1998] to derive the manipulation rules for complex numbers interpreted as quantum
mechanical amplitudes; in [Knuth 2003] in the mathematical problem of assigning real numbers
(valuations) on general distributive lattices; and in [Goyal et al 2010] to justify the use of
complex numbers for quantum amplitudes.
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Our method will be design by eliminative induction: now that we have iden-
tified a sufficiently broad class of theories — quantitative theories of universal
applicability, with degrees of belief represented by real numbers and the oper-
ations of conjunction and disjunction represented by functions — we can start
weeding the unacceptable ones out.

An aside on the Cox axioms

The development of probability theory in the following sections follows a path
clearly inspired by [Cox 1946]. A brief comment may be appropriate.

Cox derived the sum and product rules by focusing on the properties of
conjunction and negation. He assumed as one of his axioms that the degree of
belief in a proposition a conditioned on b being true, which we write as [a|b], is
related to the degree of belief corresponding to its negation, [ã|b], through some
definite but initially unspecified function f ,

[ã|b] = f ([a|b]) . (2.3)

This statement expresses the intuition that the more one believes in a|b, the less
one believes in ã|b.

A second Cox axiom is that the degree of belief of “a and b given c,” written
as [ab|c], must depend on [a|c] and [b|ac],

[ab|c] = g ([a|c], [b|ac]) . (2.4)

This is also very reasonable. When asked to check whether “a and b” is true,
we first look at a; if a turns out to be false the conjunction is false and we need
not bother with b; therefore [ab|c] must depend on [a|c]. If a turns out to be
true we need to take a further look at b; therefore [ab|c] must also depend on
[b|ac]. Strictly [ab|c] could in principle depend on all four quantities [a|c], [b|c],
[a|bc] and [b|ac], an objection that has a long history. It was partially addressed
in [Tribus 1969; Smith Erickson 1990; Garrett 1996].

Cox’s important contribution was to realize that consistency constraints de-
rived from the associativity property of and and from the compatibility of and
with negation were sufficient to demonstrate that degrees of belief should be
manipulated according to the laws of probability theory. We shall not pursue
this line of development here. See [Cox 1946; Jaynes 1957a, 2003].

2.2 The sum rule

Our first goal is to determine the function F that represents or. The space of
functions of four arguments is very large. To narrow down the field we initially
restrict ourselves to propositions a and b that are mutually exclusive in the
context of d. Thus,

[a ∨ b|d] = F ([a|d], [b|d], vF , vF ) , (2.5)
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which effectively restricts F to a function of only two arguments,

[a ∨ b|d] = F ([a|d], [b|d]) . (2.6)

2.2.1 The associativity constraint

As a minimum requirement of rationality we demand that the assignment of
degrees of belief be consistent: if a degree of belief can be computed in two
different ways the two ways must agree. How else could we claim to be rational?
All functions F that fail to satisfy this constraint must be discarded.

Consider any three mutually exclusive statements a, b, and c in the context
of a fourth d. The consistency constraint that follows from the associativity of
the Boolean or,

(a ∨ b) ∨ c = a ∨ (b ∨ c) , (2.7)

is remarkably constraining. It essentially determines the function F . Start from

[a ∨ b ∨ c|d] = F ([a ∨ b|d], [c|d]) = F ([a|d], [b ∨ c|d]) . (2.8)

Use F again for [a ∨ b|d] and also for [b ∨ c|d], we get

F{F ([a|d], [b|d]) , [c|d]} = F{[a|d], F ([b|d], [c|d])} . (2.9)

If we call [a|d] = x, [b|d] = y, and [c|d] = z, then

F{F (x, y), z} = F{x, F (y, z)} . (2.10)

Since this must hold for arbitrary choices of the propositions a, b, c, and d,
we conclude that in order to be of universal applicability the function F must
satisfy (2.10) for arbitrary values of the real numbers (x, y, z). Therefore the
function F must be associative.
Remark: The requirement of universality is crucial. Indeed, in a universe of
discourse with a discrete and finite set of propositions it is conceivable that
the triples (x, y, z) in (2.10) do not form a dense set and therefore one cannot
conclude that the function F must be associative for arbitrary values of x, y,
and z. For each specific finite universe of discourse one could design a tailor-
made, single-purpose model of inference that could be consistent, i.e. it would
satisfy (2.10), without being equivalent to probability theory. However, we are
concerned with designing a theory of inference of universal applicability, a single
scheme applicable to all universes of discourse whether discrete and finite or
otherwise. And the scheme is meant to be used by all rational agents irrespective
of their state of belief — which need not be discrete. Thus, a framework designed
for broad applicability requires that the values of x form a dense set.3

3The possibility of alternative probability models was raised in [Halpern 1999]. That these
models are ruled out by universality was argued in [Van Horn 2003] and [Caticha 2009].
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2.2.2 The general solution and its regraduation

Equation (2.10) is a functional equation for F . It is easy to see that there exist
an infinite number of solutions. Indeed, by direct substitution one can check
that eq.(2.10) is satisfied by any function of the form

F (x, y) = φ−1 (φ (x) + φ (y)) , (2.11)

where φ is an arbitrary invertible function. What is not so easy to to show is this
is also the general solution, that is, given φ one can calculate F and, conversely,
given any associative F one can calculate the corresponding φ. Cox’s proof of
this result is given in section 2.2.4 [Cox 1946; Jaynes 1957a; Aczel 1966].

The significance of eq.(2.11) becomes apparent once it is rewritten as

φ (F (x, y)) = φ (x) + φ (y) or φ ([a ∨ b|d]) = φ ([a|d]) + φ ([b|d]) . (2.12)

This last form is central to Cox’s approach to probability theory. Note that there
was nothing particularly special about the original representation of degrees of
plausibility by the real numbers [a|d], [b|d], . . . Their only purpose was to provide
us with a ranking, an ordering of propositions according to how plausible they
are. Since the function φ(x) is monotonic, the same ordering can be achieved
using a new set of positive numbers,

ξ(a|d) def= φ([a|d]), ξ(b|d) def= φ([b|d]), ... (2.13)

instead of the old. The original and the regraduated scales are equivalent be-
cause by virtue of being invertible the function φ is monotonic and therefore
preserves the ranking of propositions. However, the regraduated scale is much
more convenient because, instead of the complicated rule (2.11), the or opera-
tion is now represented by a much simpler rule,

ξ (a ∨ b|d) = ξ (a|d) + ξ (b|d) , (2.14)

just a sum rule. Thus, the new numbers are neither more nor less correct than
the old, they are just considerably more convenient.

Perhaps one can make the logic of regraduation a little bit clearer by consid-
ering the somewhat analogous situation of introducing the quantity temperature
as a measure of degree of “hotness”. Clearly any acceptable measure of “hot-
ness” must reflect its transitivity — if a is hotter than b and b is hotter than
c then a is hotter than c — which explains why temperatures are represented
by real numbers. But the temperature scales can be quite arbitrary. While
many temperature scales may serve equally well the purpose of ordering sys-
tems according to their hotness, there is one choice — the absolute or Kelvin
scale — that turns out to be considerably more convenient because it simplifies
the mathematical formalism. Switching from an arbitrary temperature scale to
the Kelvin scale is one instance of a convenient regraduation. (The details of
temperature regraduation are given in chapter 3.)
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In the old scale, before regraduation, we had set the range of degrees of belief
from one extreme of total disbelief, [ã|a] = vF , to the other extreme of total
certainty, [a|a] = vT . At this point there is not much that we can say about the
regraduated ξT = φ(νT ) but ξF = φ(νF ) is easy to evaluate. Setting d = ã in
eq.(2.14) gives

ξ (a ∨ b|ã) = ξ (a|ã) + ξ (b|ã) . (2.15)

Since a∨ b|ã is true if and only if b|ã is true, the corresponding degrees of belief
must coincide,

ξ (a ∨ b|ã) = ξ (b|ã) , (2.16)

and therefore
ξ (a|ã) = ξF = 0 . (2.17)

2.2.3 The general sum rule

The restriction to mutually exclusive propositions in the sum rule eq.(2.14) can
be easily lifted. Any proposition a can be written as the disjunction of two
mutually exclusive ones, a = (ab)∨ (ab̃) and similarly b = (ab)∨ (ãb). Therefore
for any two arbitrary propositions a and b we have

a ∨ b = (ab) ∨ (ab̃) ∨ (ãb) (2.18)

Since each of the terms on the right are mutually exclusive the sum rule (2.14)
applies,

ξ(a ∨ b|d) = ξ(ab|d) + ξ(ab̃|d) + ξ(ãb|d) + [ξ(ab|d)− ξ(ab|d)]

= ξ(ab ∨ ab̃|d) + ξ(ab ∨ ãb|d)− ξ(ab|d) , (2.19)

which leads to the general sum rule,

ξ(a ∨ b|d) = ξ(a|d) + ξ(b|d)− ξ(ab|d) . (2.20)

2.2.4 Cox’s proof

Understanding the proof that eq.(2.11) is the general solution of the associativity
constraint, eq.(2.10), is not necessary for understanding other topics in this
book. This section may be skipped on a first reading. The proof given below,
due to Cox, [Cox 1946] takes advantage of the fact that our interest is not just to
find the most general mathematical solution but rather that we want the most
general solution where the function F is to be used for the purpose of inference.
This allows us to impose additional constraints on F .

The general strategy in solving equations such as (2.10) is to take partial
derivatives to transform the functional equation into a differential equation and
then to proceed to solve the latter. Fortunately we can assume that the allowed
functions F are continuous and twice differentiable. Indeed, since inference
is just quantified common sense, had the function F turned out to be non-
differentiable serious doubt would be cast on the legitimacy of the whole scheme.
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Furthermore, common sense also requires that F (x, y) be monotonic increasing
in both its arguments. Consider a change in the first argument x = [a|d] while
holding the second y = [b|d] fixed. A strengthening of one’s belief in a|d must be
reflected in a corresponding strengthening in ones’s belief in a ∨ b|d. Therefore
F (x, y) must be monotonic increasing in its first argument. An analogous line
of reasoning shows that F (x.y) must be monotonic increasing in the second
argument as well. Therefore,

∂F (x, y)
∂x

≥ 0 and
∂F (x, y)
∂y

≥ 0 . (2.21)

Let
r

def= F (x, y) and s
def= F (y, z) , (2.22)

and let partial derivatives be denoted by subscripts,

F1(x, y) def=
∂F (x, y)

∂x
≥ 0 and F2(x, y) def=

∂F (x, y)
∂y

≥ 0 . (2.23)

Then eq.(2.10) and its derivatives with respect to x and y are

F (r, z) = F (x, s) , (2.24)

F1(r, z)F1(x, y) = F1(x, s) , (2.25)

and
F1(r, z)F2(x, y) = F2(x, s)F1(y, z) . (2.26)

Eliminating F1(r, z) from these last two equations we get

K(x, y) = K(x, s)F1(y, z) . (2.27)

where

K(x, y) =
F2(x, y)
F1(x, y)

. (2.28)

Multiplying eq.(2.27) by K(y, z) and using (2.28) we get

K(x, y)K(y, z) = K(x, s)F2(y, z) . (2.29)

Differentiating the right hand side of eq.(2.29) with respect to y and comparing
with the derivative of eq.(2.27) with respect to z, we have

∂

∂y
(K (x, s)F2 (y, z)) =

∂

∂z
(K (x, s)F1 (y, z)) =

∂

∂z
(K (x, y)) = 0. (2.30)

Therefore,
∂

∂y
(K (x, y)K (y, z)) = 0, (2.31)
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or,
1

K (x, y)
∂K (x, y)

∂y
= − 1

K (y, z)
∂K (y, z)

∂y
(2.32)

since the left hand side is independent of z while the right hand side is indepen-
dent of of x it must be that they depend only on y,

1
K (x, y)

∂K (x, y)
∂y

def= h (y) (2.33)

Integrate using the fact that K ≥ 0 because both F1 and F2 are positive, to get

K(x, y) = K(x, 0) exp
∫ y

0

h(y′)dy′. (2.34)

Similarly,

K (y, z) = K (0, z) exp−
∫ y

0

h(y′)dy′, (2.35)

so that

K (x, y) = α
H (x)
H (y)

, (2.36)

where α = K(0, 0) is a constant and H(x) is the positive function

H(x) def= exp
[
−
∫ x

0

h(x′)dx′
]
≥ 0 . (2.37)

On substituting back into eqs.(2.27) and (2.29) we get

F1(y, z) =
H(s)
H(y)

and F2(y, z) = α
H(s)
H(z)

. (2.38)

Next, use s = F (y, z), so that

ds = F1(y, z)dy + F2(y, z)dz . (2.39)

Substituting (2.38) we get

ds

H(s)
=

dy

H(y)
+ α

dz

H(z)
. (2.40)

This is easily integrated. Let

φ (x) = φ (0) exp
(∫ x

0

dx′

H(x′)

)
, (2.41)

be the integrating factor, so that dx/H(x) = dφ(x)/φ(x). Then

φ (F (y, z)) = φ (y)φα (z) , (2.42)
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where a multiplicative constant of integration has been absorbed into the con-
stant φ (0). Applying this function φ twice in eq.(2.10) we obtain

φ(x)φα(y)φα(z) = φ(x)φα(y)φα
2
(z) , (2.43)

so that α = 1,
φ (F (y, z)) = φ (y)φ (z) , (2.44)

(The second possibility α = 0 is discarded because it leads to F (x, y) = x which
is not useful for inference.)

This completes the proof that eq.(2.11) is the general solution of eq.(2.10):
Given any F (x, y) that satisfies eq.(2.10) one can construct the corresponding
φ(x) using eqs.(2.28), (2.32), (2.37), and (2.41). Furthermore, since φ(x) is an
exponential its sign is dictated by the constant φ (0) which is positive because
the right hand side of eq.(2.44) is positive. Finally, since H(x) ≥ 0, eq. (2.37),
the regraduating function φ(x) is a monotonic function of its variable x.

2.3 The product rule

Next we consider the function G in eq.(2.2) that represents and. Once the orig-
inal plausibilities are regraduated by φ according to eq.(2.13), the new function
G for the plausibility of a conjunction reads

ξ(ab|c) = G[ξ(a|c), ξ(b|c), ξ(a|bc), ξ(b|ac)] . (2.45)

The space of functions of four arguments is very large so we first narrow it down
to just two. Then, we require that the representation of and be compatible with
the representation of or that we have just obtained. This amounts to imposing
a consistency constraint that follows from the distributive properties of the
Boolean and and or. A final trivial regraduation yields the product rule of
probability theory.

2.3.1 From four arguments down to two

We will separately consider special cases where the function G depends on only
two arguments, then three, and finally all four arguments. Using commutivity,
ab = ba, the number of possibilities can be reduced to seven:

ξ(ab|c) = G(1)[ξ(a|c), ξ(b|c)] (2.46)

ξ(ab|c) = G(2)[ξ(a|c), ξ(a|bc)] (2.47)

ξ(ab|c) = G(3)[ξ(a|c), ξ(b|ac)] (2.48)

ξ(ab|c) = G(4)[ξ(a|bc), ξ(b|ac)] (2.49)

ξ(ab|c) = G(5)[ξ(a|c), ξ(b|c), ξ(a|bc)] (2.50)

ξ(ab|c) = G(6)[ξ(a|c), ξ(a|bc), ξ(b|ac)] (2.51)

ξ(ab|c) = G(7)[ξ(a|c), ξ(b|c), ξ(a|bc), ξ(b|ac)] (2.52)
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We want a function G that is of general applicability. This means that the
arguments of G(1) . . . G(7) can be varied independently. Our goal is to go down
the list and eliminate those possibilities that are clearly unsatisfactory.

First some notation: complete certainty is denoted ξT , while complete disbe-
lief is ξF = 0, eq.(2.17). Derivatives are denoted with a subscript: the derivative
of G(3)(x, y) with respect to its second argument y is G(3)

2 (x, y).

Type 1: ξ(ab|c) = G(1)[ξ(a|c), ξ(b|c)]

The function G(1) is unsatisfactory because it does not take possible correla-
tions between a and b into account. For example, when a and b are mutually
exclusive — say, b = ãd, for some arbitrary d — we have ξ(ab|c) = ξF but
there are no constraints on either ξ(a|c) = x or ξ(b|c) = y. Thus, in order that
G(1)(x, y) = ξF for arbitrary choices of x and y, G(1) must be a constant which
is unacceptable.

Type 2: ξ(ab|c) = G(2)[ξ(a|c), ξ(a|bc)]

This function is unsatisfactory because it overlooks the plausibility of b|c [Smith
Erickson 1990]. For example: let a = “X is big” and b = “X is big and green”
so that ab = b. Then

ξ(b|c) = G(2)[ξ(a|c), ξ(a|abc)] or ξ(b|c) = G(2)[ξ(a|c), ξT ] , (2.53)

which is clearly unsatisfactory since “green” does not figure anywhere on the
right hand side.

Type 3: ξ(ab|c) = G(3)[ξ(a|c), ξ(b|ac)]

As we shall see this function turns out to be satisfactory.

Type 4: ξ(ab|c) = G(4)[ξ(a|bc), ξ(b|ac)]

This function strongly violates common sense: when a = b we have ξ(a|c) =
G(4)(ξT , ξT ), so that ξ(a|c) takes the same constant value irrespective of what
a might be [Smith Erickson 1990].

Type 5: ξ(ab|c) = G(5)[ξ(a|c), ξ(b|c), ξ(a|bc)]

This function turns out to be equivalent either to G(1) or to G(3) and can
therefore be ignored. The proof follows from associativity, (ab)c|d = a(bc)|d,
which leads to the constraint

G(5)
[
G(5)[ξ(a|d), ξ(b|d), ξ(a|bd)], ξ(c|d), G(5)[ξ(a|cd), ξ(b|cd), ξ(a|bcd)]

]
= G(5)[ξ(a|d), G(5)[ξ(b|d), ξ(c|d), ξ(b|cd)], ξ(a|bcd)]
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and, with the appropriate identifications,

G(5)[G(5)(x, y, z), u,G(5)(v, w, s)] = G(5)[x,G(5)(y, u, w), s] . (2.54)

Since the variables x, y . . . s can be varied independently of each other we can
take a partial derivative with respect to z,

G
(5)
1 [G(5)(x, y, z), u,G(5)(v, w, s)]G(5)

3 (x, y, z) = 0 . (2.55)

Therefore, either

G
(5)
3 (x, y, z) = 0 or G

(5)
1 [G(5)(x, y, z), u,G(5)(v, w, s)] = 0 . (2.56)

The first possibility says that G(5) is independent of its third argument which
means that it is of the type G(1) that has already been ruled out. The second
possibility says that G(5) is independent of its first argument which means that
it is already included among the type G(3).

Type 6: ξ(ab|c) = G(6)[ξ(a|c), ξ(a|bc), ξ(b|ac)]

This function turns out to be equivalent either to G(3) or to G(4) and can
therefore be ignored. The proof — which we omit because it is analogous to the
proof above for type 5 — also follows from associativity, (ab)c|d = a(bc)|d.

Type 7: ξ(ab|c) = G(7)[ξ(a|c), ξ(b|c), ξ(a|bc), ξ(b|ac)]

This function turns out to be equivalent either to G(5) or G(6) and can therefore
be ignored. Again the proof which uses associativity, (ab)c|d = a(bc)|d, is
omitted because it is analogous to type 5.

Conclusion:

The possible functions G that are viable candidates for a general theory of
inductive inference are equivalent to type G(3),

ξ(ab|c) = G[ξ(a|c), ξ(b|ac)] . (2.57)

2.3.2 The distributivity constraint

The or function G will be determined by requiring that it be compatible with
the regraduated and function F , which is just a sum. Consider three statements
a, b, and c, where the last two are mutually exclusive, in the context of a fourth,
d. Distributivity of and over or,

a (b ∨ c) = ab ∨ ac , (2.58)

implies that ξ (a (b ∨ c) |d) can be computed in two ways,

ξ (a (b ∨ c) |d) = ξ ((ab|d) ∨ (ac|d)) . (2.59)
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Using eq.(2.14) and (2.57) leads to

G[ξ (a|d) , ξ (b|ad) + ξ (c|ad)] = G[ξ (a|d) , ξ (b|ad)] +G[ξ (a|d) , ξ (c|ad)] ,

which we rewrite as

G (u, v + w) = G (u, v) +G (u,w) , (2.60)

where ξ (a|d) = u, ξ (b|ad) = v, and ξ (c|ad) = w.
To solve the functional equation (2.60) we first transform it into a differential

equation. Differentiate with respect to v and w,

∂2G (u, v + w)
∂v∂w

= 0 , (2.61)

and let v + w = z, to get
∂2G (u, z)

∂z2
= 0 , (2.62)

which shows that G is linear in its second argument,

G(u, v) = A(u)v +B(u) . (2.63)

Substituting back into eq.(2.60) gives B(u) = 0. To determine the function
A(u) we note that the degree to which we believe in ad|d is exactly the degree
to which we believe in a|d by itself.4 Therefore,

ξ(a|d) = ξ(ad|d) = G[ξ(a|d), ξ(d|ad)] = G[ξ(a|d), ξT ] , (2.64)

or,
u = A(u)ξT ⇒ A(u) =

u

ξT
. (2.65)

Therefore

G (u, v) =
uv

ξT
or

ξ (ab|d)
ξT

=
ξ (a|d)
ξT

ξ (b|ad)
ξT

. (2.66)

The constant ξT is easily regraduated away: just normalize ξ to p = ξ/ξT . The
corresponding regraduation of the sum rule, eq.(2.20) is equally trivial. The
degrees of belief ξ range from total disbelief ξF = 0 to total certainty ξT . The
corresponding regraduated values are pF = 0 and pT = 1.

The main result:

In the regraduated scale the and operation is represented by a simple product
rule,

p (ab|d) = p (a|d) p (b|ad) , (2.67)

4This argument is due to N. Caticha, private communication (2009).
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and the or operation is represented by the sum rule,

p (a ∨ b|d) = p (a|d) + p (b|d)− p(ab|d) . (2.68)

Degrees of belief p measured in this particularly convenient regraduated scale
will be called “probabilities”. The degrees of belief p range from total disbelief
pF = 0 to total certainty pT = 1.

Conclusion:

A state of partial knowledge —a web of interconnected rational beliefs—
is mathematically represented by quantities that are to be manipulated ac-
cording to the rules of probability theory. Degrees of rational belief are
probabilities.

Other equivalent representations are possible but less convenient; the choice is
made on purely pragmatic grounds.

2.4 Some remarks on the sum and product rules

2.4.1 On meaning, ignorance and randomness

The product and sum rules can be used as the starting point for a theory of
probability: Quite independently of what probabilities could possibly mean,
we can develop a formalism of real numbers (measures) that are manipulated
according to eqs.(2.67) and (2.68). This is the approach taken by Kolmogorov.
The advantage is mathematical clarity and rigor. The disadvantage, of course,
is that in actual applications the issue of meaning, of interpretation, turns out
to be important because it affects how and why probabilities are used. It affects
how one sets up the equations and it even affects our perception of what counts
as a solution.

The advantage of the approach due to Cox is that the issue of meaning is
clarified from the start: the theory was designed to apply to degrees of belief.
Consistency requires that these numbers be manipulated according to the rules
of probability theory. This is all we need. There is no reference to measures of
sets or large ensembles of trials or even to random variables. This is remark-
able: it means that we can apply the powerful methods of probability theory
to thinking and reasoning about problems where nothing random is going on,
and to single events for which the notion of an ensemble is either absurd or at
best highly contrived and artificial. Thus, probability theory is the method for
consistent reasoning in situations where the information available might be in-
sufficient to reach certainty: probability is the tool for dealing with uncertainty
and ignorance.

This interpretation is not in conflict with the common view that probabil-
ities are associated with randomness. It may, of course, happen that there is
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an unknown influence that affects the system in unpredictable ways and that
there is a good reason why this influence remains unknown, namely, it is so com-
plicated that the information necessary to characterize it cannot be supplied.
Such an influence we call ‘random’. Thus, being random is just one among
many possible reasons why a quantity might be uncertain or unknown.

2.4.2 Independent and mutually exclusive events

In special cases the sum and product rules can be rewritten in various useful
ways. Two statements or events a and b are said to be independent if the
probability of one is not altered by information about the truth of the other.
More specifically, event a is independent of b (given c) if

p (a|bc) = p (a|c) . (2.69)

For independent events the product rule simplifies to

p(ab|c) = p(a|c)p(b|c) or p(ab) = p(a)p(b) . (2.70)

The symmetry of these expressions implies that p (b|ac) = p (b|c) as well: if a is
independent of b, then b is independent of a.

Two statements or events a1 and a2 are mutually exclusive given b if they
cannot be true simultaneously, i.e., p(a1a2|b) = 0. Notice that neither p(a1|b)
nor p(a2|b) need vanish. For mutually exclusive events the sum rule simplifies
to

p(a1 + a2|b) = p(a1|b) + p(a2|b). (2.71)

The generalization to many mutually exclusive statements a1, a2, . . . , an (mu-
tually exclusive given b) is immediate,

p(a1 + a2 + · · ·+ an|b) =
n∑
i=1

p(ai|b) . (2.72)

If one of the statements a1, a2, . . . , an is necessarily true, i.e., they cover all
possibilities, they are said to be exhaustive. Then their conjunction is necessarily
true, a1 + a2 + · · ·+ an = >, so that for any b,

p(>|b) = p(a1 + a2 + · · ·+ an|b) = 1. (2.73)

If, in addition to being exhaustive, the statements a1, a2, . . . , an are also mutu-
ally exclusive then

p(>) =
n∑
i=1

p(ai) = 1 . (2.74)

A useful generalization involving the probabilities p(ai|b) conditional on any
arbitrary proposition b is

n∑
i=1

p(ai|b) = 1 . (2.75)

The proof is straightforward:

p(b) = p(b>) =
n∑
i=1

p(bai) = p(b)
n∑
i=1

p(ai|b) . (2.76)
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2.4.3 Marginalization

Once we decide that it is legitimate to quantify degrees of belief by real numbers
p the problem becomes how do we assign these numbers. The sum and product
rules show how we should assign probabilities to some statements once proba-
bilities have been assigned to others. Here is an important example of how this
works.

We want to assign a probability to a particular statement b. Let a1, a2, . . . , an
be mutually exclusive and exhaustive statements and suppose that the proba-
bilities of the conjunctions baj are known. We want to calculate p(b) given the
joint probabilities p(baj). The solution is straightforward: sum p(baj) over all
ajs, use the product rule, and eq.(2.75) to get∑

j

p(baj) = p(b)
∑
j

p(aj |b) = p(b) . (2.77)

This procedure, called marginalization, is quite useful when we want to eliminate
uninteresting variables a so we can concentrate on those variables b that really
matter to us. The distribution p(b) is referred to as the marginal of the joint
distribution p(ab).

For a second use of formulas such as these suppose that we happen to know
the conditional probabilities p(b|a). When a is known we can make good infer-
ences about b, but what can we tell about b when we are uncertain about the
actual value of a? Then we proceed as follows. Use of the sum and product
rules gives

p(b) =
∑
j

p(baj) =
∑
j

p(b|aj)p(aj) . (2.78)

This is quite reasonable: the probability of b is the probability we would assign
if the value of a were precisely known, averaged over all as. The assignment p(b)
clearly depends on how uncertain we are about the value of a. In the extreme
case when we are totally certain that a takes the particular value ak we have
p(aj) = δjk and we recover p(b) = p(b|ak) as expected.

2.5 The expected value

Suppose we know that a quantity x can take values xi with probabilities pi.
Sometimes we need an estimate for the quantity x. What should we choose? It
seems reasonable that those values xi that have larger pi should have a dominant
contribution to x. We therefore make the following reasonable choice: The
expected value of the quantity x is denoted by 〈x〉 and is given by

〈x〉 def=
∑
i

pi xi . (2.79)

The term ‘expected’ value is not always an appropriate one because 〈x〉 may
not be one of the actually allowed values xi and, therefore, it is not a value we
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would expect. The expected value of a die toss is (1 + · · ·+ 6)/6 = 3.5 which is
not an allowed result.

Using the average 〈x〉 as an estimate for the expected value of x is reason-
able, but it is also somewhat arbitrary. Alternative estimates are possible; for
example, one could have chosen the value for which the probability is maximum
— this is called the ‘mode’. This raises two questions.

The first question is whether 〈x〉 is a good estimate. If the probability distri-
bution is sharply peaked all the values of x that have appreciable probabilities
are close to each other and to 〈x〉. Then 〈x〉 is a good estimate. But if the
distribution is broad the actual value of x may deviate from 〈x〉 considerably.
To describe quantitatively how large this deviation might be we need to describe
how broad the probability distribution is.

A convenient measure of the width of the distribution is the root mean square
(rms) deviation defined by

∆x def=
〈

(x− 〈x〉)2
〉1/2

. (2.80)

The quantity ∆x is also called the standard deviation, its square (∆x)2 is called
the variance. The term ‘variance’ may suggest variability or spread but there
is no implication that x is necessarily fluctuating or that its values are spread;
∆x merely refers to our incomplete knowledge about x.

If ∆x� 〈x〉 then x will not deviate much from 〈x〉 and we expect 〈x〉 to be
a good estimate.

The definition of ∆x is somewhat arbitrary. It is dictated both by common
sense and by convenience. Alternatively we could have chosen to define the
width of the distribution as 〈|x− 〈x〉|〉 or 〈(x− 〈x〉)4〉1/4 but these definitions
are less convenient for calculations.

Now that we have a way of deciding whether 〈x〉 is a good estimate for x
we may raise a second question: Is there such a thing as the “best” estimate
for x? Consider another estimate x′. We expect x′ to be precise provided the
deviations from it are small, i.e., 〈(x− x′)2〉 is small. The best x′ is that for
which its variance is a minimum

d

dx′
〈(x− x′)2〉

∣∣∣∣
x′best

= 0, (2.81)

which implies x′best = 〈x〉. Conclusion: 〈x〉 is the best estimate for x when by
“best” we mean the estimate with the smallest variance. But other choices are
possible, for example, had we actually decided to minimize the width 〈|x− x′|〉
the best estimate would have been the median, x′best = xm, a value such that
Prob(x < xm) = Prob(x > xm) = 1/2.

We conclude this section by mentioning two important identities that will
be repeatedly used in what follows. The first is that the average deviation from
the mean vanishes,

〈x− 〈x〉〉 = 0, (2.82)
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because deviations from the mean are just as likely to be positive and negative.
The second useful identity is〈

(x− 〈x〉)2
〉

= 〈x2〉 − 〈x〉2. (2.83)

The proofs are trivial — just use the definition (2.79).

2.6 The binomial distribution

Suppose the probability of a certain event α is θ. The probability of α not
happening is 1 − θ. Using the theorems discussed earlier we can obtain the
probability that α happens m times in N independent trials. The probability
that α happens in the first m trials and not-α or α̃ happens in the subsequent
N −m trials is, using the product rule for independent events, θm(1− θ)N−m.
But this is only one particular ordering of the m αs and the (N−m) α̃s. There
are

N !
m!(N −m)!

=
(
N

m

)
(2.84)

such orderings. Therefore, using the sum rule for mutually exclusive events, the
probability of m αs in N independent trials irrespective of the particular order
of αs and α̃s is

P (m|N, θ) =
(
N

m

)
θm(1− θ)N−m. (2.85)

This is called the binomial distribution. θ is a parameter that labels the distri-
butions P (m|N, θ); its interpretation is given by P (1|1, θ) = θ.

Using the binomial theorem (hence the name of the distribution) one can
show these probabilities are correctly normalized:

N∑
m=0

P (m|N, θ) =
N∑
m=0

(
N

m

)
θm(1− θ)N−m = (θ + (1− θ))N = 1. (2.86)

The range of applicability of this distribution is enormous. Whenever trials are
independent of each other (i.e., the outcome of one trial has no influence on the
outcome of another, or alternatively, knowing the outcome of one trial provides
us with no information about the possible outcomes of another) the distribution
is binomial. Independence is the crucial feature.

The expected number of αs is

〈m〉 =
N∑
m=0

mP (m|N, θ) =
N∑
m=0

m

(
N

m

)
θm(1− θ)N−m.

This sum over m is complicated. The following elegant trick is useful. Consider
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the sum

S(θ, φ) =
N∑
m=0

m

(
N

m

)
θmφN−m,

where θ and φ are independent variables. After we calculate S we will replace
φ by 1− θ to obtain the desired result, 〈m〉 = S(θ, 1− θ). The calculation of S
is easy once we realize that mθm = θ ∂

∂θ θ
m. Then, using the binomial theorem

S(θ, φ) = θ
∂

∂θ

N∑
m=0

(
N

m

)
θmφN−m = θ

∂

∂θ
(θ + φ)N = Nθ (θ + φ)N−1

.

Replacing φ by 1−θ we obtain our best estimate for the expected number of αs

〈m〉 = Nθ . (2.87)

This is the best estimate, but how good is it? To answer we need to calculate
∆m. The variance is

(∆m)2 =
〈

(m− 〈m〉)2
〉

= 〈m2〉 − 〈m〉2,

which requires we calculate 〈m2〉,

〈m2〉 =
N∑
m=0

m2P (m|N, θ) =
N∑
m=0

m2

(
N

m

)
θm(1− θ)N−m.

We can use the same trick we used before to get 〈m〉:

S′(θ, φ) =
N∑
m=0

m2

(
N

m

)
θmφN−m = θ

∂

∂θ

(
θ
∂

∂θ
(θ + φ)N

)
.

Therefore,
〈m2〉 = (Nθ)2 +Nθ(1− θ), (2.88)

and the final result for the rms deviation ∆m is

∆m =
√
Nθ (1− θ). (2.89)

Now we can address the question of how good an estimate 〈m〉 is. Notice that
∆m grows with N . This might seem to suggest that our estimate of m gets
worse for large N but this is not quite true because 〈m〉 also grows with N . The
ratio

∆m
〈m〉

=

√
(1− θ)
Nθ

∝ 1
N1/2

, (2.90)

shows that while both the estimate 〈m〉 and its uncertainty ∆m grow with N ,
the relative uncertainty decreases.
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2.7 Probability vs. frequency: the law of large
numbers

It is important to note that the “frequency” f = m/N of αs obtained in one
N -trial sequence is not equal to θ. For one given fixed value of θ, the frequency
f can take any one of the values 0/N, 1/N, 2/N, . . . N/N . What is equal to θ is
not the frequency itself but its expected value. Using eq.(2.87),

〈f〉 = 〈m
N
〉 = θ . (2.91)

For large N the distribution is quite narrow and the probability that the
observed frequency of αs differs from θ tends to zero as N →∞. Using eq.(2.89),

∆f = ∆
(m
N

)
=

∆m
N

=

√
θ (1− θ)

N
∝ 1
N1/2

. (2.92)

The same ideas are more precisely conveyed by a theorem due to Bernoulli
known as the law of large numbers. A simple proof of the theorem involves an
inequality due to Tchebyshev. Let ρ (x) dx be the probability that a variable X
lies in the range between x and x+ dx,

P (x < X < x+ dx) = ρ (x) dx.

The variance of X satisfies

(∆x)2 =
∫

(x− 〈x〉)2
ρ (x) dx ≥

∫
|x−〈x〉|≥ε

(x− 〈x〉)2
ρ (x) dx ,

where ε is an arbitrary constant. Replacing (x− 〈x〉)2 by its least value ε2 gives

(∆x)2 ≥ ε2

∫
|x−〈x〉|≥ε

ρ (x) dx = ε2 P (|x− 〈x〉| ≥ ε) ,

which is Tchebyshev’s inequality,

P (|x− 〈x〉| ≥ ε) ≤
(

∆x
ε

)2

. (2.93)

Next we prove Bernoulli’s theorem. Consider first a special case. Let θ be
the probability of outcome α in an experiment E, P (α|E) = θ. In a sequence
of N independent repetitions of E the probability of m outcomes α is binomial.
Substituting

〈f〉 = θ and (∆f)2 =
θ (1− θ)

N

into Tchebyshev’s inequality we get Bernoulli’s theorem,

P
(
|f − θ| ≥ ε |EN

)
≤ θ (1− θ)

Nε2
. (2.94)
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Therefore, the probability that the observed frequency f is appreciably different
from θ tends to zero as N →∞. Or equivalently: for any small ε, the probability
that the observed frequency f = m/N lies in the interval between θ − ε/2 and
θ + ε/2 tends to unity as N →∞.,

lim
N→∞

P
(
|f − θ| ≤ ε |EN

)
= 1 . (2.95)

In the mathematical/statistical literature this result is commonly stated in the
form

f −→ θ in probability. (2.96)

The qualifying words ‘in probability’ are crucial: we are not saying that the
observed f tends to θ for large N . What vanishes for large N is not the difference
f−θ itself, but rather the probability that |f − θ| is larger than a certain (small)
amount.

Thus, probabilities and frequencies are related to each other but they are
not the same thing. Since 〈f〉 = θ, one might perhaps be tempted to define the
probability θ in terms of the expected frequency 〈f〉, but this does not work.
The problem is that the notion of expected value presupposes that the concept of
probability has already been defined. Defining probability in terms of expected
values would be circular.5 We can express this important point in yet a different
way: We cannot define probability as a limiting frequency limN→∞ f because
there exists no frequency function f = f(N); the limit makes no sense.

The law of large numbers is easily generalized beyond the binomial distribu-
tion. Consider the average

x =
1
N

N∑
r=1

xr , (2.97)

where x1, . . . , xN are N independent variables with the same mean 〈xr〉 = µ and
variance var(xr) = (∆xr)

2 = σ2. (In the previous discussion leading to eq.(2.94)
each variable xr is either 1 or 0 according to whether outcome α happens or not
in the rth repetition of the experiment E.)

To apply Tchebyshev’s inequality, eq.(2.93), we need the mean and the vari-
ance of x. Clearly,

〈x〉 =
1
N

N∑
r=1
〈xr〉 =

1
N
Nµ = µ . (2.98)

Furthermore, since the xr are independent, their variances are additive. For
example,

var(x1 + x2) = var(x1) + var(x2) . (2.99)

(Prove it.) Therefore,

var(x) =
N∑
r=1

var(
xr
N

) = N
( σ
N

)2

=
σ2

N
. (2.100)

5Expected values can be introduced independently of probability –see [Jeffrey 2004]– but
this does not help make probabilities equal to frequencies either.
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Tchebyshev’s inequality now gives,

P
(
|x− µ| ≥ ε|EN

)
≤ σ2

Nε2
(2.101)

so that for any ε > 0

lim
N→∞

P
(
|x− µ| ≥ ε|EN

)
= 0 or lim

N→∞
P
(
|x− µ| ≤ ε|EN

)
= 1 , (2.102)

or
x −→ µ in probability. (2.103)

Again, what vanishes for large N is not the difference x − µ itself, but rather
the probability that |x− µ| is larger than any given small amount.

2.8 The Gaussian distribution

The Gaussian distribution is quite remarkable, it applies to a wide variety of
problems such as the distribution of errors affecting experimental data, the
distribution of velocities of molecules in gases and liquids, the distribution of
fluctuations of thermodynamical quantities, and so on and on. One suspects
that a deeply fundamental reason must exist for its wide applicability. The
Central Limit Theorem discussed below provides an explanation.

2.8.1 The de Moivre-Laplace theorem

The Gaussian distribution turns out to be a special case of the binomial distri-
bution. It applies to situations when the number N of trials and the expected
number of αs, 〈m〉 = Nθ, are both very large (i.e., N large, θ not too small).

To find an analytical expression for the Gaussian distribution we note that
when N is large the binomial distribution,

P (m|N, θ) =
N !

m!(N −m)!
θm(1− θ)N−m,

is very sharply peaked: P (m|N, θ) is essentially zero unless m is very close to
〈m〉 = Nθ. This suggests that to find a good approximation for P we need to
pay special attention to a very small range of m. One might be tempted to
follow the usual approach and directly expand in a Taylor series but a problem
becomes immediately apparent: if a small change in m produces a small change
in P then we only need to keep the first few terms, but in our case P is a very
sharp function. To reproduce this kind of behavior we need a huge number
of terms in the series expansion which is impractical. Having diagnosed the
problem one can easily find a cure: instead of finding a Taylor expansion for
the rapidly varying P , one finds an expansion for log P which varies much more
smoothly.
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Let us therefore expand log P about its maximum at m0, the location of
which is at this point still unknown. The first few terms are

logP = logP |m0
+
d logP
dm

∣∣∣∣
m0

(m−m0) +
1
2
d2 logP
dm2

∣∣∣∣
m0

(m−m0)2 + . . . ,

where

logP = logN !− logm!− log (N −m)! +m log θ + (N −m) log (1− θ) .

What is a derivative with respect to an integer? For large m the function logm!
varies so slowly (relative to the huge value of logm! itself) that we may consider
m to be a continuous variable. Then

d logm!
dm

≈ logm!− log (m− 1)!
1

= log
m!

(m− 1)!
= logm . (2.104)

Integrating one obtains a very useful approximation — called the Stirling ap-
proximation — for the logarithm of a large factorial

logm! ≈
∫ m

0

log x dx = (x log x− x)|m0 = m log m−m .

A somewhat better expression which includes the next term in the Stirling ex-
pansion is

logm! ≈ m logm−m+
1
2

log 2πm+ . . . (2.105)

Notice that the third term is much smaller than the first two: the first two
terms are of order m while the last is of order logm. For m = 1023, logm is
only 55.3.

The derivatives in the Taylor expansion are

d logP
dm

= − logm+ log (n−m) + log θ − log (1− θ) = log
θ(N −m)
m(1− θ)

,

and
d2 logP
dm2

= − 1
m
− 1
N −m

=
−N

m(N −m)
.

To find the value m0 where P is maximum set d logP/dm = 0. This gives
m0 = Nθ = 〈m〉, and substituting into the second derivative of logP we get

d2 logP
dm2

∣∣∣∣
〈m〉

= − 1
Nθ (1− θ)

= − 1
(∆m)2 .

Therefore

logP = logP (〈m〉)− (m− 〈m〉)2

2 (∆m)2 + . . .
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or

P (m) = P (〈m〉) exp

[
− (m− 〈m〉)2

2 (∆m)2

]
.

The remaining unknown constant P (〈m〉) can be evaluated by requiring that
the distribution P (m) be properly normalized, that is

1 =
N∑
m=0

P (m) ≈
∫ N

0

P (x) dx ≈
∫ ∞
−∞

P (x) dx.

Using ∫ ∞
−∞

e−αx
2
dx =

√
π

α
,

we get

P (〈m〉) =
1√

2π (∆m)2
.

Thus, the expression for the Gaussian distribution with mean 〈m〉 and rms
deviation ∆m is

P (m) =
1√

2π (∆m)2
exp

[
− (m− 〈m〉)2

2 (∆m)2

]
. (2.106)

It can be rewritten as a probability for the frequency f = m/N using 〈m〉 = Nθ

and (∆m)2 = Nθ (1− θ). The probability that f lies in the small range df =
1/N is

p(f)df =
1√

2πσ2
N

exp

[
− (f − θ)2

2σ2
N

]
df , (2.107)

where σ2
N = θ(1− θ)/N .

To appreciate the significance of the theorem consider a macroscopic variable
x built up by adding a large number of small contributions, x =

∑N
n=1 ξn, where

the ξn are statistically independent. We assume that each ξn takes the value ε
with probability θ, and the value 0 with probability 1− θ. Then the probability
that x takes the value mε is given by the binomial distribution P (m|N, θ). For
large N the probability that x lies in the small range mε± dx/2 where dx = ε
is

p(x)dx =
1√

2π (∆x)2
exp

[
− (x− 〈x〉)2

2 (∆x)2

]
dx , (2.108)

where 〈x〉 = Nθε and (∆x)2 = Nθ(1 − θ)ε2. Thus, the Gaussian distribution
arises whenever we have a quantity that is the result of adding a large number
of small independent contributions. The derivation above assumes that the
microscopic contributions are discrete (either 0 or ε), and identically distributed
but, as shown in the next section, both of these conditions can be relaxed.
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2.8.2 The Central Limit Theorem

Consider the average

x =
1
N

N∑
r=1

xr , (2.109)

of N independent variables x1, . . . , xN . Our goal is to calculate the probability
of x in the limit of large N . Let pr(xr) be the probability distribution for the
rth variable with

〈xr〉 = µr and (∆xr)
2 = σ2

r . (2.110)

The probability density for x is given by the integral

P (x) =
∫
dx1 . . . dxN p1(x1) . . . pN (xN ) δ

(
x− 1

N

N∑
r=1

xr

)
. (2.111)

(This is just an exercise in the sum and product rules.) To calculate P (x)
introduce the averages

µ̄
def=

1
N

N∑
r=1

µr and σ̄2 def=
1
N

N∑
r=1

σ2
r , (2.112)

and consider the distribution for the variable x− µ̄ which is Pr(x− µ̄) = P (x).
Its Fourier transform,

F (k) =
∫
dx Pr(x− µ̄)eik(x−µ̄) =

∫
dxP (x)eik(x−µ̄)

=
∫
dx1 . . . dxN p1(x1) . . . pN (xN ) exp

[
ik

N

N∑
r=1

(xr − µr)
]
,

can be rearranged into a product

F (k) =
[∫

dx1 p1(x1)ei
k
N (x1−µ1)

]
. . .

[∫
dxN pN (xN )ei

k
N (xN−µN )

]
. (2.113)

The Fourier transform f(k) of a distribution p(ξ) has many interesting and
useful properties. For example,

f(k) =
∫
dξ p(ξ)eikξ =

〈
eikξ

〉
, (2.114)

and the series expansion of the exponential gives

f(k) =
〈 ∞∑
n=0

(ikξ)n

n!

〉
=
∞∑
n=0

(ik)n

n!
〈ξn〉 . (2.115)

In words, the coefficients of the Taylor expansion of f(k) give all the moments
of p(ξ). The Fourier transform f(k) is called the moment generating function
and also the characteristic function of the distribution.
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Going back to our calculation of P (x), eq.(2.111), its Fourier transform,
eq.(2.113) is,

F (k) =
N∏
r=1

fr(
k

N
) , (2.116)

where

fr(
k

N
) =

∫
dxr pr(xr)ei

k
N (xr−µr)

= 1 + i
k

N
〈xr − µr〉 −

k2

2N2

〈
(xr − µr)2

〉
+ . . .

= 1− k2σ2
r

2N2
+O

(
k3

N3

)
. (2.117)

For a sufficiently large N this can be written as

fr(
k

N
) −→ exp

(
−k

2σ2
r

2N2

)
. (2.118)

so that

F (k) = exp
(
− k2

2N2

N∑
r=1

σ2
r

)
= exp

(
−k

2σ̄2

2N

)
. (2.119)

Finally, taking the inverse Fourier transform, we obtain the desired result, which
is called the central limit theorem

Pr(x− µ̄) = P (x) =
1√

2πσ̄2/N
exp

(
− (x− µ̄)2

2σ̄2/N

)
. (2.120)

To conclude we comment on its significance. We have shown that almost
independently of the form of the distributions pr (xr) the distribution of the
average x is Gaussian centered at µ̄ with standard deviation σ̄2/N . Not only
the pr (xr) need not be binomial, they do not even have to be equal to each other.
This helps to explain the widespread applicability of the Gaussian distribution:
it applies to almost any ‘macro-variable’ (such as x) that results from adding a
large number of independent ‘micro-variables’ (such as xr/N).

But there are restrictions; although very common, Gaussian distributions do
not obtain always. A careful look at the derivation above shows the crucial step
was taken in eqs.(2.117) and (2.119) where we neglected the contributions of the
third and higher moments. Earlier we mentioned that the success of Gaussian
distributions is due to the fact that they codify the information that happens to
be relevant to the particular phenomenon under consideration. Now we see what
that relevant information might be: it is contained in the first two moments,
the mean and the variance — Gaussian distributions are successful when third
and higher moments are irrelevant. (This can be stated more precisely in terms
of the so-called Lyapunov condition.)

Later we shall approach this same problem from the point of view of the
method of maximum entropy and there we will show that, indeed, the Gaussian
distribution can be derived as the distribution that codifies information about
the mean and the variance while remaining maximally ignorant about everything
else.
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2.9 Updating probabilities: Bayes’ rule

Now that we have solved the problem of how to represent a state of knowledge
as a consistent web of interconnected beliefs we can address the problem of
updating from one consistent web of beliefs to another when new information
becomes available. We will only consider those special situations where the
information to be processed is in the form of data. The question of what else,
beyond data, could possibly qualify as information will be addressed in later
chapters.

Specifically the problem is to update our beliefs about θ (either a single
parameter or many) on the basis of data x (either a single number or several)
and of a known relation between θ and x. The updating consists of replacing the
prior probability distribution q(θ) that represents our beliefs before the data is
processed, by a posterior distribution p(θ) that applies after the data has been
processed.

2.9.1 Formulating the problem

We must first describe the state of our knowledge before the data has been
collected or, if the data has already been collected, before we have taken it into
account. At this stage of the game not only we do not know θ, we do not know
x either. As mentioned above, in order to infer θ from x we must also know how
these two quantities are related to each other. Without this information one
cannot proceed further. Fortunately we usually know enough about the physics
of an experiment that if θ were known we would have a fairly good idea of what
values of x to expect. For example, given a value θ for the charge of the electron,
we can calculate the velocity x of an oil drop in Millikan’s experiment, add
some uncertainty in the form of Gaussian noise and we have a very reasonable
estimate of the conditional distribution q(x|θ). The distribution q(x|θ) is called
the sampling distribution and also (less appropriately) the likelihood. We will
assume it is known.

We should emphasize that the crucial information about how x is related to
θ is contained in the functional form of the distribution q(x|θ) —say, whether
it is a Gaussian or a Cauchy distribution— and not in the actual values of the
arguments x and θ which are, at this point, still unknown.

Thus, to describe the web of prior beliefs we must know the prior q(θ) and
also the sampling distribution q(x|θ). This means that we must know the full
joint distribution,

q(θ, x) = q(θ)q(x|θ) . (2.121)

This is very important: we must be clear about what we are talking about. The
relevant universe of discourse is neither the space Θ of possible parameters θ
nor the space X of possible data x. It is rather the product space Θ × X and
the probability distributions that concern us are the joint distributions q(θ, x).

Next we collect data: the observed value turns out to be x′. Our goal is
to use this information to update to a web of posterior beliefs represented by a
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new joint distribution p(θ, x). How shall we choose p(θ, x)? The new data tells
us that the value of x is now known to be x′. Therefore, the new web of beliefs
is constrained to satisfy

p(x) =
∫
dθ p(θ, x) = δ(x− x′) . (2.122)

(For simplicity we have here assumed that x is a continuous variable; had x been
discrete the Dirac δs would be replaced by Kronecker δs.) This is all we know
and it is not sufficient to determine p(θ, x). Apart from the general requirement
that the new web of beliefs must be internally consistent there is nothing in any
of our previous considerations that induces us to prefer one consistent web over
another. A new principle is needed.

2.9.2 Minimal updating: Bayes’ rule

The basic updating principle that we adopt below reflects the conviction that
what we have learned in the past, the prior knowledge, is a valuable resource
that should not be squandered. Prior beliefs should be revised only to extent
that the new information has rendered them obsolete and the updated web of
beliefs should coincide with the old one as much as possible. We propose to
adopt the following principle of parsimony,

Principle of Minimal Updating (PMU) The web of beliefs needs to
be revised only to the extent required by the new data.

This seems so reasonable and natural that an explicit statement may seem
superfluous. The important point, however, is that it is not logically necessary.
We could update in many other ways that preserve both internal consistency
and consistency with the new information.

As we saw above the new data, eq.(2.122), does not fully determine the joint
distribution

p(θ, x) = p(x)p(θ|x) = δ(x− x′)p(θ|x) . (2.123)

All distributions of the form

p(θ, x) = δ(x− x′)p(θ|x′) , (2.124)

where p(θ|x′) is quite arbitrary, are compatible with the newly acquired data.
We still need to assign p(θ|x′). It is at this point that we invoke the PMU. We
stipulate that, having updated q(x) to p(x) = δ(x − x′), no further revision is
needed and we set

p(θ|x′) = q(θ|x′) . ((PMU))

Therefore, the web of posterior beliefs is described by

p(θ, x) = δ(x− x′)q(θ|x′) . (2.125)

To obtain the posterior probability for θ marginalize over x,

p(θ) =
∫
dx p(θ, x) =

∫
dx δ(x− x′)q(θ|x′) , (2.126)
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to get

p(θ) = q(θ|x′) . (2.127)

In words, the posterior probability equals the prior conditional probability of θ
given x′. This result, known as Bayes’ rule, is extremely reasonable: we maintain
those beliefs about θ that are consistent with the data values x′ that turned out
to be true. Beliefs based on values of x that were not observed are discarded
because they are now known to be false. ‘Maintain’ is the key word: it reflects
the PMU in action.

Using the product rule

q(θ, x′) = q(θ)q(x′|θ) = q(x′)q(θ|x′) , (2.128)

Bayes’ rule can be written as

p(θ) = q(θ)
q(x′|θ)
q(x′)

. (2.129)

The interpretation of Bayes’ rule is straightforward: according to eq.(2.129)
the posterior distribution p(θ) gives preference to those values of θ that were
previously preferred as described by the prior q(θ), but this is now modulated
by the likelihood factor q(x′|θ) in such a way as to enhance our preference for
values of θ that make the observed data more likely, less surprising. The factor
in the denominator q(x′), which is the prior probability of the data, is given by

q(x′) =
∫
q(θ)q(x′|θ) dθ , (2.130)

and plays the role of a normalization constant for the posterior distribution p(θ).
It does not help to discriminate one value of θ from another because it affects
all values of θ equally. As we shall see later in this chapter, q(x′) turns out to
be important in problems of model selection.
Remark: Bayes’ rule is often written in the form

q(θ|x′) = q(θ)
q(x′|θ)
q(x′)

, (2.131)

and called Bayes’ theorem. This formula is very simple; perhaps it is too simple.
It is just a restatement of the product rule, eq.(2.128), and therefore it is a
simple consequence of the internal consistency of the prior web of beliefs. The
drawback of this formula is that the left hand side is not the posterior but
rather the prior conditional probability; it obscures the fact that an additional
principle – the PMU – was needed for updating.

Neither the rule, eq.(6.100), nor the theorem, eq.(2.131), was ever actually
written down by Bayes. The person who first explicitly stated the theorem and,
more importantly, who first realized its deep significance was Laplace.
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Example: Is there life on Mars?

Suppose we are interested in whether there is life on Mars or not. How is the
probability that there is life on Mars altered by new data indicating the presence
of water on Mars. Let θ = ‘There is life on Mars’. The prior information
includes the fact I = ‘All known life forms require water’. The new data is that
x′ = ‘There is water on Mars’. Let us look at Bayes’ rule. We can’t say much
about q (x′|I) but whatever its value it is definitely less than 1. On the other
hand q (x′|θI) ≈ 1. Therefore the factor multiplying the prior is larger than
1. Our belief in the truth of θ is strengthened by the new data x′. This is
just common sense, but notice that this kind of probabilistic reasoning cannot
be carried out if one adheres to a strictly frequentist interpretation — there is
no set of trials. The name ‘Bayesian probabilities’ given to ‘degrees of belief’
originates in the fact that it is only under this interpretation that the full power
of Bayes’ rule can be exploited. Everybody can prove Bayes’ theorem; only
Bayesians can reap the advantages of Bayes’ rule.

Example: Testing positive for a rare disease

Suppose you are tested for a disease, say cancer, and the test turns out to be
positive. Suppose further that the test is said to be 99% accurate. Should you
panic? It may be wise to proceed with caution.

One should start by explaining that ‘99% accurate’ means that when the test
is applied to people known to have cancer the result is positive 99% of the time,
and when applied to people known to be healthy, the result is negative 99% of
the time. We express this accuracy as q(y|c) = A = 0.99 and q(n|c̃) = A = 0.99
(y and n stand for ‘positive’ and ‘negative’, c and c̃ stand for ‘cancer’ or ‘no
cancer’). There is a 1% probability of false positives, q(y|c̃) = 1−A, and a 1%
probability of false negatives, q(n|c) = 1−A.

On the other hand, what we really want to know is p(c) = q(c|y), the prob-
ability of having cancer given that you tested positive. This is not the same
as the probability of testing positive given that you have cancer, q(y|c); the
two probabilities are not the same thing! So there might be some hope. The
connection between what we want, q(c|y), and what we know, q(y|c), is given
by Bayes’ theorem,

q(c|y) =
q(c)q(y|c)
q(y)

.

An important virtue of Bayes’ rule is that it doesn’t just tell you how to
process information; it also tells you what information you should seek. In this
case one should find q(c), the probability of having cancer irrespective of being
tested positive or negative. Suppose you inquire and find that the incidence of
cancer in the general population is 1%; this means that q(c) = 0.01. Thus,

q(c|y) =
q(c)A
q(y)
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One also needs to know q(y), the probability of the test being positive irre-
spective of whether the person has cancer or not. To obtain q(y) use

q(c̃|y) =
q(c̃)q(y|c̃)
q(y)

=
(1− q(c)) (1−A)

q(y)
,

and q(c|y) + q(c̃|y) = 1 which leads to our final answer

q(c|y) =
q(c)A

q(c)A+ (1− q(c)) (1−A)
. (2.132)

For an accuracy A = 0.99 and an incidence q(c) = 0.01 we get q(c|y) = 50%
which is not nearly as bad as one might have originally feared. Should one
dismiss the information provided by the test as misleading? No. Note that the
probability of having cancer prior to the test was 1% and on learning the test
result this was raised all the way up to 50%. Note also that when the disease
is really rare, q(c) → 0, we still get q(c|y) → 0 even when the test is quite
accurate. This means that for rare diseases most positive tests turn out to be
false positives.

We conclude that both the prior and the data contain important information;
neither should be neglected.
Remark: The previous discussion illustrates a mistake that is common in verbal
discussions: if h denotes a hypothesis and e is some evidence, it is quite obvious
that we should not confuse q(e|h) with q(h|e). However, when expressed verbally
the distinction is not nearly as obvious. For example, in a criminal trial jurors
might be told that if the defendant were guilty (the hypothesis) the probability
of some observed evidence would be large, and the jurors might easily be misled
into concluding that given the evidence the probability is high that the defendant
is guilty. Lawyers call this the prosecutor’s fallacy.

Example: Uncertain data and Jeffrey’s rule

As before we want to update from a prior joint distribution q(θ, x) = q(x)q(θ|x)
to a posterior joint distribution p(θ, x) = p(x)p(θ|x) when information becomes
available. When the information is data x′ that precisely fixes the value of x,
we impose that p(x) = δ(x− x′). The remaining unknown p(θ|x) is determined
by invoking the PMU: no further updating is needed. This fixes p(θ|x′) to be
the old q(θ|x′) and yields Bayes’ rule.

It may happen, however, that there is a measurement error. The data x′

that was actually observed does not constrain the value of x completely. To be
explicit let us assume that the remaining uncertainty in x is well understood:
the observation x′ constrains our beliefs about x to a distribution Px′(x) that
happens to be known. Px′(x) could, for example, be a Gaussian distribution
centered at x′, with some known standard deviation σ.

This information is incorporated into the posterior distribution, p(θ, x) =
p(x)p(θ|x), by imposing that p(x) = Px′(x). The remaining conditional distri-
bution is, as before, determined by invoking the PMU,

p(θ|x) = q(θ|x) , (2.133)
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and therefore, the joint posterior is

p(θ, x) = Px′(x)q(θ|x) . (2.134)

Marginalizing over the uncertain x yields the new posterior for θ,

p(θ) =
∫
dxPx′(x)q(θ|x) . (2.135)

This generalization of Bayes’ rule is sometimes called Jeffrey’s conditionalization
rule [Jeffrey 2004].

Incidentally, this is an example of updating that shows that it is not always
the case that information comes purely in the form of data x′. In the derivation
above there clearly is some information in the observed value x′ and some in-
formation in the particular functional form of the distribution Px′(x), whether
it is a Gaussian or some other distribution.

The common element in our previous derivation of Bayes’ rule and in the
present derivation of Jeffrey’s rule is that in both cases the information being
processed is a constraint on the allowed posterior marginal distributions p(x).
Later we shall see (chapter 5) how the updating rules can be generalized still
further to apply to even more general constraints.

2.9.3 Multiple experiments, sequential updating

The problem here is to update our beliefs about θ on the basis of data x1, x2, . . .
obtained in a sequence of experiments. The relations between θ and the vari-
ables xi are given through known sampling distributions. We will assume that
the experiments are independent but they need not be identical. When the
experiments are not independent it is more appropriate to refer to them as be-
ing performed is a single more complex experiment the outcome of which is a
collection of numbers {x1, . . . , xn}.

For simplicity we deal with just two identical experiments. The prior web
of beliefs is described by the joint distribution,

q(x1, x2, θ) = q(θ)q(x1|θ)q(x2|θ) = q(x1)q(θ|x1)q(x2|θ) , (2.136)

where we have used independence, q(x2|θ, x1) = q(x2|θ).
The first experiment yields the data x1 = x′1. Bayes’ rule gives the updated

distribution for θ as

p1(θ) = q(θ|x′1) = q(θ)
q(x′1|θ)
q(x′1)

. (2.137)

The second experiment yields the data x2 = x′2 and requires a second application
of Bayes’ rule. The posterior p1(θ) in eq.(2.137) now plays the role of the prior
and the new posterior distribution for θ is

p12(θ) = p1(θ|x′2) = p1(θ)
q(x′2|θ)
p1(x′2)

, (2.138)
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therefore

p12(θ) ∝ q(θ)q(x′1|θ)q(x′2|θ) . (2.139)

We have explicitly followed the update from q(θ) to p1(θ) to p12(θ). The same
result is obtained if the data from both experiments were processed simultane-
ously,

p12(θ) = q(θ|x′1, x′2) ∝ q(θ)q(x′1, x′2|θ) . (2.140)

From the symmetry of eq.(2.139) it is clear that the same posterior p12(θ) is
obtained irrespective of the order that the data x′1 and x′2 are processed. The
commutativity of Bayesian updating follows from the special circumstance that
the information conveyed by one experiment does not revise or render obsolete
the information conveyed by the other experiment. As we generalize our meth-
ods of inference for processing other kinds of information that do interfere with
each other (and therefore one may render the other obsolete) we should not
expect, much less demand, that commutativity will continue to hold.

2.9.4 Remarks on priors

Let us return to the question of the extent to which probabilities incorporate
subjective and objective elements. We have seen that Bayes’ rule allows us
to update from prior to posterior distributions. The posterior distributions
incorporate the presumably objective information contained in the data plus
whatever earlier beliefs had been codified into the prior. To the extent that the
Bayes updating rule is itself unique one can claim that the posterior is “more
objective” than the prior. As we update more and more we should expect that
our probabilities should reflect more and more the input data and less and less
the original subjective prior distribution. In other words, some subjectivity
is unavoidable at the beginning of an inference chain, but it can be gradually
suppressed as more and more information is processed.

The problem of choosing the first prior in the inference chain is a difficult
one. We will tackle it in several different ways. Later in this chapter, as we
introduce some elementary notions of data analysis, we will address it in the
standard way: just make a “reasonable” guess — whatever that might mean.
With experience and intuition this seems to work well. But when addressing
new problems we have neither experience nor intuition and guessing is risky. We
would like to develop more systematic ways to proceed. Indeed it can be shown
that certain types of prior information (for example, symmetries and/or other
constraints) can be objectively translated into a prior once we have developed
the appropriate tools — entropy and geometry. (See e.g. [Caticha Preuss 2004]
and references therein.)

Our immediate goal here is, first, to remark on the dangerous consequences of
extreme degrees of belief, and then to prove our previous intuitive assertion that
the accumulation of data will swamp the original prior and render it irrelevant.
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Dangerous extremes: the prejudiced mind

The consistency of Bayes’ rule can be checked for the extreme cases of certainty
and impossibility: Let B describe any background information. If q (θ|B) = 1,
then θB = B and q(x|θB) = q(x|B), so that Bayes’ rule gives

p(θ|B) = q(θ|B)
q(x|θB)
q(x|B)

= 1 . (2.141)

A similar argument can be carried through in the case of impossibility: If
q (θ|B) = 0, then p (θ|B) = 0. The conclusion is that if we are absolutely
certain about the truth of θ, acquiring data x will have absolutely no effect on
our opinions; the new data is worthless.

This should serve as a warning to the dangers of erroneously assigning a
probability of 1 or of 0: since no amount of data could sway us from our prior
beliefs we may decide we did not need to collect the data in the first place. If
you are absolutely sure that Jupiter has no moons, you may either decide that
it is not necessary to look through the telescope, or, if you do look and you
see some little bright spots, you will probably decide the spots are mere optical
illusions. Extreme degrees of belief are dangerous: a truly prejudiced mind does
not, and indeed, cannot question its own beliefs.

Lots of data overwhelms the prior

As more and more data is accumulated according to the sequential updating
described earlier one would expect that the continuous inflow of information
will eventually render irrelevant whatever prior information we might have had
at the start. We will now show that this is indeed the case: unless we have
assigned a pathological prior after a large number of experiments the posterior
becomes essentially independent of the prior.

Consider N independent repetitions of a certain experiment that yield the
data x = {x1 . . . xN}. (For simplicity we omit all primes on the observed data.)
The corresponding likelihood is

q(x|θ) =
N∏
r=1

q(xr|θ) , (2.142)

and the posterior distribution p(θ) is

p(θ|x) =
q(θ)
q(X)

q(x|θ) =
q(θ)
q(x)

N∏
r=1

q(xr|θ) . (2.143)

To investigate the extent to which the data x supports a particular value θ1

rather than any other value θ2 it is convenient to study the ratio

p(θ1|x)
p(θ2|x)

=
q(θ1)
q(θ2)

R(x) , (2.144)
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where we introduced the likelihood ratios

R(x) def=
N∏
r=1

Rr(xr) and Rr(xr)
def=

q(xr|θ1)
q(xr|θ2)

. (2.145)

We want to prove the following theorem: Barring two trivial exceptions, for any
arbitrarily large positive Λ, we have

lim
N→∞

P (R(x) > Λ|θ1) = 1 (2.146)

or, in other words,

given θ1, R(x) −→∞ in probability. (2.147)

The significance of the theorem is that as data accumulates a rational agent
becomes more and more convinced of the truth — in this case the true value is
θ1 — and this happens essentially irrespective of the prior p(θ).

The theorem fails in two cases: first, when the prior q(θ1) vanishes, and
second, when q(xr|θ1) = q(xr|θ2) for all xr which means that the experiment
was poorly designed because it cannot distinguish between θ1 and θ2.

The proof of the theorem is an application of the law of large numbers.
Consider the quantity

1
N

logR(x) =
1
N

N∑
r=1

logRr(xr) . (2.148)

Since the variables logRr(xr) are independent, eq.(2.102) gives

lim
N→∞

P

(∣∣∣∣ 1
N

logR(x)−K(θ1, θ2)
∣∣∣∣ ≤ ε|θ1

)
= 1 (2.149)

where ε is any small positive number and

K(θ1, θ2) =
〈

1
N

logR(x)|θ1

〉
=
∑
xr

q(xr|θ1) logRr(xr) . (2.150)

In other words,

given θ1, eN(K−ε) ≤ R(x) ≤ eN(K+ε) in probability. (2.151)

In Chapter 4 we will prove the Gibbs inequality, K(θ1, θ2) ≥ 0. The equality
holds if and only if the two distributions q(xr|θ1) and q(xr|θ2) are identical,
which is precisely the second of the two trivial exceptions we explicitly avoid.
Thus K(θ1, θ2) > 0, and this concludes the proof.

We see here the first appearance of a quantity,

K(θ1, θ2) = +
∑
xr

q(xr|θ1) log
q(xr|θ1)
q(xr|θ2)

, (2.152)
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that will prove to be central in later discussions. When multiplied by −1, the
quantity −K(θ1, θ2) is called the relative entropy,6 that is the entropy of q(xr|θ1)
relative to q(xr|θ2). It can be interpreted as a measure of the extent that the
distribution q(xr|θ1) can be distinguished from q(xr|θ2).

2.10 Hypothesis testing and confirmation

The basic goal of statistical inference is to update our opinions about the truth
of a particular theory or hypothesis θ on the basis of evidence provided by data
E. The update proceeds according to Bayes rule,7

p(θ|E) = p(θ)
p(E|θ)
p(E)

, (2.153)

and one can say that the hypothesis θ is confirmed or corroborated by the
evidence E when p(θ|E) > p(θ).

Sometimes one wishes to compare two hypothesis, θ1 and θ2, and the com-
parison is conveniently done using the ratio

p(θ1|E)
p(θ2|E)

=
p(θ1)
p(θ2)

p(E|θ1)
p(E|θ2)

. (2.154)

The relevant quantity is the “likelihood ratio” or “Bayes factor”

R(θ1 : θ2) def=
p(E|θ1)
p(E|θ2)

. (2.155)

When R(θ1 : θ2) > 1 one says that the evidence E provides support in favor of
θ1 against θ2.

The question of the testing or confirmation of a hypothesis is so central to
the scientific method that it pays to explore it. First we introduce the concept of
weight of evidence, a variant of the Bayes factor, that has been found particularly
useful in such discussions. Then, to explore some of the subtleties and potential
pitfalls we discuss the paradox associated with the name of Hempel.

Weight of evidence

A useful variant of the Bayes factor is its logarithm,

w(θ1 : θ2) def= log
p(E|θ1)
p(E|θ2)

. (2.156)

6Other names include relative information, directed divergence, and Kullback-Leibler dis-
tance.

7From here on we revert to the usual notation p for probabilities. Whether p refers to a
prior or a posterior will, as is usual in this field, have to be inferred from the context.
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This is called the weight of evidence for θ1 against θ2 [Good 1950].8 A useful
special case is when the second hypothesis θ2 is the negation of the first. Then

w(θ : E) def= log
p(E|θ)
p(E|θ̃)

, (2.157)

is called the weight of evidence in favor of the hypothesis θ provided by the
evidence E. The change to a logarithmic scale is convenient because it confers
useful additive properties upon the weight of evidence — which justifies calling
it a ‘weight’. Consider, for example, the odds in favor of θ given by the ratio

Odds(θ) def=
p(θ)
p(θ̃)

. (2.158)

The posterior and prior odds are related by

p(θ|E)
p(θ̃|E)

=
p(θ)
p(θ̃)

p(E|θ)
p(E|θ̃)

, (2.159)

and taking logarithms we have

log Odds(θ|E) = log Odds(θ) + w(θ : E) . (2.160)

The weight of evidence can be positive and confirm the hypothesis by increasing
its odds, or it can be negative and refute it. Furthermore, when we deal with
two pieces of evidence and E consists of E1 and E2, we have

log
p(E1E2|θ)
p(E1E2|θ̃)

= log
p(E1|θ)
p(E1|θ̃)

+ log
p(E2|E1θ)
p(E2|E1θ̃)

so that
w(θ : E1E2) = w(θ : E1) + w(θ : E2|E1) . (2.161)

Hempel’s paradox

Here is the paradox: “A case of a hypothesis supports the hypothesis. Now, the
hypothesis that all crows are black is logically equivalent to the contrapositive
that all non-black things are non-crows, and this is supported by the observation
of a white shoe.” [Hempel 1967]

The premise that “a case of a hypothesis supports the hypothesis” seems
reasonable enough. After all, how else but by observing black crows can one
ever expect to confirm that “all crows are black”? But to assert that a white
shoe confirms that all crows are black seems a bit too much. If so then the very
same white shoe would equally well confirm the hypotheses that all crows are
green, or that all swans are black. We have a paradox.

8According to [Good 1983] the concept was known to H. Jeffreys and A. Turing around
1940-41 and C. S. Peirce had proposed the name weight of evidence for a similar concept
already in 1878.
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Let us consider the starting premise that the observation of a black crow
supports the hypothesis θ = “All crows are black” more carefully. Suppose we
observe a crow (C) and it turns out to be black (B). The evidence is E = B|C,
and the corresponding weight of evidence is positive,

w(θ : B|C) = log
p(B|Cθ)
p(B|Cθ̃)

= log
1

p(B|Cθ̃)
≥ 0 , (2.162)

as expected. It is this result that justifies our intuition that “a case of a hy-
pothesis supports the hypothesis”; the question is whether there are limitations.
[Good 1983]

The reference to the possibility of white shoes points to an uncertainty about
whether the observed object will turn out to be a crow or something else. Then
the relevant weight of evidence concerns the joint probability of B and C,

w(θ : BC) = w(θ : C) + w(θ : B|C) , (2.163)

which is also positive because the second term on the right is positive while the
first vanishes. Indeed, using Bayes’ theorem,

w(θ : C) = log
p(C|θ)
p(C|θ̃)

= log

(
p(C)p(θ|C)

p(θ)
p(θ̃)

p(C)p(θ̃|C)

)
. (2.164)

Now, in the absence of any background information about crows the observation
that a certain object turns out to be a crow tells us nothing about its color and
therefore p(θ|C) = p(θ) and p(θ̃|C) = p(θ̃). Therefore

w(θ : C) = 0 so that w(θ : BC) ≥ 0 . (2.165)

A similar conclusion holds if the evidence consists in the observation of a white
shoe. Does a non-black non-crow support all crows are black? In this case

w(θ : B̃C̃) = w(θ : B̃) + w(θ : C̃|B̃) ≥ 0

because

w(θ : C̃|B̃) = log
p(C̃|B̃θ)
p(C̃|B̃θ̃)

= log
1

p(C̃|B̃θ̃)
≥ 0 (2.166)

while

w(θ : B̃) = log
p(B̃|θ)
p(B̃|θ̃)

= log

(
p(B̃)p(θ|B̃)

p(θ)
p(θ̃)

p(B̃)p(θ̃|B̃)

)
= 0 . (2.167)

Indeed, just as before in the absence of any background information about crows
the observation of some non-black object tells us nothing about crows, thus
p(θ|B̃) = p(θ).

But it is quite conceivable that additional background information that es-
tablishes a connection between θ and C is available. One possible scenario is the
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following: There are two worlds. In one world, denoted θ1 there are a million
birds of which one hundred are crows and all of them are black; in the other
world, denoted θ2, there also are a million birds among which there is one white
and 999 black crows. We pick a bird at random and it turns out to be a black
crow. Which world is it, θ1 or θ2 = θ̃1? The weight of evidence is

w(θ1 : BC) = w(θ1 : C) + w(θ1 : B|C) .

The relevant probabilities are p(B|Cθ1) = 1 and p(B|Cθ2) = 0.999. Therefore

w(θ1 : B|C) = log
p(B|Cθ1)
p(B|Cθ2)

= log
1

1− 10−3
≈ 10−3 (2.168)

while p(C|θ1) = 10−4 and p(C|θ2) = 10−3 so that

w(θ1 : C) = log
p(C|θ1)
p(C|θ2)

= log 10−1 ≈ −2.303 . (2.169)

Therefore w(θ1 : BC) = −2.302 < 0. In this scenario the observation of a black
crow is evidence for the opposite conclusion that not all crows are black.

We conclude that just like any other form of induction the principle that
“a case of a hypothesis supports the hypothesis” involves considerable risk.
Whether it is justified or not depends to a large extent on the nature of the
available background information. When confronted with a situation in which
we are completely ignorant about the relation between two variables the prudent
way to proceed is, of course, to try to find out whether a relevant connection
exists and what it might be. But this is not always possible and in these cases
the default assumption should be that they are a priori independent.

The justification the assumption of independence a priori is purely prag-
matic. Indeed the universe contains an infinitely large number of other variables
about which we know absolutely nothing and that could in principle affect our
inferences. Seeking information about all those other variables is clearly out of
the question: waiting to make an inference until after all possible information
has been collected amounts to being paralyzed into making no inferences at all.
On the positive side, however, the assumption that the vast majority of those
infinitely many other variables are completely irrelevant actually works — at
least most of the time.

There is one final loose end that we must revisit: our arguments above indi-
cate that, in the absence of any other background information, the observation
of a white shoe not only supports the hypothesis that “all crows are black”, but
it also supports the hypothesis that “all swans are black”. Two questions arise:
is this reasoning correct? and, if so, why is it so disturbing? The answer to the
first question is that it is indeed correct. The answer to the second question
is that confirming the hypothesis “all swans are black” is disturbing because
we happen to have background information about the color of swans which we
failed to include in the analysis. Had we not known anything about swans there
would have been no reason to feel any discomfort at all. This is just one more
example of the fact that inductive arguments are not infallible; a positive weight
of evidence provides mere support not absolute certainty.
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2.11 Examples from data analysis

To illustrate the use of Bayes’ theorem as a tool to process information when
the information is in the form of data we consider some elementary examples
from the field of data analysis. (For more detailed treatments that are friendly
to physicists see e.g. [Bretthorst 1988, Sivia Skilling 2006, Gregory 2005].)

2.11.1 Parameter estimation

Suppose the probability for the quantity x depends on certain parameters θ,
p = p(x|θ). Although most of the discussion here can be carried out for an
arbitrary function p it is best to be specific and focus on the important case of
a Gaussian distribution,

p(x|µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (2.170)

The objective is to estimate the parameters θ = (µ, σ) on the basis of a set of
data x = (x1, . . . xN ). We assume the measurements are statistically indepen-
dent of each other and use Bayes’ theorem to get

p(µ, σ|x) =
p(µ, σ)
p (X)

N∏
i=1

p(xi|µ, σ) . (2.171)

Independence is important in practice because it leads to considerable practical
simplifications but it is not essential: instead of N independent measurements
each providing a single datum we would have a single complex experiment that
provides N non-independent data.

Looking at eq.(2.171) we see that a more precise formulation of the same
problem is the following. We want to estimate certain parameters θ, in our case
µ and σ, from repeated measurements of the quantity x on the basis of several
pieces of information. The most obvious is

1. The information contained in the actual values of the collected data x.

Almost equally obvious (at least to those who are comfortable with the Bayesian
interpretation of probabilities) is

2. The information about the parameters that is codified into the prior dis-
tribution p(θ).

Where and how this prior information was obtained is not relevant at this point;
it could have resulted from previous experiments, or from other background
knowledge about the problem. The only relevant part is whatever ended up
being distilled into p(θ).

The last piece of information is not always explicitly recognized; it is

3. The information that is codified into the functional form of the ‘sampling’
distribution p(x|θ).
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If we are to estimate parameters θ on the basis of measurements of a quantity
x it is clear that we must know how θ and x are related to each other. Notice
that item 3 refers to the functional form – whether the distribution is Gaussian
as opposed to Poisson or binomial or something else – and not to the actual
values of the data x which is what is taken into account in item 1. The nature
of the relation in p(x|θ) is in general statistical but it could also be completely
deterministic. For example, when x is a known function of θ, say x = f(θ), we
have p(x|θ) = δ [x− f(θ)]. In this latter case there is no need for Bayes’ rule.

Eq. (2.171) is rewritten as

p(µ, σ|x) =
p(µ, σ)
p (x)

1

(2πσ2)N/2
exp

[
−

N∑
i=1

(xi − µ)2

2σ2

]
(2.172)

Introducing the sample average x̄ and sample variance s2,

x̄ =
1
N

N∑
i=1

xi and s2 =
1
N

N∑
i=1

(xi − x̄)2
, (2.173)

eq.(2.172) becomes

p(µ, σ|x) =
p(µ, σ)
p (x)

1

(2πσ2)N/2
exp

[
− (µ− x̄)2 + s2

2σ2/N

]
. (2.174)

It is interesting that the data appears here only in the particular combination
in eq.(2.173) – different sets of data characterized by the same x̄ and s2 lead to
the same inference about µ and σ. (As discussed earlier the factor p (x) is not
relevant here since it can be absorbed into the normalization of the posterior
p(µ, σ|x).)

Eq. (2.174) incorporates the information described in items 1 and 3 above.
The prior distribution, item 2, remains to be specified. Let us start by consid-
ering the simple case where the value of σ is actually known. Then p(µ, σ) =
p(µ)δ(σ − σ0) and the goal is to estimate µ. Bayes’ theorem is now written as

p(µ|x) =
p(µ)
p (x)

1

(2πσ2
0)N/2

exp

[
−

N∑
i=1

(xi − µ)2

2σ2
0

]
(2.175)

=
p(µ)
p (x)

1

(2πσ2
0)N/2

exp

[
− (µ− x̄)2 + s2

2σ2
0/N

]

∝ p(µ) exp

[
− (µ− x̄)2

2σ2
0/N

]
. (2.176)

Suppose further that we know nothing about µ; it could have any value. This
state of extreme ignorance is represented by a very broad distribution that we
take as essentially uniform within some large range; µ is just as likely to have one
value as another. For p(µ) ∼ const the posterior distribution is Gaussian, with
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mean given by the sample average x̄, and variance σ2
0/N. The best estimate

for the value of µ is the sample average and the uncertainty is the standard
deviation. This is usually expressed in the form

µ = x̄± σ0√
N

. (2.177)

Note that the estimate of µ from N measurements has a much smaller error
than the estimate from just one measurement; the individual measurements are
plagued with errors but they tend to cancel out in the sample average.

In the case of very little prior information — the uniform prior — we have
recovered the same results as in the standard non-Bayesian data analysis ap-
proach. The real difference arises when prior information is available: the non-
Bayesian approach can’t deal with it and can only proceed by ignoring it. On
the other hand, within the Bayesian approach prior information is easily taken
into account. For example, if we know on the basis of other physical consider-
ations that µ has to be positive we assign p(µ) = 0 for µ < 0 and we calculate
the estimate of µ from the truncated Gaussian in eq.(2.176).

A slightly more complicated case arises when the value of σ is not known.
Let us assume again that our ignorance of both µ and σ is quite extreme and
choose a uniform prior,

p(µ, σ) ∝
{
C for σ > 0
0 otherwise. (2.178)

Another popular choice is a prior that is uniform in µ and in log σ. When there
is a considerable amount of data the two choices lead to practically the same
conclusions but we see that there is an important question here: what do we
mean by the word ‘uniform’? Uniform in terms of which variable? σ, or σ2, or
log σ ? Later we shall have much more to say about this misleadingly innocuous
question.

To estimate µ we return to eq.(2.172) or (2.174). For the purpose of estimat-
ing µ the variable σ is an uninteresting nuisance which, as discussed in section
2.5.4, is eliminated through marginalization,

p(µ|x) =
∞∫
0

dσ p(µ, σ|x) (2.179)

∝
∞∫
0

dσ
1
σN

exp

[
− (µ− x̄)2 + s2

2σ2/N

]
. (2.180)

Change variables to t = 1/σ, then

p(µ|x) ∝
∞∫
0

dt tN−2 exp
[
− t

2

2
N
(

(µ− x̄)2 + s2
)]

. (2.181)

Repeated integrations by parts lead to

p(µ|x) ∝
[
N
(

(µ− x̄)2 + s2
)]−N−1

2
, (2.182)
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which is called the Student-t distribution. Since the distribution is symmetric
the estimate for µ is easy to get,

〈µ〉 = x̄ . (2.183)

The posterior p(µ|x) is a Lorentzian-like function raised to some power. As the
number of data grows, say N & 10, the tails of the distribution are suppressed
and p(µ|x) approaches a Gaussian. To obtain an error bar in the estimate µ = x̄
we can estimate the variance of µ using the following trick. Note that for the
Gaussian in eq.(2.170),

d2

dx2
log p(x|µ, σ)

∣∣∣∣
xmax

= − 1
σ2

. (2.184)

Therefore, to the extent that eq.(2.182) approximates a Gaussian, we can write

(∆µ)2 ≈

[
− d2

dµ2
log p(µ|x)

∣∣∣∣
µmax

]−1

=
s2

N − 1
. (2.185)

(This explains the famous factor of N − 1. As we can see it is not a particularly
fundamental result; it follows from approximations that are meaningful only for
large N .)

We can also estimate σ directly from the data. This requires that we
marginalize over µ,

p(σ|x) =
∞∫
−∞

dµ p(µ, σ|x) (2.186)

∝ 1
σN

exp
[
−Ns

2

2σ2

] ∞∫
−∞

dµ exp

[
− (µ− x̄)2

2σ2/N

]
. (2.187)

The Gaussian integral over µ is
(
2πσ2/N

)1/2 ∝ σ and therefore

p(σ|X) ∝ 1
σN−1

exp
[
−Ns

2

2σ2

]
. (2.188)

As an estimate for σ we can use the value where the distribution is maximized,

σmax =

√
N

N − 1
s2 , (2.189)

which agrees with our previous estimate of (∆µ)2,

σ2
max

N
=

s2

N − 1
. (2.190)

An error bar for σ itself can be obtained using the previous trick (provided N
is large enough) of taking a second derivative of log p. The result is

σ = σmax ±
σmax√

2 (N − 1)
. (2.191)
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2.11.2 Curve fitting

The problem of fitting a curve to a set of data points is a problem of parameter
estimation. There are no new issues of principle to be resolved. In practice, how-
ever, it can be considerably more complicated than the simple cases discussed
in the previous paragraphs.

The problem is as follows. The observed data is in the form of pairs (xi, yi)
with i = 1, . . . N and we believe that the true ys are related to the xs through
a function y = fθ(x) which depends on several parameters θ. The goal is to
estimate the parameters θ and the complication is that the measured values of
y are afflicted by experimental errors,

yi = fθ(xi) + εi . (2.192)

For simplicity we assume that the probability of the error εi is Gaussian with
mean 〈εi〉 = 0 and that the variances

〈
ε2
i

〉
= σ2 are known and the same for all

data pairs. We also assume that there are no errors affecting the xs. A more
realistic account might have to reconsider these assumptions.

The sampling distribution is

p(y|θ) =
N∏
i=1

p(yi|θ) , (2.193)

where

p(yi|θ) =
1√

2πσ2
exp

(
− (yi − fθ(xi))2

2σ2

)
. (2.194)

Bayes’ theorem gives,

p(θ|y) ∝ p(θ) exp
[
−

N∑
i=1

(yi − fθ(xi))2

2σ2

]
. (2.195)

As an example, suppose that we are trying to fit a straight line through data
points

f(x) = a+ bx , (2.196)

and suppose further that we are quite ignorant about the values of θ = (a, b)
and p(θ) = p(a, b) ∼ const, then

p(a, b|y) ∝ exp
[
−

N∑
i=1

(yi − a− bxi)2

2σ2

]
. (2.197)

A good estimate of a and b is the value that maximizes the posterior distribution,
which as we see, is equivalent to using the method of least squares. But this
Bayesian analysis,simple as it is, can already give us more: from p(a, b|Y ) we
can also estimate the uncertainties ∆a and ∆b which lies beyond the scope of
least squares.
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2.11.3 Model selection

Suppose we are trying to fit a curve y = fθ(x) through data points (xi, yi),
i = 1, . . . N . How do we choose the function fθ? To be specific let fθ be a
polynomial of order n,

fθ(x) = θ0 + θ1x+ . . .+ θnx
n , (2.198)

the techniques of the previous section allow us to estimate the parameters
θ0, . . . , θn but how do we decide the order n? Should we fit a straight or a
quadratic line? It is not obvious. Having more parameters means that we will
be able to achieve a closer fit to the data, which is good, but we might also be
fitting the noise, which is bad. The same problem arises when the data shows
peaks and we want to estimate their location, their width, and their number ;
could there be an additional peak hiding in the noise? Are we just fitting noise,
or does the data really support one additional peak?

We say these are problems of model selection. To appreciate how important
they can be consider replacing the modestly unassuming word ‘model’ by the
more impressive sounding word ‘theory’. Given two competing theories, which
one does the data support best? What is at stake is nothing less than the
foundation of experimental science.

On the basis of data x we want to select one model among several competing
candidates labeled by m = 1, 2, . . . Suppose model m is defined in terms of some
parameters θm = {θm1, θm2, . . .} and their relation to the data x is contained in
the sampling distribution p(x|m, θm). The extent to which the data supports
model m, i.e., the probability of model m given the data, is given by Bayes’
theorem,

p(m|x) =
p(m)
p(x)

p(x|m) , (2.199)

where p(m) is the prior for the model. The factor p(x|m), which is the prior
probability for the data given the model, and plays the role of a likelihood func-
tion is often called the ‘evidence’. The evidence is calculated from

p(x|m) =
∫
dθm p(x, θm|m) =

∫
dθm p(θm|m) p(x|m, θm) . (2.200)

Therefore
p(m|x) ∝ p(m)

∫
dθm p(θm|m)p(x|m, θm) . (2.201)

Thus, the problem is solved, at least in principle, once the priors p(m) and
p(θm|m) are assigned. Of course, the practical problem of calculating the multi-
dimensional integrals can be quite formidable.

No further progress is possible without making specific choices for the various
functions in eq.(2.201) but we can offer some qualitative comments. When
comparing two models, m1 and m2, it is fairly common to argue that a priori
we have no reason to prefer one over the other and therefore we assign the
same prior probability p(m1) = p(m2). (Of course this is not always justified.
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Particularly in the case of theories that claim to be fundamental people usually
have very strong prior prejudices favoring one theory against the other. Be that
as it may, let us proceed.)

Suppose the prior p(θm|m) represents a uniform distribution over the pa-
rameter space. Since∫

dθm p(θm|m) = 1 then p(θm|m) ≈ 1
Vm

, (2.202)

where Vm is the ‘volume’ of the parameter space. Suppose further that p(x|m, θm)
has a single peak of height Lmax spread out over a region of ‘volume’ δθm. The
value θm where p(x|m, θm) attains its maximum can be used as an estimate
for θm and the ‘volume’ δθm is then interpreted as an uncertainty. Then the
integral of p(x|m, θm) can be approximated by the product Lmax × δθm. Thus,
in a very rough and qualitative way the probability for the model given the data
is

p(m|x) ∝ Lmax × δθm
Vm

. (2.203)

We can now interpret eq.(2.201) as follows. Our preference for a model will be
dictated by how well the model fits the data; this is measured by [p(x|m, θm)]max =
Lmax. The volume of the region of uncertainty δθm also contributes: if more
values of the parameters are consistent with the data, then there are more ways
the model agrees with the data, and the model is favored. Finally, the larger the
volume of possible parameter values Vm the more the model is penalized. Since
a larger volume Vm means a more complex model the 1/Vm factor penalizes
complexity. The preference for simpler models is said to implement Occam’s
razor. This is a reference to the principle, stated by William of Occam, a 13th
century Franciscan monk, that one should not seek a more complicated expla-
nation when a simpler one will do. Such an interpretation is satisfying but
ultimately it is quite unnecessary. Occam’s principle does not need not be put
in by hand: Bayes’ theorem takes care of it automatically in eq.(2.201)!

2.11.4 Maximum Likelihood

If one adopts the frequency interpretation of probabilities then most uses of
Bayes’ theorem are not allowed. The reason is simple: it makes sense to assign
a probability distribution p(x|θ) to the data x = {xi} because the x are random
variables but it is absolutely meaningless to talk about probabilities for the
parameters θ because they have no frequency distributions, they are not random
variables, they are merely unknown. This means that many problems in science
lie beyond the reach of a frequentist probability theory.

To overcome this difficulty a new subject was invented: statistics. Within
the Bayesian approach the two subjects, statistics and probability theory, are
unified into the single field of inductive inference. In the frequentist approach to
statistics in order to infer an unknown quantity θ on the basis of measurements
of another quantity, the data x, one postulates the existence of some function
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of the data, θ̂(x), called the ‘statistic’, that relates the two: the estimate for
θ is θ̂(x). Being afflicted by experimental errors the data x are deemed to be
legitimate random variables to which frequentist probability concepts can be
applied. The problem is to estimate the unknown θ when what is known is the
sampling distribution p(x|θ). The solution proposed by Fisher was to select as
estimator θ̂(x) that value of θ that maximizes the probability of the observed
data x. Since p(x|θ) is a function of the variable x and θ appears as a fixed
parameter, Fisher introduced a function of θ, which he called the likelihood,
where the observed data x appear as fixed parameters,

L (θ|x) def= p(x|θ) . (2.204)

Thus, this method of parameter estimation is called the method of ‘maximum
likelihood’. The likelihood function L(θ|x) is not a probability, it is not nor-
malized in any way, and it makes no sense to use it compute an average or a
variance, but the same intuition that leads one to propose maximization of the
likelihood to estimate θ also leads one to use the width of the likelihood function
as to estimate an error bar.

The Bayesian approach agrees with the method of maximum likelihood in
the special case where of prior is uniform,

p(θ) = const⇒ p(θ|x) ∝ p(θ)p(x|θ) ∝ p(x|θ) . (2.205)

This explains why the Bayesian discussion of this section has reproduced so
many of the standard results of the ‘orthodox’ theory. But then the Bayesian
approach has many other advantages. Unlike the likelihood, the posterior is a
true probability distribution that allows estimation not just of θ but of any one
of its moments. And, most important, there is no limitation to uniform priors.
If there is additional prior information that is relevant to a problem the prior
distribution provides a mechanism to take it into account.





Chapter 3

Entropy I: The Evolution of
Carnot’s Principle

An important problem that occupied the minds of many scientists in the 18th
century was either to devise a perpetual motion machine, or to prove its impos-
sibility from the established principles of mechanics. Both attempts failed. Ever
since the most rudimentary understanding of the laws of thermodynamics was
achieved in the 19th century no competent scientist would waste time consid-
ering perpetual motion. The other goal has also proved elusive; there exist no
derivations the Second Law from purely mechanical principles. It took a long
time, and for many the subject is still controversial, but the reason has gradually
become clear: entropy is not a physical quantity, it is a tool for inference, a tool
for reasoning in situations of incomplete information. It is quite impossible that
such a non-mechanical quantity could emerge from a combination of mechanical
notions. If anything it should be the other way around.

Much of the material for this chapter (including the title) is inspired by a
beautiful article by E. T. Jaynes [Jaynes 1988]. I have also borrowed from the
historical papers [Klein 1970, 1973] and [Uffink 2004].

3.1 Carnot: reversible engines

Sadi Carnot was interested in improving the efficiency of steam engines, that
is, of maximizing the amount of useful work that can be extracted from an
engine per unit of burnt fuel. His work, published in 1824, was concerned with
whether appropriate choices of a working substance other than steam and of the
operating temperatures and pressures would improve the efficiency.

Carnot was convinced that perpetual motion was impossible but this was
not a fact that he could prove. Indeed, he could not have had a proof: ther-
modynamics had not been invented yet. His conviction derived instead from
the long list of previous attempts (including those by his father Lazare Carnot)
that had ended in failure. Carnot’s brilliant idea was to proceed anyway and



58 Entropy I: The Evolution of Carnot’s Principle

use what he knew was true but could not prove as the postulate from which he
would draw all sorts of other conclusions about engines.1

At the time Carnot did his work the nature of heat as a form of energy
had not yet been understood. He adopted a model that was fashionable at the
time – the caloric model – according to which heat is a substance that could be
transferred but neither created nor destroyed. For Carnot an engine used heat
to produce work in much the same way that falling water can turn a waterwheel
and produce work: the caloric would “fall” from a higher temperature to a lower
temperature thereby making the engine turn. What was being transformed into
work was not the caloric itself but the energy acquired in the fall.

According to the caloric model the amount of heat extracted from the high
temperature source should be the same as the amount of heat discarded into
the low temperature sink. Later measurements showed that this was not true,
but Carnot was quite lucky. Although the model was seriously wrong, it did
have a great virtue: it suggested that the generation of work in a heat engine
should include not just the high temperature source from which heat is extracted
(the boiler) but also a low temperature sink (the condenser) into which heat is
discarded. Later, when heat was interpreted as a form of energy transfer it was
understood that for continued operation it was necessary that excess heat be
discarded into a low temperature sink so that the engine could complete each
cycle by returning to same initial state.

Carnot’s caloric-waterwheel model was fortunate in yet another respect – he
was not just lucky, he was very lucky – a waterwheel engine can be operated in
reverse and used as a pump. This led him to consider a reversible heat engine
in which work would be used to draw heat from a cold source and ‘pump it up’
to deliver heat to the hot reservoir. The analysis of such reversible heat engines
led Carnot to the important conclusion
Carnot’s Principle: “No heat engine E can be more efficient than a reversible
engine ER operating between the same temperatures.”

The proof of Carnot’s principle is quite straightforward but because he used
the caloric model it was not strictly correct – the necessary revisions were later
supplied by Clausius in 1850. As a side remark, it is interesting that Carnot’s
notebooks, which were made public long after his death by his family in about
1870, indicate that soon after 1824 Carnot came to reject the caloric model and
that he achieved the modern understanding of heat as a form of energy transfer.
This work – which preceded Joule’s experiments by about fifteen years – was
not published and therefore had no influence on the history of thermodynamics
[Wilson 1981].

The following is Clausius’ proof. Figure (3.1a) shows a heat engine E that
1In his attempt to understand the undetectability of the ether Einstein faced a similar

problem: he knew that it was hopeless to seek an understanding of the constancy of the speed
of light on the basis of the primitive physics of the atomic structure of solid rods that was
available at the time. Inspired by Carnot he deliberately followed the same strategy – to give
up and declare victory – and postulated the constancy of the speed of light as the unproven
but known truth which would serve as the foundation from which other conclusions could be
derived.
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draws heat q1 from a source at high temperature t1, delivers heat q2 to a sink at
low temperature t2, and generates work w = q1 − q2. Next consider an engine
ES that is more efficient than a reversible one, ER. In figure (3.1b) we show the
super-efficient engine ES coupled to the reversible ER. Then for the same heat
q1 drawn from the hot source the super-efficient engine ES would deliver more
work than ER, w > wR. One could split the work w generated by ES into two
parts wR and w − wR. The first part wR could be used to drive ER in reverse
and pump heat q1 back up to the hot source, which is thus left unchanged. The
remaining work w − wR could then be used for any other purposes. The net
result is to extract heat q2R − q2 > 0 from the cold reservoir and convert it
to work without any need for fuel. The conclusion is that the existence of a
super-efficient heat engine would allow the construction of a perpetual motion
engine. Assuming that the latter do not exist implies Carnot’s principle: heat
engines that are more efficient than reversible ones do not exist.
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Figure 3.1: (a) An engine E operates between heat reservoirs at temperatures
t1 and t2. (b) A perpetual motion machine can be built by coupling a super-
efficient engine ES to a reversible engine ER.

A blank statement of the principle that perpetual motion is not possible is
true but it is incomplete. It blurs the important distinction between perpetual
motion engines of the first kind which operate by violating energy conservation
and perpetual motion engines of the second kind which do not violate energy
conservation. Carnot’s conclusion deserves to be singled out as a new principle
because it is specific to the second kind of machine.
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Other important conclusions obtained by Carnot are that all reversible en-
gines operating between the same temperatures are equally efficient; their effi-
ciency is a function of the temperatures only,

e
def=

w

q1
= e(t1, t2) , (3.1)

and is therefore independent of any and all other details of how the engine is
constructed and operated; that efficiency increases with the temperature differ-
ence [see eq.(3.5) below]. Furthermore, the most efficient heat engine cycle, now
called the Carnot cycle, is one in which all heat is absorbed at the high t1 and
all heat is discharged at the low t2. Thus, the Carnot cycle is defined by two
isotherms and two adiabats.

The next important step, the determination of the universal function e(t1, t2),
was accomplished by Kelvin.

3.2 Kelvin: temperature

After Joule’s experiments in the 1840’s on the conversion of work into heat the
caloric model had to be abandoned. Heat was finally recognized as a form of
energy and the additional relation w = q1 − q2 was the ingredient that, in the
hands of Kelvin and Clausius, allowed Carnot’s principle to be developed into
the next stage.

Suppose two reversible engines Ea and Eb are linked in series to form a single
more complex reversible engine Ec. Ea operates between temperatures t1 and
t2, and Eb between t2 and t3. Ea draws heat q1 and discharges q2, while Eb uses
q2 as input and discharges q3. The efficiencies of the three engines are

ea = e (t1, t2) =
wa
q1

, eb = e (t2, t3) =
wb
q2

, (3.2)

and
ec = e (t1, t3) =

wa + wb
q1

. (3.3)

They are related by

ec = ea +
wb
q2

q2

q1
= ea + eb

(
1− wa

q1

)
, (3.4)

or
ec = ea + eb(1− ea) , (3.5)

which is a functional equation for e = e (t1, t2). Before we proceed to find the
solution we note that since 0 ≤ e ≤ 1 it follows that ec ≥ ea. Similarly, writing

ec = eb + ea(1− eb) , (3.6)

implies ec ≥ eb. Therefore the efficiency e (t1, t2) can be increased either by
increasing the higher temperature or by lowering the lower temperature.
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To find the solution of eq.(3.5) change variables to x = log (1− e),

xc (t1, t3) = xa (t1, t2) + xb (t2, t3) , (3.7)

and then differentiate with respect to t2 to get

∂

∂t2
xa (t1, t2) = − ∂

∂t2
xb (t2, t3) . (3.8)

The left hand side is independent of t3 while the second is independent of t1,
therefore ∂xa/∂t2 must be some function g of t2 only,

∂

∂t2
xa (t1, t2) = g(t2) . (3.9)

Integrating gives x(t1, t2) = F (t1) + G(t2) where the two functions F and G
are at this point unknown. The boundary condition e (t, t) = 0 or equivalently
x(t, t) = 0 implies that we deal with merely one unknown function: G(t) =
−F (t). Therefore

x(t1, t2) = F (t1)− F (t2) or e (t1, t2) = 1− f(t2)
f(t1)

, (3.10)

where f = e−F . Since e (t1, t2) increases with t1 and decreases with t2 the
function f (t) must be monotonically increasing.

Kelvin recognized that there is nothing fundamental about the original tem-
perature scale t. It may depend, for example, on the particular materials em-
ployed to construct the thermometer. He realized that the freedom in eq.(3.10)
in the choice of the function f corresponds to the freedom of changing tem-
perature scales by using different thermometric materials. The only feature
common to all thermometers that claim to rank systems according to their ‘de-
gree of hotness’ is that they must agree that if A is hotter than B, and B is
hotter than C, then A is hotter than C. One can therefore regraduate any old
inconvenient t scale by a monotonic function to obtain a new scale T chosen for
the purely pragmatic reason that it leads to a more elegant formulation of the
theory. Inspection of eq.(3.10) immediately suggests the optimal regraduating
function choice, which leads to Kelvin’s definition of absolute temperature,

T = Cf (t) . (3.11)

The scale factor C reflects the still remaining freedom to choose the units. In the
absolute scale the efficiency for the ideal reversible heat engine is very simple,

e (t1, t2) = 1− T2

T1
. (3.12)

In short, what Kelvin proposed was to use an ideal reversible engine as a ther-
mometer with its efficiency playing the role of the thermometric variable.
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Carnot’s principle that any heat engine E′ must be less efficient than the
reversible one, e′ ≤ e, is rewritten as

e′ =
w

q1
= 1− q2

q1
≤ e = 1− T2

T1
, (3.13)

or,
q1

T1
− q2

T2
≤ 0 . (3.14)

It is convenient to redefine heat so that inputs are positive, Q1 = q1, and outputs
are negative, Q2 = −q2. Then,

Q1

T1
+
Q2

T2
≤ 0 , (3.15)

where the equality holds when and only when the engine is reversible.
The generalization to an engine or any system that undergoes a cyclic process

in which heat is exchanged with more than two reservoirs is straightforward. If
heat Qi is absorbed from the reservoir at temperature Ti we obtain the Kelvin
form (1854) of Carnot’s principle,

∑
i

Qi
Ti
≤ 0 . (3.16)

which, in the hands of Clausius, led to the next non-trivial step, the introduction
of the concept of entropy.

3.3 Clausius: entropy

By about 1850 both Kelvin and Clausius had realized that two laws were nec-
essary as a foundation for thermodynamics. The somewhat awkward expres-
sions for the second law that they had adopted at the time were reminiscent of
Carnot’s; they stated the impossibility of heat engines whose sole effect would
be to transform heat from a single source into work, or of refrigerators that could
pump heat from a cold to a hot reservoir without the input of external work. It
took Clausius until 1865 – this is some fifteen years later, which indicates that
the breakthrough was not at all trivial – before he came up with a new compact
statement of the second law that allowed substantial further progress [Cropper
1986].

Clausius rewrote Kelvin’s eq.(3.16) for a cycle where the system absorbs in-
finitesimal (positive or negative) amounts of heat dQ from a continuous sequence
of reservoirs, ∮ dQ

T
≤ 0 , (3.17)

where T is the temperature of each reservoir. The equality is attained for a
reversible process which is achieved when the system is slowly taken through a
continuous sequence of equilibrium states and T is also the temperature of the
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system as well as that of the reservoirs. The equality implies that the integral
from any state A to any other state B is independent of the path taken,∮ dQ

T
= 0⇒

∫
R1(A,B)

dQ

T
=

∫
R2(A,B)

dQ

T
, (3.18)

where R1(A,B) and R2(A,B) denote any two reversible paths linking the same
initial state A and final state B. Clausius saw that eq.(3.18) implies the exis-
tence of a function of the thermodynamic state. This function, which he called
entropy, is defined up to an additive constant by

SB = SA +
∫

R(A,B)

dQ

T
. (3.19)

This first notion of entropy we will call the Clausius entropy or the thermody-
namic entropy. Note that it is of rather limited applicability as it is defined only
for states of thermal equilibrium.

Eq.(3.19) seems like a mere reformulation of eqs.( 3.16) and (3.17) but it
represents a major advance because it allowed thermodynamics to reach beyond
the study of cyclic processes. Consider a possibly irreversible process in which
a system is taken from an initial state A to a final state B, and suppose the
system is returned to the initial state along some other reversible path. Then,
the more general eq.(3.17) gives

B∫
A,irrev

dQ

T
+

∫
R(B,A)

dQ

T
≤ 0 . (3.20)

From eq.(3.19) the second integral is SA − SB . In the first integral −dQ is the
amount is the amount of heat absorbed by the reservoirs at temperature T and
therefore it represents minus the change in the entropy of the reservoirs which
in this case represent the rest of the universe,

(Sres
A − Sres

B ) + (SA − SB) ≤ 0 or Sres
B + SB ≥ Sres

A + SA . (3.21)

Thus the second law can be stated in terms of the total entropy Stotal = Sres +S
as

Stotal
final ≥ Stotal

initial , (3.22)

and Clausius could then summarize the laws of thermodynamics as “The energy
of the universe is constant. The entropy of the universe tends to a maximum.”
All restrictions to cyclic processes have disappeared.

Clausius was also responsible for initiating another independent line of re-
search in this subject. His paper “On the kind of motion we call heat” (1857)
was the first (failed!) attempt to deduce the second law from purely mechanical
principles applied to molecules. His results referred to averages taken over all
molecules, for example the kinetic energy per molecule, and involved theorems
in mechanics such as the virial theorem. For him the increase of entropy was
meant to be an absolute law and not just a matter of overwhelming probability.
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3.4 Maxwell: probability

We owe to Maxwell the introduction of probabilistic notions into fundamental
physics (1860). Before him probabilities had been used by Laplace and by
Gauss as a tool in the analysis of experimental data. Maxwell realized the
practical impossibility of keeping track of the exact motion of all the molecules
in a gas and pursued a less detailed description in terms of the distribution of
velocities. (Perhaps he was inspired by his earlier study of the rings of Saturn
which required reasoning about particles undergoing very complex trajectories.)

Maxwell interpreted his distribution function as the number of molecules
with velocities in a certain range, and also as the probability P (~v)d3v that a
molecule has a velocity ~v in a certain range d3v. It would take a long time to
achieve a clearer understanding of the meaning of the term ‘probability’. In any
case, Maxwell concluded that “velocities are distributed among the particles
according to the same law as the errors are distributed in the theory of the
‘method of least squares’,” and on the basis of this distribution he obtained a
number of significant results on the transport properties of gases.

Over the years he proposed several derivations of his velocity distribution
function. The earlier one (1860) is very elegant. It involves two assumptions:
the first is a symmetry requirement, the distribution should only depend on the
actual magnitude |~v| = v of the velocity and not on its direction,

P (~v)d3v = f(v)d3v = f
(√

v2
x + v2

y + v2
z

)
d3v . (3.23)

The second assumption is that velocities along orthogonal directions should be
independent

f(v)d3v = p(vx)p(vy)p(vz)d3v . (3.24)

Therefore
f
(√

v2
x + v2

y + v2
z

)
= p(vx)p(vy)p(vz) . (3.25)

Setting vy = vz = 0 we get

f (vx) = p(vx)p(0)p(0) , (3.26)

so that we obtain a functional equation for p,

p
(√

v2
x + v2

y + v2
z

)
p(0)p(0) = p(vx)p(vy)p(vz) , (3.27)

or

log

p
(√

v2
x + v2

y + v2
z

)
p(0)

 = log
[
p(vx)
p(0)

]
+ log

[
p(vy)
p(0)

]
+ log

[
p(vz)
p(0)

]
, (3.28)

or, introducing the function G = log[p/p(0)],

G
(√

v2
x + v2

y + v2
z

)
= G(vx) +G(vy) +G(vz). (3.29)
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The solution is straightforward. Differentiate with respect to vx and to vy to
get

G′
(√

v2
x + v2

y + v2
z

)
√
v2
x + v2

y + v2
z

vx = G′(vx) and
G′
(√

v2
x + v2

y + v2
z

)
√
v2
x + v2

y + v2
z

vy = G′(vy) .

(3.30)
Therefore

G′(vx)
vx

=
G′(vy)
vy

= −2α , (3.31)

where −2α is a constant. Integrating gives

log
[
p(vx)
p(0)

]
= G(vx) = −αv2

x + const , (3.32)

so that

P (~v) = f(v) =
(α
π

)3/2

exp
[
−α

(
v2
x + v2

y + v2
z

)]
, (3.33)

the same distribution as “errors in the method of least squares”.
Maxwell’s distribution applies whether the molecule is part of a gas, a liquid,

or a solid and, with the benefit of hindsight, the reason is quite easy to see.
The probability that a molecule have velocity ~v and position ~x is given by
the Boltzmann distribution ∝ exp−H/kT . For a large variety of situations
the Hamiltonian for one molecule is of the form H = mv2/2 + V (~x) where
the potential V (~x) includes the interactions, whether they be weak or strong,
with all the other molecules. If the potential V (~x) is independent of ~v, then
the distribution for ~v and ~x factorizes. Velocity and position are statistically
independent, and the velocity distribution is Maxwell’s.

Maxwell was the first to realize that the second law is not an absolute law
(this was expressed in his popular textbook “Theory of Heat” in 1871), that it
“has only statistical certainty” and indeed, that in fluctuation phenomena “the
second law is continually being violated”. Such phenomena are not rare: just
look out the window and you can see that the sky is blue – a consequence of
the scattering of light by density fluctuations in the atmosphere.

Maxwell introduced the notion of probability, but what did he actually mean
by the word ‘probability’? He used his distribution function as a velocity dis-
tribution, the number of molecules with velocities in a certain range, which
betrays a frequentist interpretation. These probabilities are ultimately mechan-
ical properties of the gas. But he also used his distribution to represent the
lack of information we have about the precise microstate of the gas. This lat-
ter interpretation is particularly evident in a letter he wrote in 1867 where he
argues that the second law could be violated by “a finite being who knows the
paths and velocities of all molecules by simple inspection but can do no work
except open or close a hole.” Such a “demon” could allow fast molecules to pass
through a hole from a vessel containing hot gas into a vessel containing cold
gas, and could allow slow molecules pass in the opposite direction. The net



66 Entropy I: The Evolution of Carnot’s Principle

effect being the transfer of heat from a low to a high temperature, a violation
of the second law. All that was required was that the demon “know” the right
information. [Klein 1970]

3.5 Gibbs: beyond heat

Gibbs generalized the second law in two directions: to open systems and to
inhomogeneous systems. With the introduction of the concept of the chemical
potential, a quantity that regulates the transfer of particles in much the same
way that temperature regulates the transfer of heat, he could apply the meth-
ods of thermodynamics to phase transitions, mixtures and solutions, chemical
reactions, and much else. His paper “On the Equilibrium of Heterogeneous Sys-
tems” [Gibbs 1875-78] is formulated as the purest form of thermodynamics –
a phenomenological theory of extremely wide applicability because its founda-
tions do not rest on particular models about the structure and dynamics of the
microscopic constituents.

And yet, Gibbs was keenly aware of the significance of the underlying molecu-
lar constitution – he was familiar with Maxwell’s writings and in particular with
his “Theory of Heat”. His discussion of the process of mixing gases led him to
analyze the paradox that bears his name. The entropy of two different gases
increases when the gases are mixed; but does the entropy also increase when two
gases of the same molecular species are mixed? Is this an irreversible process?

For Gibbs there was no paradox, much less one that would require some
esoteric new (quantum) physics for its resolution. For him it was quite clear that
thermodynamics was not concerned with microscopic details but rather with the
changes from one macrostate to another. He explained that the mixing of two
gases of the same molecular species does not lead to a different macrostate.
Indeed: by “thermodynamic” state

“...we do not mean a state in which each particle shall occupy more or less
exactly the same position as at some previous epoch, but only a state which
shall be indistinguishable from the previous one in its sensible properties.
It is to states of systems thus incompletely defined that the problems of
thermodynamics relate.” [Gibbs 1875-78]

Thus, there is no entropy increase because there is no change of thermodynamic
state. Gibbs’ resolution of the non-paradox hinges on distinguishing two kinds
of reversibility. One is the microscopic or mechanical reversibility in which the
velocities of each individual particle is reversed and the system retraces the
sequence of microstates. The other is macroscopic or Carnot reversibility in
which the system retraces the sequence of macrostates.

Gibbs understood, as had Maxwell before him, that the explanation of the
second law cannot rest on purely mechanical arguments. Since the second law
applies to “incompletely defined” descriptions any explanation must also involve
probabilistic concepts that are foreign to mechanics. This led him to conclude:
“In other words, the impossibility of an uncompensated decrease of entropy



3.6 Boltzmann: entropy and probability 67

seems to be reduced to improbability,” a sentence that Boltzmann adopted as
the motto for the second volume of his “Lectures on the Theory of Gases.” (For
a modern discussion of the Gibbs’ paradox see section 5.10.)

Remarkably neither Maxwell nor Gibbs established a connection between
probability and entropy. Gibbs was very successful at showing what one can
accomplish by maximizing entropy but he did not address the issue of what
entropy is or what it means. The crucial steps in this direction were taken by
Boltzmann.

But Gibbs’ contributions did not end here. The ensemble theory introduced
in his “Principles of Statistical Mechanics” in 1902 (it was Gibbs who coined the
term ‘statistical mechanics’) represent a practical and conceptual step beyond
Boltzmann’s understanding of entropy.

3.6 Boltzmann: entropy and probability

It was Boltzmann who found the connection between entropy and probability,
but his path was long and tortuous [Klein 1973, Uffink 2004]. Over the years
he adopted several different interpretations of probability and, to add to the
confusion, he was not always explicit about which one he was using, sometimes
mixing them within the same paper, and even within the same equation. At
first, he defined the probability of a molecule having a velocity ~v within a small
cell d3v as being proportional to the amount of time that the particle spent
within that particular cell, but he also defined that same probability as the
fraction of particles within the cell.

By 1868 he had managed to generalize the Maxwell distribution for point
particles and the theorem of equipartition of energy to complex molecules in the
presence of an external field. The basic argument, which led him to the Boltz-
mann distribution, was that in equilibrium the distribution should be stationary,
that it should not change as a result of collisions among particles.

The collision argument gave the distribution for individual molecules; it
did not keep track of information about correlations among molecules. It was
also in 1868 that Boltzmann first applied probability to the microstate of the
system as a whole rather than to the individual molecules. This led him to the
microcanonical distribution in which microstates are uniformly distributed over
the hypersurface of constant energy. Boltzmann identified the probability of the
system being in some region of the N -particle phase space (rather than the one-
particle space of molecular velocities) with the relative time the system would
spend in that region – the so-called “time” ensemble. Alternatively, probability
was also defined at a given instant in time as being proportional to the volume
of the region. At first Boltzmann did not think it was necessary to comment
on whether the two definitions are equivalent or not, but eventually he realized
that their assumed equivalence should be explicitly stated. Later this came to be
known as the ‘ergodic’ hypothesis, namely, that over a long time the trajectory
of the system would cover the whole region of phase space consistent with the
given value of the energy. Throughout this period Boltzmann’s various notions
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of probability were all still conceived as mechanical properties of the gas.
In 1871 Boltzmann achieved a significant success in establishing a connection

between thermodynamic entropy and microscopic concepts such as the probabil-
ity distribution in the N -particle phase space. In modern notation his argument
was as follows. The energy of N interacting particles is given by

H =
N∑
i

p2
i

2m
+ U (x1, . . . , xN ;V ) , (3.34)

where V stands for additional parameters that can be externally controlled such
as, for example, the volume of the gas. The first non-trivial decision was to
propose a quantity defined in purely microscopic terms that would correspond
to the macroscopic internal energy. He opted for the “expectation”

E = 〈H〉 =
∫
dzN PN H , (3.35)

where dzN = d3Nxd3Np is the volume element in the N -particle phase space,
and PN is the N -particle distribution function,

PN =
exp (−βH)

Z
where Z =

∫
dzN e−βH , (3.36)

and β = 1/kT , so that,

E =
3
2
NkT + 〈U〉 . (3.37)

The connection to the thermodynamic entropy requires a clear idea of the
nature of heat and how it differs from work. One needs to express heat in purely
microscopic terms, and this is quite subtle because at the molecular level there
is no distinction between a motion that is supposedly of a “thermal” type as
opposed to other types of motion such as plain displacements or rotations. The
distribution function is the crucial ingredient. In any infinitesimal transforma-
tion the change in the internal energy separates into two contributions,

δE =
∫
dzN HδPN +

∫
dzN PNδH . (3.38)

The second integral, which can be written as 〈δH〉 = 〈δU〉, arises purely from
changes in the potential function U that are induced by manipulating parame-
ters such as volume. Such a change in the potential is precisely what one means
by mechanical work δW , therefore, since δE = δQ+ δW , the first integral must
represent the transferred heat δQ,

δQ = δE − 〈δU〉 . (3.39)

On the other hand, substituting δE from eq.(3.37), one gets

δQ =
3
2
NkδT + δ 〈U〉 − 〈δU〉 . (3.40)
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This is not a complete differential, but dividing by the temperature yields (after
some algebra)

δQ

T
= δ

[
3
2
Nk log T +

〈U〉
T

+ k log
(∫
d3Nx e−βU

)
+ const

]
. (3.41)

If the identification of δQ with heat is correct then this strongly suggests that
the expression in brackets should be identified with the Clausius entropy S.
Further rewriting leads to

S =
E

T
+ k logZ + const , (3.42)

which is recognized as the correct modern expression.
Boltzmann’s path towards understanding the second law was guided by one

notion from which he never wavered: matter is an aggregate of molecules. Apart
from this the story of his progress is the story of the increasingly more important
role played by probabilistic notions, and ultimately, it is the story of the evolu-
tion of his understanding of the notion of probability itself. By 1877 Boltzmann
achieves his final goal and explains entropy purely in terms of probability – me-
chanical notions were by now reduced to the bare minimum consistent with the
subject matter: we are, after all, talking about collections of molecules with po-
sitions and momenta and their total energy is conserved. His final achievement
hinges on the introduction of yet another way of thinking about probabilities
involving the notion of the multiplicity of the macrostate.

He considered an idealized system consisting of N particles whose single-
particle phase space is divided into m cells each with energy εn, n = 1, ...,m.
The number of particles in the nth cell is denoted wn, and the distribution
function is given by the set of numbers w1, . . . , wm. In Boltzmann’s previous
work the determination of the distribution function had been based on figur-
ing out its time evolution from the mechanics of collisions. Here he used a
purely combinatorial argument. A completely specified state, what he called a
complexion and we call a microstate, is defined by specifying the cell of each
individual molecule. A macrostate is less completely specified by the distribu-
tion function, w1, . . . , wm. The number of microstates compatible with a given
macrostate, which Boltzmann called the ‘permutability’, and we call the ‘mul-
tiplicity’ is

W =
N !

w1! . . . wm!
. (3.43)

Boltzmann proposed that the probability of the macrostate was proportional
to its multiplicity, to the number of ways in which it could be achieved, which
assumes each microstate is as likely as any other – the ‘equal a priori probability
postulate’.

The most probable macrostate is that which maximizes W subject to the
constraints of a fixed total number of particles N and a fixed total energy E,

m∑
n=1

wn = N and
m∑
n=1

wnεn = E. (3.44)
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When the numbers wn are large enough that one can use Stirling’s approxima-
tion for the factorials, we have

logW = N logN −N −
m∑
n=1

(wn logwn − wn) (3.45)

= −
m∑
n=1

wn logwn + const , (3.46)

or perhaps better

logW = −N
m∑
n=1

wn
N

log
wn
N

(3.47)

so that
logW = −N

m∑
n=1

fn log fn (3.48)

where fn = wn/N is the fraction of molecules in the nth cell with energy εn, or,
alternatively the probability that a molecule is in its nth state. As we shall later
derive in detail, the distribution that maximizes logW subject to the constraints
(3.44) is such that

fn =
wn
N
∝ e−βεn , (3.49)

where β is a Lagrange multiplier determined by the total energy. When applied
to a gas, the possible states of a molecule are cells in phase space. Therefore

logW = −N
∫
dz1 f(x, p) log f(x, p) , (3.50)

where dz1 = d3xd3p and the most probable distribution is the equilibrium dis-
tribution found earlier by Maxwell and generalized by Boltzmann.

In this approach probabilities are central. The role of dynamics is minimized
but it is not eliminated. The Hamiltonian enters the discussion in two places.
One is quite explicit: there is a conserved energy the value of which is imposed as
a constraint. The second is much more subtle; we saw above that the probability
of a macrostate could be taken to be proportional to the multiplicity W provided
microstates are assigned equal probabilities, or equivalently, equal volumes in
phase space are assigned equal a priori weights. As always equal probabilities
must ultimately be justified in terms of some form of underlying symmetry. In
this case, the symmetry follows from Liouville’s theorem – under a Hamiltonian
time evolution a region in phase space will move around and its shape will be
distorted but its volume will be conserved: Hamiltonian time evolution preserves
volumes in phase space. The nearly universal applicability of the ‘equal a priori
postulate’ can be traced to the fact that the only thing that is needed is a
Hamiltonian; any Hamiltonian would do.

It is very remarkable that although Boltzmann calculated the maximized
value logW for an ideal gas and knew that it agreed with the thermodynamical
entropy except for a scale factor, he never wrote the famous equation that bears
his name

S = k logW . (3.51)
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This equation, as well as Boltzmann’s constant k, were both first introduced by
Planck.

There is, however, a problem with eq.(3.50): it involves the distribution
function f(x, p) in the one-particle phase space and therefore it cannot take
correlations into account. Indeed, eq.(3.50) gives the correct form of the entropy
only for ideal gases of non-interacting particles. The expression that applies to
systems of interacting particles is2

logW = −
∫
dzN fN log fN , (3.52)

where fN = fN (x1, p1, . . . , xN , pN ) is the probability distribution in the N -
particle phase space. This equation is usually associated with the name of Gibbs
who, in his “Principles of Statistical Mechanics” (1902), developed Boltzmann’s
combinatorial arguments into a very powerful theory of ensembles. The con-
ceptual gap between eq.(3.50) and (3.52) is enormous; it goes well beyond the
issue of intermolecular interactions. The probability in Eq.(3.50) is the single-
particle distribution, it can be interpreted as a “mechanical” property, namely,
the relative number of molecules in each cell. The entropy Eq.(3.50) can be
interpreted as a mechanical property of the individual system. In contrast,
eq.(3.52) involves the N -particle distribution which is not a property of any
single individual system but a property of an ensemble of replicas of the system.
Gibbs was not very explicit about his interpretation of probability. He wrote

“The states of the bodies which we handle are certainly not known to us
exactly. What we know about a body can generally be described most
accurately and most simply by saying that it is one taken at random from
a great number (ensemble) of bodies which are completely described.” [my
italics, Gibbs 1902, p.163]

It is clear that for Gibbs probabilities represent a state of knowledge, that the
ensemble is a purely imaginary construction, just a tool for handling incomplete
information. On the other hand, it is also clear that Gibbs still struggles thinking
of probabilities in terms of frequencies. If the only reliable notion of probability
that is available requires an ensemble and no such thing is anywhere to be
found then either one adopts an imaginary ensemble or one altogether gives up
on probability, an option too extreme to contemplate.

This brings our story of entropy up to about 1900. In the next chapter we
start a more deliberate and systematic study of the connection between entropy
and information.

3.7 Some remarks

I end with a disclaimer: this chapter has historical overtones but it is not history.
Lines of research such as the Boltzmann equation and the ergodic hypothesis

2For the moment we disregard the question of the distinguishability of the molecules. The
so-called Gibbs paradox and the extra factor of 1/N ! will be discussed in detail in chapter 4.
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that were historically very important have been omitted because they represent
paths that diverge from the central theme of this book, namely that the laws
of physics can be understood as rules for handling information and uncertainty.
Our goal is to discuss thermodynamics and statistical mechanics as the first
historical example of such an information physics. At first I tried to write a
‘history as it should have happened’. I wanted to trace the development of the
concept of entropy from its origins with Carnot in a manner that reflects the
logical rather than the actual evolution. But I found that this approach would
not do; it trivializes the enormous achievements of the 19th century thinkers
and it misrepresents the actual nature of research. Scientific research is not a
tidy business.

I mentioned that this chapter was inspired by a beautiful article by E. T.
Jaynes with the same title [Jaynes 1988]. I think Jaynes’ article has great
pedagogical value but I disagree with him on how well Gibbs understood the
logical status of thermodynamics and statistical mechanics as examples of in-
ferential and probabilistic thinking. My own assessment runs in quite the oppo-
site direction: the reason why the conceptual foundations of thermodynamics
and statistical mechanics have been so controversial throughout the 20th cen-
tury is precisely because neither Gibbs nor Boltzmann, nor anyone else at the
time, were particularly clear on the interpretation of probability. I think that
we could hardly expect them to have done much better; they did not benefit
from the writings of Keynes (1921), Ramsey (1931), de Finetti (1937), Jeffreys
(1939), Cox (1946), Shannon (1948), Polya (1954) and, of course, Jaynes himself
(1957). Indeed, whatever clarity Jaynes attributes to Gibbs, is not Gibbs’; it
is the hard-won clarity that Jaynes attained through his own efforts and after
absorbing much of the best the 20th century had to offer.



Chapter 4

Entropy II: Measuring
Information

What is information? Our central goal is to gain insight into the nature of
information, how one manipulates it, and the implications such insights have for
physics. In chapter 2 we provided a first partial answer. We might not yet know
precisely what information is but sometimes we can recognize it. For example,
it is clear that experimental data contains information, that the correct way to
process it involves Bayes’s rule, and that this is very relevant to the empirical
aspect of all science, namely, to data analysis. Bayes’ rule is the machinery that
processes the information contained in data to update from a prior to a posterior
probability distribution. This suggests a possible generalization: “information”
is whatever induces one to update from one state of belief to another. This is a
notion that will be explored in detail later.

In this chapter we pursue a different point of view that has turned out to be
extremely fruitful. We saw that the natural way to deal with uncertainty, that
is, with lack of information, is to introduce the notion of degrees of belief, and
that these measures of plausibility should be manipulated and calculated using
the ordinary rules of the calculus of probabilities. This achievement is a consid-
erable step forward but it is not sufficient. The problem is that what the rules
of probability theory allow us to do is to assign probabilities to some “complex”
propositions on the basis of the probabilities that have been previously assigned
to other, perhaps more “elementary” propositions. The solution is to introduce
a new inference tool designed specifically for assigning those elementary proba-
bilities. The new tool is Shannon’s measure of an “amount of information” and
the associated method of reasoning is Jaynes’ Method of Maximum Entropy, or
MaxEnt. [Shannon 1948, Jaynes 1957b, 1983, 2003]
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4.1 Shannon’s information measure

Consider a set of mutually exclusive and exhaustive alternatives i, for example,
the possible values of a variable, or the possible states of a system. The state of
the system is unknown. Suppose that on the basis of the incomplete information
I we have somehow assigned probabilities p(i|I) = pi. In order to figure out
which state within the set {i} is the correct one we need more information. The
question we address here is how much more. Note that we are not asking the
more difficult question of which particular piece of information is missing, but
merely the quantity of information that is missing. It seems reasonable that
the amount of information that is missing in a sharply peaked distribution is
smaller than the amount missing in a broad distribution, but how much smaller?
Is it possible to quantify the notion of amount of information? Can one find a
unique quantity S that is a function of the pi’s, that tends to be large for broad
distributions and small for narrow ones?

Consider a discrete set of n mutually exclusive and exhaustive discrete states
i, each with probability pi. According to Shannon, the measure S of the amount
of information that is missing when all we know is the distribution pi must satisfy
three axioms. It is quite remarkable that these three conditions are sufficiently
constraining to determine the quantity S uniquely. The first two axioms are
deceptively simple.
Axiom 1. S is a real continuous function of the probabilities pi, S[p] =
S (p1, . . . pn).
Remark: It is explicitly assumed that S[p] depends only on the pi and on
nothing else. What we seek here is an absolute measure of the amount of
missing information in p. If the objective were to update from a prior q to a
posterior distribution p – a problem that will be later tackled in chapter 6 –
then we would require a functional S[p, q] depending on both q and p. Such
S[p, q] would at best be a relative measure: the information in p relative to the
reference distribution q.
Axiom 2. If all the pi’s are equal, pi = 1/n. Then S = S (1/n, . . . , 1/n) =
F (n), where F (n) is an increasing function of n.
Remark: This means that it takes less information to pinpoint one alternative
among a few than one alternative among many and also that knowing the num-
ber n of available states is already a valuable piece of information. Notice that
the uniform distribution pi = 1/n is singled out to play a very special role.
Indeed, although no reference distribution has been explicitly mentioned, the
uniform distribution will, in effect, provide the standard of complete ignorance.

The third axiom is a consistency requirement and is somewhat less intuitive.
The entropy S[p] measures the amount of additional information beyond the
incomplete information I already codified in the pi that will be needed to pin-
point the actual state of the system. Imagine that this missing information were
to be obtained not all at once but in installments. The consistency requirement
is that the particular manner in which we obtain this information should not
matter. This idea can be expressed as follows.

Imagine the n states are divided into N groups labeled by g = 1, . . . , N as
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shown in Fig 4.1.

1=i 2 L3 1−nL n

L

1=g 2=g Ng=

Figure 4.1: The n states are divided into N groups to formulate the grouping
axiom.

The probability that the system is found in group g is

Pg =
∑
i∈g

pi . (4.1)

Let pi|g denote the conditional probability that the system is in the state i ∈ g
given it is in group g,

pi|g =
pi
Pg

for i ∈ g. (4.2)

Suppose we were to obtain the desired information in two steps, the first of
which would allow us to single out one of the groups g while the second would
allow us to decide on the actual i within the selected group g. The amount
of information required in the first step is SG = S[P ] where P = {Pg} with
g = 1 . . . N . Now suppose we did get this information, and as a result we found,
for example, that the system was in group g′. Then for the second step, to single
out the state i within the group g′, the amount of additional information needed
would be Sg′ = S[p·|g′ ]. But at the beginning of this process we do not yet know
which of the gs is the correct one. The expected amount of missing information
to take us from the gs to the actual is is

∑
g PgSg. The consistency requirement

is that it should not matter whether we get the total missing information in one
step, which completely determines i, or in two steps, the first of which has low
resolution and only determines one of the groups, say g′, while the second step
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provides the fine tuning that determines i within g′. This gives us our third
axiom:
Axiom 3. For all possible groupings g = 1 . . . N of the states i = 1 . . . n we
must have

S[p] = SG[P ] +
∑
g
PgSg[p·|g] . (4.3)

This is called the “grouping” property.
Remark: Given axiom 3 it might seem more appropriate to interpret S as a
measure of the expected rather than the actual amount of missing information,
but if S is the expected value of something, it is not clear, at this point, what
that something would be. We will return to this below.

The solution to Shannon’s constraints is obtained in two steps. First assume
that all states i are equally likely, pi = 1/n. Also assume that the N groups g
all have the same number of states, m = n/N , so that Pg = 1/N and pi|g =
pi/Pg = 1/m. Then by axiom 2,

S[pi] = S (1/n, . . . , 1/n) = F (n) , (4.4)

SG[Pg] = S (1/N, . . . , 1/N) = F (N) , (4.5)

and
Sg[pi|g] = S(1/m, . . . , 1/m) = F (m). (4.6)

Then, axiom 3 gives
F (mN) = F (N) + F (m) . (4.7)

This should be true for all integers N and m. It is easy to see that one solution
of this equation is

F (m) = k log m , (4.8)

where k is any positive constant (just substitute), but it is also easy to see that
eq.(4.7) has infinitely many other solutions. Indeed, since any integer m can be
uniquely decomposed as a product of prime numbers, m =

∏
rq
αr
r , where αi are

integers and qr are prime numbers, using eq.(4.7) we have

F (m) =
∑
rαrF (qr) (4.9)

which means that eq.(4.7) can be satisfied by arbitrarily specifying F (qr) on
the primes and then defining F (m) for any other integer through eq.(4.9). A
unique solution is obtained when we impose the additional requirement that
F (m) be monotonic increasing in m (axiom 2). The following argument is found
in [Shannon Weaver 1949]; see also [Jaynes 2003]. Consider any two integers s
and t both larger than 1. The ratio of their logarithms can be approximated
arbitrarily closely by a rational number, i.e., we can find integers α and β (with
β arbitrarily large) such that

α

β
≤ log s

log t
<
α+ 1
β

or tα ≤ sβ < tα+1 . (4.10)
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But F is monotonic increasing, therefore

F (tα) ≤ F (sβ) < F (tα+1) , (4.11)

and using eq.(4.7),

αF (t) ≤ βF (s) < (α+ 1)F (t) or
α

β
≤ F (s)
F (t)

<
α+ 1
β

. (4.12)

Which means that the ratio F (s)/F (t) can be approximated by the same rational
number α/β. Indeed, comparing eqs.(4.10) and (4.12) we get∣∣∣∣F (s)

F (t)
− log s

log t

∣∣∣∣ ≤ 1
β

(4.13)

or, ∣∣∣∣F (s)
log s

− F (t)
log t

∣∣∣∣ ≤ F (t)
β log s

(4.14)

We can make the right hand side arbitrarily small by choosing β sufficiently
large, therefore F (s)/ log s must be a constant, which proves (4.8) is the unique
solution.

In the second step of our derivation we will still assume that all is are equally
likely, so that pi = 1/n and S[p] = F (n). But now we assume the groups g have
different sizes, mg, with Pg = mg/n and pi|g = 1/mg. Then axiom 3 becomes

F (n) = SG[P ] +
∑
g

Pg F (mg),

Therefore,

SG[P ] = F (n)−
∑
g

PgF (mg) =
∑
g

Pg [F (n)− F (mg)] .

Substituting our previous expression for F we get

SG[P ] =
∑
g

Pg k log
n

mg
= −k

N∑
i=1

Pg logPg .

Therefore Shannon’s quantitative measure of the amount of missing information,
the entropy of the probability distribution p1, . . . , pn is

S[p] = −k
n∑
i=1

pi log pi . (4.15)
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Comments

Notice that for discrete probability distributions we have pi ≤ 1 and log pi ≤ 0.
Therefore S ≥ 0 for k > 0. As long as we interpret S as the amount of
uncertainty or of missing information it cannot be negative. We can also check
that in cases where there is no uncertainty we get S = 0: if any state has
probability one, all the other states have probability zero and every term in S
vanishes.

The fact that entropy depends on the available information implies that there
is no such thing as the entropy of a system. The same system may have many
different entropies. Indeed, two different agents may reasonably assign different
probability distributions p and p′ so that S[p] 6= S[p′]. But the non-uniqueness of
entropy goes even further: the same agent may legitimately assign two entropies
to the same system. This possibility is already shown in axiom 3 which makes
explicit reference to two entropies S[p] and SG[P ] referring to two different
descriptions of the same system. Colloquially, however, one does refer to the
entropy of a system; in such cases the relevant information available about the
system should be obvious from the context. For example, in thermodynamics
what one means by the entropy is the particular entropy that one obtains when
the only information available is specified by the known values of those few
variables that specify the thermodynamic macrostate.

The choice of the constant k is purely a matter of convention. In thermo-
dynamics the choice is Boltzmann’s constant kB = 1.38 × 10−16erg/K which
reflects the historical choice of the Kelvin as the unit of temperature. A more
convenient choice is k = 1 which makes temperature have energy units and
entropy dimensionless. In communication theory and computer science, the
conventional choice is k = 1/ loge 2 ≈ 1.4427, so that

S[p] = −
n∑
i=1

pi log2 pi . (4.16)

The base of the logarithm is 2, and the entropy is said to measure information
in units called ‘bits’.

Now we turn to the question of interpretation. Earlier we mentioned that
from axiom 3 it seems more appropriate to interpret S as a measure of the
expected rather than the actual amount of missing information. If one adopts
this interpretation, the actual amount of information that we gain when we find
that i is the true alternative could be log 1/pi. But this is not quite satisfactory.
Consider a variable that takes just two values, 0 and 1, with probabilities p
and 1− p respectively. For very small p, log 1/p would be very large, while the
information that communicates the true alternative is conveyed by a very short
one bit message, namely “0”. This shows that what log 1/p measures is not
the actual amount of information but rather how unexpected or how surprising
that piece of information might be. Accordingly, log 1/pi is sometimes called
the “surprise” of i.

Perhaps one could interpret S[p] as the uncertainty implicit in p — we use
the word ‘uncertainty’ as roughly synonymous to ‘lack of information’ so that
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more information implies less uncertainty. But, as the following example shows,
this does not always work either. I normally keep my keys in my pocket. My
state of knowledge about the location of my keys is represented by a probability
distribution that is sharply peaked at my pocket and reflects a small uncertainty.
But suppose I check and I find that my pocket is empty. Then my keys could be
virtually anywhere. My new state of knowledge is represented by a very broad
distribution that reflects a high uncertainty. We have here a situation where
the acquisition of more information has increased the uncertainty rather than
decreased it. (This question is further discussed in section 4.6.)

The point of these remarks is not to suggest that there is something wrong
with the mathematical derivation — there is not, eq.(4.15) does follow from the
axioms — but to suggest caution when interpreting S. The notion of information
is at this point still vague. Any attempt to find its measure will always be
open to the objection that it is not clear what it is that is being measured.
Is entropy the only way to measure uncertainty? Doesn’t the variance also
measure uncertainty? Both Shannon and Jaynes agreed that one should not
place too much significance on the axiomatic derivation of eq.(4.15), that its
use can be fully justified a posteriori by its formal properties, for example, by
the various inequalities it satisfies. Thus, the standard practice is to define
‘information’ as a technical term using eq.(4.15) and proceed. Whether this
meaning of information is in agreement with our colloquial meaning is quite
another issue. However, this position can be questioned on the grounds that
it is the axioms that confer meaning to the entropy; the disagreement is not
about the actual equations, but about what they mean and, ultimately, about
how they should be used. Other measures of uncertainty can be introduced and,
indeed, they have been introduced by Renyi and by Tsallis, creating a whole
industry of alternative theories [Renyi 1961, Tsallis 1988]. Whenever one can
make an inference using Shannon’s entropy, one can make other inferences using
any one of Renyi’s entropies. Which, among all those alternatives, should one
choose?

The two-state case

To gain intuition about S[p] consider the case of a variable that can take two
values. The proverbial example is a biased coin — for example, a bent coin —
for which the outcome ‘heads’ is assigned probability p and ‘tails’ probability
1− p. The corresponding entropy, shown in figure 4.2 is

S(p) = −p log p− (1− p) log (1− p) , (4.17)

where we chose k = 1. It is easy to check that S ≥ 0 and that the maximum
uncertainty, attained for p = 1/2, is Smax = log 2.

An important set of properties of the entropy follows from the concavity of
the entropy which follows from the concavity of the logarithm. Suppose we can’t
decide whether the actual probability of heads is p1 or p2. We may decide to
assign probability q to the first alternative and probability 1− q to the second.
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Figure 4.2: Showing the concavity of the entropy S(p̄) ≥ S̄ for the case of two
states.

The actual probability of heads then is the mixture p̄ = qp1 + (1 − q)p2. The
corresponding entropies satisfy the inequality

S(p̄) ≥ qS (p1) + (1− q)S (p2) = S̄ , (4.18)

with equality in the extreme cases where p1 = p2, or q = 0, or q = 1. Eq.(4.18)
says that however ignorant we might be when we invoke a probability distribu-
tion, an uncertainty about the probabilities themselves will introduce an even
higher degree of ignorance.

4.2 Relative entropy

The following entropy-like quantity turns out to be useful

K[p, q] = +
∑
i

pi log
pi
qi
. (4.19)

Despite the positive sign K is sometimes read as the ‘entropy of p relative to
q,’ and thus called “relative entropy.” It is easy to see that in the special case
when qi is a uniform distribution then K is essentially equivalent to the Shannon
entropy – they differ by a constant. Indeed, for qi = 1/n, eq.(4.19) becomes

K[p, 1/n] =
n∑
i

pi (log pi + log n) = log n− S[p] . (4.20)
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The relative entropy is also known by many other names including cross
entropy, information divergence, information for discrimination, and Kullback-
Leibler distance [Kullback 1959]. The expression (4.19) has an old history. It
was already used by Gibbs in his Elementary Principles of Statistical Mechanics
[Gibbs 1902] and by Turing as the expected weight of evidence [Good 1983].

It is common to interpret K[p, q] as the amount of information that is gained
(thus the positive sign) when one thought the distribution that applies to a
certain process is q and one learns that the distribution is actually p. Indeed, if
the distribution q is the uniform distribution and reflects the minimum amount
of information we can interpret K[p, q] as the amount of information in p.

As we saw in section (2.10) the weight of evidence factor in favor of hypoth-
esis θ1 against θ2 provided by data x is

w(θ1 : θ2) def= log
p(x|θ1)
p(x|θ2)

. (4.21)

This quantity can be interpreted as the information gained from the observation
of the data x. Indeed, this is precisely the way [Kullback 1959] defines the notion
of ‘information’: the log-likelihood ratio is the information in the data x for
discrimination in favor of θ1 against θ2. Accordingly, the relative entropy,

∫
dx p(x|θ1) log

p(x|θ1)
p(x|θ2)

= K(θ1, θ2) , (4.22)

is interpreted as the mean information per observation drawn from p(x|θ1) in
favor of θ1 against θ2. The interpretation suffers from the same conceptual dif-
ficulties mentioned earlier concerning the Shannon entropy. In the next chapter
we will see that the relative entropy turns out to be the fundamental quantity
for inference – indeed, more fundamental, more general, and therefore, more
useful than entropy itself – and that the interpretational difficulties that afflict
the Shannon entropy can be avoided. (We will also redefine it with a negative
sign, S[p, q] def= −K[p, q], so that it really is a true entropy.) In this chapter we
just derive some properties and consider some applications.

An important property of the relative entropy is the Gibbs inequality,

K[p, q] ≥ 0 , (4.23)

with equality if and only if pi = qi for all i. The proof uses the concavity of the
logarithm,

log x ≤ x− 1 or log
qi
pi
≤ qi
pi
− 1 , (4.24)

which implies ∑
i

pi log
qi
pi
≤
∑
i

(qi − pi) = 0 . (4.25)

The Gibbs inequality provides some justification to the common interpreta-
tion of K[p, q] as a measure of the “distance” between the distributions p and
q. Although useful, this language is not quite correct because K[p, q] 6= K[q, p]
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while a true distance D is required to be symmetric, D[p, q] = D[q, p]. However,
as we shall later see, if the two distributions are sufficiently close the relative
entropy K[p + δp, p] satisfies all the requirements of a metric. Indeed, it turns
out that up to a constant factor, it is the only natural Riemannian metric on
the manifold of probability distributions. It is known as the Fisher-Rao metric
or, perhaps more appropriately, the information metric.

The two inequalities S[p] ≥ 0 and K[p, q] ≥ 0 together with eq.(4.20) imply

0 ≤ S[p] ≤ log n , (4.26)

which establishes the range of the entropy between the two extremes of complete
certainty (pi = δij for some value j) and complete uncertainty (the uniform
distribution) for a variable that takes n discrete values.

4.3 Joint entropy, additivity, and subadditivity

The entropy S[px] reflects the uncertainty or lack of information about the
variable x when our knowledge about it is codified in the probability distribution
px. It is convenient to refer to S[px] directly as the “entropy of the variable x”
and write

Sx
def= S[px] = −

∑
x
px log px . (4.27)

The virtue of this notation is its compactness but one must keep in mind the
same symbol x is used to denote both a variable x and its values xi. To be more
explicit,

−
∑
x
px log px = −

∑
i

px(xi) log px(xi) . (4.28)

The uncertainty or lack of information about two (or more) variables x and
y is expressed by the joint distribution pxy and the corresponding joint entropy
is

Sxy = −
∑
xy
pxy log pxy . (4.29)

When the variables x and y are independent, pxy = pxpy, the joint entropy
is additive

Sxy = −
∑
xy
pxpy log(pxpy) = Sx + Sy , (4.30)

that is, the joint entropy of independent variables is the sum of the entropies
of each variable. This additivity property also holds for the other measure of
uncertainty we had introduced earlier, namely, the variance,

var(x+ y) = var(x) + var(y) . (4.31)

In thermodynamics additivity is called extensivity : the entropy of an ex-
tended system is the sum of the entropies of its parts provided these parts are
independent. The thermodynamic entropy can be extensive only when the in-
teractions between various subsystems are sufficiently weak that correlations
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between them can be neglected. Typically non-extensivity arises from correla-
tions induced by short range surface effects (e.g., surface tension, wetting, cap-
illarity) or by long-range Coulomb or gravitational forces (e.g., plasmas, black
holes, etc.). Incidentally, the realization that extensivity is not a particularly
fundamental property immediately suggests that it should not be given the very
privileged role of a postulate in the formulation of thermodynamics.

When the two variables x and y are not independent the equality (4.30)
can be generalized into an inequality. Consider the joint distribution pxy =
pxpy|x = pypx|y. The relative entropy or Kullback “distance” of pxy to the
product distribution pxpy that would represent uncorrelated variables is given
by

K[pxy, pxpy] =
∑
xy
pxy log

pxy
pxpy

= −Sxy −
∑
xy
pxy log px −

∑
xy
pxy log py

= −Sxy + Sx + Sy . (4.32)

Therefore, the Gibbs inequality, K ≥ 0, leads to

Sxy ≤ Sx + Sy , (4.33)

with the equality holding when the two variables x and y are independent.
This is called the subadditivity inequality. Its interpretation is clear: entropy
increases when information about correlations is discarded.

4.4 Conditional entropy and mutual information

Consider again two variables x and y. We want to measure the amount of
uncertainty about one variable x when we have some limited information about
another variable y. This quantity, called the conditional entropy, and denoted
Sx|y, is obtained by calculating the entropy of x as if the precise value of y were
known and then taking the expectation over the possible values of y

Sx|y =
∑
y
pyS[px|y] = −

∑
y
py
∑
x
px|y log px|y = −

∑
x,y
pxy log px|y , (4.34)

where pxy is the joint distribution of x and y.
The conditional entropy is related to the entropy of x and to the joint entropy

by the following “chain rule.” Use the product rule for the joint distribution

log pxy = log py + log px|y , (4.35)

and take the expectation over x and y to get

Sxy = Sy + Sx|y . (4.36)
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In words: the entropy of two variables is the entropy of one plus the conditional
entropy of the other. Also, since Sy is positive we see that conditioning reduces
entropy,

Sxy ≥ Sx|y . (4.37)

Another useful entropy-like quantity is the so-called “mutual information”
of x and y, denoted Mxy, which “measures” how much information x and y have
in common, or alternatively, how much information is lost when the correlations
between x and y are discarded. This is given by the relative entropy between
the joint distribution pxy and the product distribution pxpy that discards all
information contained in the correlations. Using eq.(4.32),

Mxy
def= K[pxy, pxpy] =

∑
xy
pxy log

pxy
pxpy

(4.38)

= Sx + Sy − Sxy ≥ 0 ,

where we used eq.(4.32). Note that Mxy is symmetrical in x and y. Using
eq.(4.36) the mutual information is related to the conditional entropies by

Mxy = Sx − Sx|y = Sy − Sy|x . (4.39)

An important application of mutual information to the problem of experimental
design is given below in section 4.6.

4.5 Continuous distributions

Shannon’s derivation of the expression for entropy, eq.(4.15), applies to probabil-
ity distributions of discrete variables. The generalization to continuous variables
is not quite straightforward.

The discussion will be carried out for a one-dimensional continuous variable;
the generalization to more dimensions is trivial. The starting point is to note
that the expression

−
∫
dx p(x) log p(x) (4.40)

is unsatisfactory. A change of variables x → y = y(x) changes the probabil-
ity density p(x) to p′(y) but does not represent a loss or gain of information.
Therefore, the actual probabilities do not change, p(x)dx = p′(y)dy, and neither
should the entropy. However, one can check that (4.40) is not invariant,∫

dx p(x) log p(x) =
∫
dy p′(y) log

[
p′(y)

∣∣∣∣dydx
∣∣∣∣]

6=
∫
dy p′(y) log p′(y) . (4.41)

We approach the continuous case as a limit from the discrete case. Consider
a continuous distribution p(x) defined on an interval for xa ≤ x ≤ xb. Divide the
interval into equal intervals ∆x = (xb − xa) /N . For large N the distribution
p(x) can be approximated by a discrete distribution

pn = p(xn)∆x , (4.42)
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where xn = xa + n∆x and n is an integer. The discrete entropy is

SN = −
N∑
n=1

∆x p(xn) log [p(xn)∆x] , (4.43)

and as N →∞ we get

SN −→ logN −
xb∫
xa

dx p(x) log
[

p(x)
1/ (xb − xa)

]
(4.44)

which diverges. The divergence is what one would naturally expect: it takes a
finite amount of information to identify one discrete alternative within a finite
set, but it takes an infinite amount to single out one point in a continuum. The
difference SN − logN has a well defined limit and we are tempted to consider

−
xb∫
xa

dx p(x) log
[

p(x)
1/ (xb − xa)

]
(4.45)

as a candidate for the continuous entropy, until we realize that, except for
an additive constant, it coincides with the unacceptable expression (4.40) and
should be discarded for precisely the same reason: it is not invariant under
changes of variables. Had we first changed variables to y = y(x) and then
discretized into N equal ∆y intervals we would have obtained a different limit

−
yb∫
ya

dy p′(y) log
[

p′(y)
1/ (yb − ya)

]
. (4.46)

The problem is that the limiting procedure depends on the particular choice of
discretization; the limit depends on which particular set of intervals ∆x or ∆y
we have arbitrarily decided to call equal. Another way to express the same idea
is to note that the denominator 1/ (xb − xa) in (4.45) represents a probability
density that is uniform in the variable x, but not in y. Similarly, the density
1/ (yb − ya) in (4.46) is uniform in y, but not in x.

Having identified the origin of the problem we can now suggest a solution.
On the basis of our prior knowledge of the problem at hand we must decide on
a privileged set of equal intervals, or alternatively, on one preferred probability
distribution µ(x) we are willing to define as “uniform”. Then, and only then, it
makes sense to propose the following definition

S[p, µ] def= −
xb∫
xa

dx p(x) log
p(x)
µ(x)

. (4.47)

It is easy to check that this is invariant,

xb∫
xa

dx p(x) log
p(x)
µ(x)

=
yb∫
ya

dy p′(y) log
p′(y)
µ′(y)

. (4.48)

The following examples illustrate possible choices of the uniform µ(x):
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1. When the variable x refers to position in “physical” Euclidean space, we
can feel fairly comfortable with what we mean by equal volumes: use
Cartesian coordinates and choose µ(x) = constant.

2. In a curved D-dimensional space with a known metric tensor gij , i.e., the
distance between neighboring points with coordinates xi and xi + dxi is
given by d`2 = gijdx

idxj , the volume elements are given by (det g)1/2
dDx.

(See the discussion in section 7.3.) The uniform distribution is that which
assigns equal probabilities to equal volumes,

µ(x)dDx ∝ (det g)1/2
dDx . (4.49)

Therefore we choose µ(x) ∝ (det g)1/2.

3. In classical statistical mechanics the Hamiltonian evolution in phase space
is, according to Liouville’s theorem, such that phase space volumes are
conserved. This leads to a natural definition of equal intervals or equal
volumes. The corresponding choice of uniform µ is called the postulate of
“equal a priori probabilities.” (See the discussion in section 5.2.)

Notice that the expression in eq.(4.47) is a relative entropy −K[p, µ]. This
is a hint for a theme that will be fully developed in chapter 6: relative entropy
is the more fundamental quantity. Strictly, there is no Shannon entropy in the
continuum – not only do we have to subtract an infinite constant and spoil its
(already shaky) interpretation as an information measure, but we have to appeal
to prior knowledge and introduce the measure µ. On the other hand there are no
difficulties in obtaining the continuum limit from the discrete version of relative
entropy. We can check that

KN =
N∑
n=0

pn log
pn
qn

=
N∑
n=0

∆x p(xn) log
p(xn)∆x
q(xn)∆x

(4.50)

has a well defined limit,

K[p, q] =
xb∫
xa

dx p(x) log
p(x)
q(x)

, (4.51)

which is manifestly invariant under coordinate transformations.

4.6 Experimental design

A very useful and elegant application of the notion of mutual information is
to the problem of experimental design. The usual problem of Bayesian data
analysis is to make the best possible inferences about a certain variable θ on
the basis of data obtained from a given experiment. The problem we now
address concerns the decisions that must be made before the data is collected:
Where should the detectors be placed? How many should there be? When
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should the measurement be carried out? How to remain within the bounds
of a budget? The goal is to choose the best possible experiment given a set
of practical constraints. The idea is to compare the amounts of information
available before and after the experiment. The difference is the amount of
information provided by the experiment and this is the quantity that one must
seek to maximize. The basic idea was proposed in [Lindley 1956]; a more modern
application with references to the literature is [Loredo 2003].

The problem can be idealized as follows. We want to make inferences about
a variable θ. Let q(θ) be the prior. We want to select the optimal experiment
from within a family of experiments labeled by ε. The label ε can be discrete
or continuous, one parameter or many, and each experiment ε is specified by its
likelihood function qε(x|θ).1

The amount of information before the experiment is performed is given by

Kb = K[q, µ] =
∫
dθ q(θ) log

q(θ)
µ(θ)

, (4.52)

where µ(θ) defines what we mean by the uniform distribution in the space of
θs. If experiment ε were to be performed and data x were obtained the amount
of information after the experiment would be

Ka(x) = K[qε, µ] =
∫
dθ qε(θ|x) log

qε(θ|x)
µ(θ)

. (4.53)

But the data x has not yet been collected; the expected amount of information
to be obtained from experiment ε is

〈Ka〉 =
∫
dxdθ qε(x)qε(θ|x) log

qε(θ|x)
µ(θ)

, (4.54)

where qε(x) is the probability that data x is observed in experiment ε,

qε(x) =
∫
dθ qε(x, θ) =

∫
dθ q(θ)qε(x|θ) . (4.55)

Using Bayes theorem 〈Ka〉 can be written as

〈Ka〉 =
∫
dxdθ qε(x, θ) log

qε(x, θ)
qε(x)q(θ)

+Kb . (4.56)

Therefore, the expected information gained in experiment ε, which is 〈Ka〉−Kb,
turns out to be

Mxθ(ε) =
∫
dxdθ qε(x, θ) log

qε(x, θ)
qε(x)q(θ)

, (4.57)

which we recognize as the mutual information Mxθ of the data x from ε and the
variable θ to be inferred, eq.(4.38). Clearly the best ε is that θ which maximizes

1The data x should include some label indicating the type of experiment that generated
it, say xε. For simplicity of notation such a label is omitted.
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Mxθ(ε) subject to whatever conditions (limited resources, etc.) apply to the
situation at hand.

Incidentally, mutual information, eq.(4.38), satisfies the Gibbs inequality
Mxθ(ε) ≥ 0. Therefore unless the data x and the variable θ are statistically
independent (which represents a totally useless experiment in which information
about one variable tells us absolutely nothing about the other) all experiments
are to some extent informative, at least on the average. The qualification ‘on
the average’ is important: individual data can lead to a negative information
gain. Indeed, as we saw in the keys/pocket example discussed in section 4.1 a
datum that turns out to be surprising can actually increase the uncertainty in
θ.

An interesting special case is that of exploration experiments in which the
goal is to find something [Loredo 2003]. The general background for this kind of
problem is that observations have been made in the past leading to our current
prior q(θ) and the problem is to decide where or when shall we make the next
observation. The simplifying assumption is that we choose among experiments
ε that differ only in that they are performed at different locations, in particular,
the inevitable uncertainties introduced by noise are independent of ε; they are
the same for all locations [Sebastiani Wynn 2000]. The goal is to identify the
optimal location for the next observation. An example in astronomy could be
as follows: the variable θ represents the location of a planet in the field of view
of a telescope; the data x represents light intensity; and ε represents the time
of observation and the orientation of the telescope.

The mutual information Mxθ(ε) can be written in terms of conditional en-
tropy as in eq.(4.39). Explicitly,

Mxθ(ε) =
∫
dxdθ qε(x, θ) log

qε(x|θ)
qε(x)

=
∫
dxdθ qε(x, θ)

[
log

qε(x|θ)
µ(x)

− log
qε(x)
µ(x)

]
=
∫
dθ q(θ)

∫
dx qε(x|θ) log

qε(x|θ)
µ(x)

−
∫
dx qε(x) log

qε(x)
µ(x)

,

where µ(x) defines what we mean by the uniform distribution in the space of
xs. The assumption for these location experiments is that the noise is the same
for all ε, that is, the entropy of the likelihood function qε(x|θ) is independent of
ε. Therefore maximizing

Mxθ(ε) = const−
∫
dx qε(x) log

qε(x)
µ(x)

= const +Sx(ε) (4.58)

amounts to choosing the ε that maximizes the entropy of the data to be collected:
we expect to learn the most by collecting data where we know the least.



4.7 Communication Theory 89

4.7 Communication Theory

Here we give the briefest introduction to some basic notions of communication
theory as originally developed by Shannon [Shannon 1948, Shannon Weaver
1949]. For a more comprehensive treatment see [Cover Thomas 1991].

Communication theory studies the problem of how a message that was se-
lected at some point of origin can be reproduced at some later destination point.
The complete communication system includes an information source that gen-
erates a message composed of, say, words in English, or pixels on a picture.
A transmitter translates the message into an appropriate signal. For example,
sound pressure is encoded into an electrical current, or letters into a sequence of
zeros and ones. The signal is such that it can be transmitted over a communica-
tion channel, which could be electrical signals propagating in coaxial cables or
radio waves through the atmosphere. Finally, a receiver reconstructs the signal
back into a message to be interpreted by an agent at the destination point.

From the point of view of the engineer designing the communication system
the challenge is that there is some limited information about the set of potential
messages to be sent but it is not known which specific messages will be selected
for transmission. The typical sort of questions one wishes to address concern
the minimal physical requirements needed to communicate the messages that
could potentially be generated by a particular information source. One wants to
characterize the sources, measure the capacity of the communication channels,
and learn how to control the degrading effects of noise. And after all this,
it is somewhat ironic but nevertheless true that such “information theory” is
completely unconcerned with whether any “information” is being communicated
at all. As far as the engineer goes, whether the messages convey some meaning
or not is completely irrelevant.

To illustrate the basic ideas consider the problem of data compression. A
useful idealized model of an information source is a sequence of random variables
x1, x2, . . . which take values from a finite alphabet of symbols. We will assume
that the variables are independent and identically distributed. (Eliminating
these limitations is both possible and important.) Suppose that we deal with a
binary source in which the variables xi, which are usually called ‘bits’, take the
values zero or one with probabilities p or 1− p respectively. Shannon’s idea was
to classify the possible sequences x1, . . . , xN into typical and atypical according
to whether they have high or low probability. For large N the expected number
of zeros and ones is Np and N(1− p) respectively. The probability of anyone of
these typical sequences is

P (x1, . . . , xN ) ≈ pNp(1− p)N(1−p) , (4.59)

so that

− logP (x1, . . . , xN ) ≈ −N [p log p− (1− p) log(1− p)] = NS(p) (4.60)

where S(p) is the two-state entropy, eq.(4.17), the maximum value of which is
Smax = log 2. Therefore, the probability of typical sequences is roughly

P (x1, . . . , xN ) ≈ e−NS(p) . (4.61)
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Since the total probability of typical sequences is less than one, we see that
their number has to be less than about eNS(p) which for large N is considerably
less than the total number of possible sequences, 2N = eN log 2. This fact is
very significant. Transmitting an arbitrary sequence irrespective of whether it
is typical or not requires a long message of N bits, but we do not have to waste
resources in order to transmit all sequences. We only need to worry about the
far fewer typical sequences because the atypical sequences are too rare. The
number of typical sequences is about

eNS(p) = 2NS(p)/ log 2 = 2NS(p)/Smax (4.62)

and therefore we only need about NS(p)/Smax bits to identify each one of them.
Thus, it must be possible to compress the original long but typical message into
a much shorter one. The compression might imply some small probability of
error because the actual message might conceivably turn out to be atypical but
one can, if desired, avoid any such errors by using one additional bit to flag
the sequence that follows as typical and short or as atypical and long. Actual
schemes for implementing the data compression are discussed in [Cover Thomas
91].

Next we state these intuitive notions in a mathematically precise way.

Theorem: The Asymptotic Equipartition Property (AEP)
If x1, . . . , xN are independent variables with the same probability distribution
p(x), then

− 1
N

logP (x1, . . . , xN ) −→ S[p] in probability. (4.63)

Proof: If the variables xi are independent, so are functions of them such the
logarithms of their probabilities, log p(xi),

− 1
N

logP (x1, . . . , xN ) = − 1
N

N∑
i

log p(xi) , (4.64)

and the law of large numbers (see section 2.7) gives

lim
N→∞

Prob
[∣∣∣∣− 1

N
logP (x1, . . . , xN ) + 〈log p(x)〉

∣∣∣∣ ≤ ε] = 1 , (4.65)

where
−〈log p(x)〉 = S[p] . (4.66)

This concludes the proof.
We can elaborate on the AEP idea further. The typical sequences are those

for which eq.(4.61) or (4.63) is satisfied. To be precise let us define the typical
set AN,ε as the set of sequences with probability P (x1, . . . , xN ) such that

e−N [S(p)+ε] ≤ P (x1, . . . , xN ) ≤ e−N [S(p)−ε] . (4.67)
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Theorem of typical sequences:

(1) For N sufficiently large Prob[AN,ε] > 1− ε.

(2) |AN,ε| ≤ eN [S(p)+ε] where |AN,ε| is the number of sequences in AN,ε.

(3) For N sufficiently large |AN,ε| ≥ (1− ε)eN [S(p)−ε].

In words: the typical set has probability approaching certainty; typical se-
quences are nearly equally probable (thus the ‘equipartition’); and there are
about eNS(p) of them. To summarize:

The possible sequences are equally likely (well, most of them).

Proof: Eq.(4.65) states that for fixed ε, for any given δ there is an Nδ such
that for all N > Nδ, we have

Prob
[∣∣∣∣− 1

N
logP (x1, . . . , xN ) + S[p]

∣∣∣∣ ≤ ε] ≥ 1− δ . (4.68)

Thus, the probability that the sequence (x1, . . . , xN ) is ε-typical tends to one,
and therefore so must Prob[AN,ε]. Setting δ = ε yields part (1). To prove (2)
write

1 ≥ Prob[AN,ε] =
∑

(x1,...,xN )∈AN,ε
P (x1, . . . , xN )

≥
∑

(x1,...,xN )∈AN,ε
e−N [S(p)+ε] = e−N [S(p)+ε] |AN,ε| . (4.69)

Finally, from part (1),

1− ε < Prob[AN,ε] =
∑

(x1,...,xN )∈AN,ε
P (x1, . . . , xN )

≤
∑

(x1,...,xN )∈AN,ε
e−N [S(p)−ε] = e−N [S(p)−ε] |AN,ε| , (4.70)

which proves (3).
We can now quantify the extent to which messages generated by an infor-

mation source of entropy S[p] can be compressed. A scheme that produces
compressed sequences that are longer than NS(p)/Smax bits is capable of dis-
tinguishing among all the typical sequences. The compressed sequences can be
reliably decompressed into the original message. Conversely, schemes that yield
compressed sequences of fewer than NS(p)/Smax bits cannot describe all typi-
cal sequences and are not reliable. This result is known as Shannon’s noiseless
channel coding theorem.
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4.8 Assigning probabilities: MaxEnt

Probabilities are introduced to cope with uncertainty due to missing informa-
tion. The notion that entropy S[p] can be interpreted as a quantitative measure
of the amount of missing information has one remarkable consequence: it pro-
vides us with a method to assign probabilities. Briefly the idea is simple: assign
probabilities that do not reflect more knowledge than one actually has. More
explicitly:

Among all possible probability distributions select that particular distribu-
tion that agrees with what we do know while reflecting least information
about all else.

The mathematical implementation of this idea involves entropy:

Since least information is expressed as maximum entropy, the selected dis-
tribution is that which maximizes entropy subject to whatever constraints
are imposed by the available information.

This method of reasoning is called the Method of Maximum Entropy and is often
abbreviated as MaxEnt. Ultimately, the method of maximum entropy is based
on an ethical principle of intellectual honesty that demands that one should
not assume information one does not have. The idea is quite compelling but
its justification relies heavily on interpreting entropy as a measure of missing
information and therein lies its weakness: to what extent are we sure that
entropy is the unique measure of information or of uncertainty?

As a simple illustration of MaxEnt in action consider a variable x about
which absolutely nothing is known except that it can take n discrete values
xi with i = 1 . . . n. The distribution that represents the state of maximum
ignorance is that which maximizes the entropy S = −

∑
p log p subject to the

single constraint that the probabilities be normalized,
∑
p = 1. Introducing a

Lagrange multiplier α to handle the constraint, the variation pi → pi+δpi gives

0 = δ

(
S[p]− α

∑
i

pi

)
= −

∑
i

(log pi + 1 + α) δpi , (4.71)

so that the selected distribution is

pi = e−1−α or pi =
1
n
, (4.72)

where the multiplier α has been determined from the normalization constraint.
We can check that the maximum value attained by the entropy,

Smax = −
∑
i

1
n

log
1
n

= log n , (4.73)

agrees with eq.(4.26).
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Remark: The distribution of maximum ignorance turns out to be uniform.
It coincides with what we would have obtained using Laplace’s Principle of
Insufficient Reason. It is sometimes asserted that MaxEnt provides a proof
of Laplace’s principle but such a claim is questionable. As we saw earlier, the
privileged status of the uniform distribution was imposed through the Shannon’s
axioms from the very beginning.

4.9 Canonical distributions

Next we address a problem in which more information is available. The addi-
tional information is effectively a constraint that defines the family acceptable
distributions. Although the constraints can take any form whatsoever in this
section we develop the MaxEnt formalism for the special case of constraints that
are linear in the probabilities. The most important applications are to situa-
tions of thermodynamic equilibrium where the relevant information is given in
terms of the expected values of those few macroscopic variables such as energy,
volume, and number of particles over which one has some experimental control.
(In the next chapter we revisit this problem in detail.)

The goal is to select the distribution of maximum entropy from within the
family of all distributions for which the expectations of some functions fk(x)
labeled by superscripts k = 1, 2, . . . have known numerical values F k,〈

fk
〉

=
∑
i

pif
k
i = F k , (4.74)

where we set fk(xi) = fki for i = 1 . . . n to simplify the notation. To maxi-
mize S[p] subject to (4.74) and normalization,

∑
pi = 1, introduce Lagrange

multipliers α and λk,

0 = δ

(
S[p]− α

∑
i

pi − λk
〈
fk
〉)

= −
∑
i

(
log pi + 1 + α+ λkf

k
i

)
δpi , (4.75)

where we adopt the Einstein summation convention that repeated upper and
lower indices are summed over. The solution is the so-called ‘canonical’ distri-
bution,

pi = exp−(λ0 + λkf
k
i ) , (4.76)

where we have set 1 + α = λ0. The normalization constraint determines λ0,

eλ0 =
∑
i

exp(−λkfki ) def= Z (λ1, λ2, . . .) (4.77)

where we have introduced the partition function Z(λ). The remaining multi-
pliers λk are determined by eqs.(4.74): substituting eqs.(4.76) and (4.77) into
eqs.(4.74) gives

−∂ logZ
∂λk

= F k . (4.78)
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This set of equations can in principle be inverted to give λk = λk(F ); in practice
this is not usually necessary. Substituting eq.(4.76) into S[p] = −

∑
pi log pi

yields the maximized value of the entropy,

Smax =
∑
i

pi(λ0 + λkf
k
i ) = λ0 + λkF

k . (4.79)

Equations (4.76-4.78) are a generalized form of the “canonical” distributions
first discovered by Maxwell, Boltzmann and Gibbs.

Strictly, the calculation above only shows that the entropy is stationary,
δS = 0. To complete the argument we must show that (4.79) is indeed the
absolute maximum rather than just a local extremum or a stationary point.
Consider any other distribution qi that satisfies precisely the same constraints,
eqs.(4.74). According to the basic Gibbs inequality for the relative entropy of q
and the canonical p,

K(q, p) =
∑
i

qi log
qi
pi
≥ 0 , (4.80)

or
S[q] ≤ −

∑
i

qi log pi . (4.81)

Substituting eq.(4.76) gives

S[q] ≤
∑
i

qi(λ0 + λkf
k
i ) = λ0 + λkF

k . (4.82)

Therefore
S[q] ≤ S[p] = Smax . (4.83)

In words: within the family of all distributions q that satisfy the constraints
(4.74) the distribution that achieves the maximum entropy is the canonical
distribution p given in eq.(4.76).

Having found the maximum entropy distribution we can now develop the
MaxEnt formalism along lines that closely parallel the formalism of statistical
mechanics. Each distribution within the family of distributions of the form
(4.76) can be thought of as a point in a continuous space – the manifold of
canonical distributions. Each specific choice of expected values (F 1, F 2, . . .)
determines a unique point within the space, and therefore the F k play the role
of coordinates. To each point (F 1, F 2, . . .) we can associate a number, the value
of the maximized entropy. Therefore, Smax is a scalar field which we denote
S(F 1, F 2, . . .) = S(F ). In thermodynamics it is conventional to drop the suffix
‘max’ and to refer to S(F ) as the entropy of the system. This language can be
misleading. We should constantly remind ourselves that S(F ) is just one out of
many possible entropies that one could associate to the same physical system:
S(F ) is that particular entropy that measures the amount of information that
is missing for an agent whose knowledge consists of the numerical values of the
F s and nothing else. The multiplier

λ0 = logZ(λ1, λ2, . . .) = logZ(λ) (4.84)
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is sometimes called the “free energy” because it is closely related to the ther-
modynamic free energy,

S(F ) = logZ(λ) + λkF
k. (4.85)

This shows that the quantities S(F ) and logZ(λ) are Legendre transforms of
each other and therefore contain the same information. Just as the F s are
obtained from logZ(λ) from eq.(4.78), the λs can be obtained from S(F )

∂S(F )
∂F k

=
∂ logZ(λ)

∂λj

∂λj
∂F k

+
∂λj
∂F k

F j + λk . (4.86)

Using eq.(4.78) we get
∂S(F )
∂F k

= λk , (4.87)

which shows that the multipliers λk are the components of the gradient of the
entropy S(F ) on the manifold of canonical distributions. Equivalently, δS =
λkδF

k is the change in entropy when the constraints are changed by δF k (with
the functions fk held fixed).

A useful extension of the formalism is the following. Processes are common
where the functions fk can themselves be manipulated by controlling one or
more “external” parameters v, fki = fk(xi, v). For example if fki refers to the
energy of the system when it is in state i, then the parameter v could represent
the volume of the system or perhaps an externally applied magnetic field. Then
a general change in the expected value F k can be induced by changes in both
fk and λk,

δF k = δ
〈
fk
〉

=
∑
i

(
piδf

k
i + fki δpi

)
. (4.88)

The first term on the right is

〈
δfk
〉

=
∑
i

pi
∂fki
∂v

δv =
〈
∂fk

∂v

〉
δv . (4.89)

When F k represents the internal energy then
〈
δfk
〉

is a small energy trans-
fer that can be controlled through an external parameter v. This suggests
that

〈
δfk
〉

represents a kind of “generalized work,” δW k, and the expectations〈
∂fk/∂v

〉
are analogues of pressure or susceptibility,

δW k def=
〈
δfk
〉

=
〈
∂fk

∂v

〉
δv . (4.90)

The second term in eq.(4.88),

δQk
def=
∑
i

fki δpi = δ
〈
fk
〉
−
〈
δfk
〉

(4.91)

is a kind of “generalized heat”, and

δF k = δW k + δQk (4.92)
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is a “generalized first law.” However, there is no implication that the quantity
fk is conserved (e.g., energy is a conserved quantity but magnetization is not).

The corresponding change in the entropy is obtained from eq.(4.85),

δS = δ logZ(λ) + δ(λkF k)

= − 1
Z

∑
i

[
δλkf

k
i + λkδf

k
i

]
e−λkf

k
i + δλkF

k + λkδF
k

= λk
(
δ
〈
fk
〉
−
〈
δfk
〉)
, (4.93)

which, using eq.(4.91), gives

δS = λkδQ
k . (4.94)

It is easy to see that this is equivalent to eq.(4.87) where the partial derivatives
are derivatives at constant v. Thus the entropy remains constant in infinitesimal
“adiabatic” processes — those with δQk = 0. From the point of view of informa-
tion theory [see eq.(4.91)] this result is a triviality: the amount of information
in a distribution cannot change when the probabilities do not change,

δpi = 0⇒ δQk = 0⇒ δS = 0 . (4.95)

4.10 On constraints and relevant information

MaxEnt is designed as a method to handle information in the form of constraints
(while Bayes handles information in the form of data). The method is not at all
restricted to constraints in the form of expected values (several examples will
be given in later chapters) but this is a fairly common situation. To fix ideas
consider a MaxEnt problem in which we maximize S[p] subject to a constraint
〈f〉 = F to get a distribution p(i|λ) ∝ e−λfi . For example, the probability
distribution that describes the state of thermodynamic equilibrium is obtained
maximizing S[p] subject to a constraint on the expected energy 〈ε〉 = E to
yield the Boltzmann distribution p(i|β) ∝ e−βεi where β = 1/T is the inverse
temperature. (See section 5.4.) The questions we address here are: How do we
decide which is the right function f to choose? How do we decide the numerical
value F? When can we expect the inferences to be reliable? The broader
question “What is information?” shall be addressed in more detail in section
6.1.

When using the MaxEnt method to obtain, say, the canonical Boltzmann
distribution it has been common to adopt the following language:

We seek the probability distribution that codifies the information we ac-
tually have (e.g., the expected energy) and is maximally unbiased (i.e.
maximally ignorant or maximum entropy) about all the other information
we do not possess.

This justification has stirred a considerable controversy that goes beyond the
issue we discussed earlier of whether the Shannon entropy is the correct way
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to measure information. Some of the objections that have been raised are the
following:

(O1) The observed spectrum of black body radiation is whatever it is, inde-
pendently of whatever information happens to be available to us.

(O2) In most realistic situations the expected value of the energy is not a
quantity we happen to know. How, then, can we justify using it as a
constraint?

(O3) Even when the expected values of some quantities happen to be known,
there is no guarantee that the resulting inferences will be any good at all.

These objections deserve our consideration. They offer us an opportunity to
attain a deeper understanding of entropic inference.

We can distinguish four epistemically different situations.

(A) The ideal case: We know that 〈f〉 = F and we know that it captures all
the information that happens to be relevant to the problem at hand.

We have called case A the ideal situation because it reflects a situation in which
the information that is necessary to reliably answer the questions that interest
us is available. The requirements of both relevance and completeness are crucial.
Note that a particular piece of evidence can be relevant and complete for some
questions but not for others. For example, the expected energy 〈ε〉 = E is both
relevant and complete for the question “Will system 1 be in thermal equilibrium
with another system 2?” or alternatively, “What is the temperature of system
1?” But the same expected energy is far from relevant or complete for the vast
majority of other possible questions such as, for example, “Where can we expect
to find molecule #237 in this sample of ideal gas?”

Our goal here has been merely to describe the ideal epistemic situation one
would like to achieve. We have not addressed the important question of how to
assess whether a particular piece of evidence is relevant and complete for any
specific issue at hand.

(B) The important case: We know that 〈f〉 captures all the information that
happens to be relevant to the problem at hand but its actual numerical
value F is not known.

This is the most common situation in physics. The answer to objection O2
starts from the observation that whether the value of the expected energy E
is known or not, it is nevertheless still true that maximizing entropy subject
to the energy constraint 〈ε〉 = E leads to the indisputably correct family of
thermal equilibrium distributions (including, for example, the observed black-
body spectral distribution). The justification behind imposing a constraint on
the expected energy cannot be that the quantity E happens to be known —
because of the brute fact that it is never actually known — but rather that it
is the quantity that should be known. Even when the actual numerical value
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is unknown, the epistemic situation described in case B is one in which we
recognize the expected energy 〈ε〉 as the relevant information without which no
successful predictions are possible. (In the next chapter we revisit this important
question and provide the justification why it is the expected energy — and
not some other conserved quantity such as 〈ε2〉 — that is relevant to thermal
equilibrium.)

Type B information is processed by allowing MaxEnt to proceed with the
numerical value of 〈ε〉 = E handled as a free parameter. This leads us to the
correct family of distributions p(i|β) ∝ e−βεi containing the multiplier β as a
free parameter. The actual value of the parameter β is at this point unknown.
To determine it one needs additional information. The standard approach is to
infer β either by a direct measurement using a thermometer, or infer it indirectly
by Bayesian analysis from other empirical data.

(C) The predictive case: There is nothing special about the function f
except that we happen to know its expected value, 〈f〉 = F . In particular,
we do not know whether information about 〈f〉 is complete or whether it
is at all relevant to the problem at hand.

We do know something and this information, although limited, has some pre-
dictive value because it serves to constrain our attention to the subset of prob-
ability distributions that agree with it. Maximizing entropy subject to such
a constraint will yield the best possible predictions but there is absolutely no
guarantee that the predictions will be any good. Thus we see that, properly
understood, objection O3 is not a flaw of the MaxEnt method; it is a legitimate
warning that reasoning with incomplete information is a risky business.

(D) The extreme ignorance case: We know neither that 〈f〉 captures rele-
vant information nor its numerical value F .

This is an epistemic situation that reflects complete ignorance. Case D applies
to any arbitrary function f ; it applies equally to all functions f . Since no specific
f is singled out just maximize S[p] subject to the normalization constraint. The
result is as expected: extreme ignorance is described by a uniform distribution.

What distinguishes case C from D is that in C the value of F is actually
known. This brute fact singles out a specific f and justifies using 〈f〉 = F as a
constraint. What distinguishes D from B is that in B there is actual knowledge
that singles out a specific f as being relevant. This justifies using 〈f〉 = F as a
constraint. (How it comes to be that a particular f is singled out as relevant is
an important question to be tackled on a case by case basis — a specific example
is discussed in the next chapter.)

To summarize: between one extreme of ignorance (case D, we know neither
which variables are relevant nor their expected values), and the other extreme
of useful knowledge (case A, we know which variables are relevant and we also
know their expected values), there are intermediate states of knowledge (cases
B and C) — and these constitute the rule rather than the exception. Case B
is the more common and important situation in which the relevant variables
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have been correctly identified even though their actual expected values remain
unknown. The situation described as case C is less common because information
about expected values is not usually available. (What is usually available is
information in the form of sample averages which is not in general quite the
same thing — see the next section.)

Achieving the intermediate state of knowledge described as case B is the
difficult problem presented by O2. Historically progress has been achieved in
individual cases mostly by intuition and guesswork, that is, trial and error.
Perhaps the seeds for a more systematic “theory of relevance” can already be
seen in the statistical theories of model selection.

4.11 Avoiding pitfalls – I

The method of maximum entropy has been successful in many applications, but
there are cases where it has failed or led to paradoxes and contradictions. Are
these symptoms of irreparable flaws? I think not. What they are is valuable
opportunities for learning. They teach us how to use the method and warn us
about how not to use it; they allow us to explore its limitations; and what is
perhaps most important is that they provide powerful hints for further devel-
opment. Here I collect a few remarks about avoiding such pitfalls — a topic to
which we shall later return (see section 8.4).

4.11.1 MaxEnt cannot fix flawed information

One point that must be made is that the issue of how the information was ob-
tained in the first place should not be confused with the issue of how information
is processed — which is the problem that MaxEnt is supposed to address. These
are two separate issues.

The first issue is concerned with the prior judgements that are involved
in assessing whether a particular piece of data or constraint or proposition is
deemed worthy of acceptance as “information”, that is, whether it is “true”
or at least sufficiently reliable to provide the basis for the assignment of other
probabilities. The particular process of how a particular piece of information
was obtained — whether the data itself is uncertain — can serve to qualify and
modify the information being processed. Once this first step has been completed
and a sufficiently reliable information has been accepted one proceeds to tackle
the second step of processing the newly available information.

MaxEnt only claims to address the second issue: once a constraint has been
accepted as information, MaxEnt answers the question “What precise rule does
one follow to assign probabilities?” Had the “information” turned out to be
“false” our inferences about the world could be wildly misleading, but it is not
the MaxEnt method that should be blamed for this failure. MaxEnt cannot fix
flawed information nor should we expect it.
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4.11.2 MaxEnt cannot supply missing information

It is not uncommon that we may find ourselves in situations where our intuition
insists that our inferences are not right — this applies to inferences based on
Bayes’ rule just as much as MaxEnt or their (later) generalization into entropic
inference (see chapter 6). The right way to proceed is to ask: How can we tell
that something is wrong? The answer is that we must know something else about
which we are not fully aware and that it is this something that clashes with our
inferences. At the very least this is telling us that we had previous, although
perhaps unrecognized, expectations and that we should reconsider them. The
result of such analysis might indicate that those expectations were misguided —
we have here an opportunity to educate our intuition and learn. Alternatively,
the analysis might vindicate the earlier expectations and this is valuable too.
It tells us that there existed additional prior information that happened to be
relevant but, not having recognized it, we failed to take it into account. Either
way, the right way to handle such situations is not to blame the method: first
blame the user.

4.11.3 Sample averages are not expected values

Here is an example of a common temptation. A lucid analysis of the issues
involved is given in [Uffink 1996]. Once we accept that certain constraints
might refer to the expected values of certain variables, how do we decide their
numerical magnitudes? The numerical values of expectations are seldom known
and it is tempting to replace expected values by sample averages because it is the
latter that are directly available from experiment. But the two are not the same:
Sample averages are experimental data. Expected values are not experimental
data.

For very large samples such a replacement can be justified by the law of large
numbers — there is a high probability that sample averages will approximate
the expected values. However, for small samples using one as an approximation
for the other can lead to incorrect inferences. It is important to realize that these
incorrect inferences do not represent an intrinsic flaw of the MaxEnt method;
they are merely a warning of how the MaxEnt method should not be used.
Example – just data:

Here is a variation on the same theme. Suppose data D = (x1, x2 . . . xn) has
been collected. We might be tempted to maximize S[p] subject to a constraint
〈x〉 = C1 where C1 is unknown and then try to estimate C1 from the data. The
difficulty arises when we realize that if we know the data (x1, . . .) then we also
know their squares (x2

1, . . .) and their cubes and also any arbitrary function of
them (f(x1), . . .). Which of these should we use as an expected value constraint?
Or should we use all of them? The answer is that the MaxEnt method was
not designed to tackle the kind of problem where the only information is data
D = (x1, x2 . . . xn). It is not that MaxEnt gives a wrong answer; it gives no
answer at all because there is no constraint to impose; the MaxEnt engine cannot
even get started.
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Example – case B plus data:
One can imagine a different problem in order to see how MaxEnt could

get some traction. Suppose, for example, that in addition to the data D =
(x1, x2 . . . xn) collected in n independent experiments we have additional infor-
mation that singles out a specific function f(x). Here we deal with an epistemic
situation that was described as type B in the previous section: the expectation
〈f〉 captures relevant information. We proceed to maximize entropy imposing
the constraint 〈f〉 = F with F treated as a free parameter. If the variable x
can take k discrete values labeled by α we let f(xα) = fα and the result is a
canonical distribution

p(xα|λ) =
e−λfα

Z
where Z =

k∑
α=1

e−λfα (4.96)

with an unknown multiplier λ that can be estimated from the data D using
Bayesian methods. If the n experiments are independent Bayes rule gives,

p(λ|D) =
p(λ)
p(D)

n∏
j=1

e−λfj

Z
, (4.97)

where p(λ) is the prior. It is convenient to consider the logarithm of the poste-
rior,

log p(λ|D) = log p(λ)−
n∑
j=1

(logZ + λfj)

= log p(λ)− n(logZ + λf̄) , (4.98)

where f̄ is the sample average,

f̄ =
1
n

n∑
j=1

fj . (4.99)

The value of λ that maximizes the posterior p(λ|D) is such that

∂ logZ
∂λ

+ f̄ =
1
n

∂ log p(λ)
∂λ

. (4.100)

As n → ∞ the right hand side vanishes and we see that the optimal λ is such
that

〈f〉 = −∂ logZ
∂λ

= f̄ (4.101)

This is to be expected: for large n the data overwhelms the prior and f̄ tends
to 〈f〉 (in probability). But the result eq.(4.100) also shows that when n is not
so large then the prior can make a non-negligible contribution. In general one
should not assume that 〈f〉 ≈ f̄ .

Let us emphasize that this analysis holds only when the selection of a privi-
leged function f(x) can be justified by additional knowledge about the physical
nature of the problem. In the absence of such information we are back to the
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previous example — just data — and we have no reason to prefer the distribu-
tion e−λfj over any other canonical distribution e−λgj for any arbitrary function
g(x).2

2Our conclusion differs from that reached in [Jaynes 1978, pp. 72-75] which did not include
the effect of the prior p(λ).



Chapter 5

Statistical Mechanics

Among the various theories that make up what we call physics, thermodynamics
holds a very special place because it provided the first example of a fundamental
theory that could be interpreted as a procedure for processing relevant informa-
tion. Our goal in this chapter is to provide an explicit discussion of statistical
mechanics as an example of entropic inference.

The challenge in constructing the models that we call theoretical physics lies
in identifying the subject matter (the microstates) and the information (the con-
straints, the macrostates) that happens to be relevant to the problem at hand.
First we consider the microstates and provide some necessary background on
the dynamical evolution of probability distributions — Liouville’s theorem —
and use it to derive the so-called “postulate” of Equal a Priori Probabilities.
Next, we show that for situations of thermal equilibrium the relevant infor-
mation is encapsulated into a constraint on the expected value of the energy.
Depending on the specific problem one can also include additional constraints
on other conserved quantities such as number of particles or volume. Once the
foundation has been established we can proceed to explore some consequences.
We show how several central topics such as the second law of thermodynam-
ics, irreversibility, reproducibility, and the Gibbs paradox can be considerably
clarified when viewed from the information/inference perspective.

5.1 Liouville’s theorem

Perhaps the most relevant, and therefore, most important piece of information
that has to be incorporated into any inference about physical systems is that
their time evolution is constrained by equations of motion. Whether these
equations — those of Newton, Maxwell, Yang and Mills, or Einstein — can
themselves be derived as examples of inference are questions which will not
concern us at this point. (Later, in chapter 9 we revisit this question and show
that quantum mechanics and its classical limit can also be derived as theories
of inference.)
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To be specific, in this chapter we will limit ourselves to discussing classical
systems such as fluids. In this case there is an additional crucial piece of relevant
information: these systems are composed of molecules. For simplicity we will
assume that the molecules have no internal structure, that they are described
by their positions and momenta, and that they behave according to classical
mechanics.

The import of these remarks is that the proper description of the microstate
of a fluid of N particles in a volume V is in terms of a “vector” in the N -particle
phase space, z = (~x1, ~p1, . . . ~xN , ~pN ). The time evolution is given by Hamilton’s
equations,

d~xi
dt

=
∂H

∂~pi
and

d~pi
dt

= −∂H
∂~xi

, (5.1)

where H is the Hamiltonian,

H =
N∑
i=1

p2
i

2m
+ U(~x1, . . . ~xN , V ) . (5.2)

What makes phase space so convenient for the formulation of mechanics is that
Hamilton’s equations are first order in time. This means that through any given
point z(t0), which can be thought as the initial condition, there is passes just
one trajectory z(t) and therefore trajectories can never intersect each other.

In a fluid the actual positions and momenta of the molecules are unknown
and thus the macrostate of the fluid is described by a probability density in phase
space, f(z, t). When the system evolves continuously according to Hamilton’s
equations there is no information loss and the probability flow satisfies a local
conservation equation,

∂

∂t
f(z, t) = −∇z · J(z, t) , (5.3)

where the probability current J(z, t) is a vector with 6N components given by

J(z, t) = f(z, t)ż =
(
f(z, t)

d~xi
dt
, f(z, t)

d~pi
dt

)
. (5.4)

Evaluating the divergence explicitly using (5.1) gives

∂f

∂t
= −

N∑
i=1

[
∂

∂~xi
·
(
f(z, t)

d~xi
dt

)
+

∂

∂~pi
·
(
f(z, t)

d~pi
dt

)]
= −

N∑
i=1

(
∂f

∂~xi
· ∂H
∂~pi
− ∂f

∂~pi
· ∂H
∂~xi

)
. (5.5)

Thus the time derivative of f(z, t) at a fixed point z is given by the Poisson
bracket with the Hamiltonian H,

∂f

∂t
= {H, f} def=

N∑
i=1

(
∂H

∂~xi
· ∂f
∂~pi
− ∂H

∂~pi
· ∂f
∂~xi

)
. (5.6)
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This is called the Liouville equation.
Two important corollaries are the following. Instead of focusing on the

change in f(z, t) at a fixed point z as in eq.(5.6) we can study the change in
f (z(t), t) at a point z(t) as it is being carried along by the flow. This defines
the so-called “convective” time derivative,

d

dt
f (z(t), t) =

∂

∂t
f(z, t) +

N∑
i=1

(
∂f

∂~xi
· d~xi
dt

+
∂f

∂~pi
· d~pi
dt

)
. (5.7)

Using Hamilton’s equations shows that the second term is −{H, f} and cancels
the first, therefore

d

dt
f (z(t), t) = 0 , (5.8)

which means that f is constant along a flow line. Explicitly,

f (z(t), t) = f (z(t′), t′) . (5.9)

Next consider a small volume element ∆z(t) the boundaries of which are car-
ried along by the fluid flow. Since trajectories cannot cross each other (because
Hamilton’s equations are first order in time) they cannot cross the boundary of
the evolving volume ∆z(t) and therefore the total probability within ∆z(t) is
conserved,

d

dt
Prob[∆z(t)] =

d

dt
[∆z(t)f (z(t), t)] = 0 . (5.10)

But f itself is constant, eq.(5.8), therefore

d

dt
∆z(t) = 0 , (5.11)

which means that the shape of a region of phase space may get deformed by
time evolution but its volume remains invariant. This result is usually known
as Liouville’s theorem.

5.2 Derivation of Equal a Priori Probabilities

Earlier, in section 4.5, we pointed out that a proper definition of entropy in a
continuum, eq.(4.47), requires that one specify a privileged background measure
µ(z),

S[f, µ] = −
∫
dz f(z) log

f(z)
µ(z)

, (5.12)

where dz = d3Nxd3Np. The choice of µ(z) is important: it determines what we
mean by a uniform or maximally ignorant distribution.

It is customary to set µ(z) equal to a constant which we might as well choose
to be µ(z) = 1. This amounts to postulating that equal volumes of phase space
are assigned the same a priori probabilities. Ever since the introduction of
Boltzmann’s ergodic hypothesis there have been many failed attempts to derive
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it from purely dynamical considerations. It is easy to imagine alternatives that
could appear to be just as plausible. One could, for example, divide phase
space in slices of constant energy and assign equal probabilities to equal energy
intervals. In this section we want to derive µ(z) by proving the following theorem
Theorem on Equal a Priori Probabilities: Since Hamiltonian dynamics
involves no loss of information, if the entropy S[f, µ] is to be interpreted as the
measure of amount of information, then µ(z) must be a uniform measure over
phase space.
Proof: The main non-dynamical hypothesis is that entropy measures informa-
tion. The information entropy of the time-evolved distribution f(z, t) is

S(t) = −
∫
dz f(z, t) log

f(z, t)
µ(z)

. (5.13)

The first input from Hamiltonian dynamics is that information is not lost and
therefore we must require that S(t) be constant,

d

dt
S(t) = 0 . (5.14)

Therefore,

d

dt
S(t) = −

∫
dz

[
∂f(z, t)
∂t

log
f(z, t)
µ(z)

+
∂f(z, t)
∂t

]
. (5.15)

The second term vanishes,

∫
dz

∂f(z, t)
∂t

=
d

dt

∫
dz f(z, t) = 0 . (5.16)

A second input from Hamiltonian dynamics is that probabilities are not merely
conserved, they are locally conserved, which is expressed by eqs.(5.3) and (5.4).
The first term of eq.(5.15) can be rewritten,

d

dt
S(t) =

∫
dz∇z · J(z, t) log

f(z, t)
µ(z)

, (5.17)

so that integration by parts (the surface term vanishes) gives

d

dt
S(t) = −

∫
dz f(z, t)ż · ∇z log

f(z, t)
µ(z)

=
∫
dz [−ż · ∇zf(z, t) + f(z, t)ż · ∇z logµ(z)] . (5.18)

Hamiltonian dynamics enters here once again: the first term vanishes by Liou-
ville’s equation (5.6),

−
∫
dz ż · ∇zf(z, t) =

∫
dz {H, f(z, t)} =

∫
dz

∂f(z, t)
∂t

= 0 , (5.19)
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and therefore, imposing (5.14),

d

dt
S(t) =

∫
dz f(z, t)ż · ∇z logµ(z) = 0 . (5.20)

This integral must vanish for any arbitrary choice of the distribution f(z, t),
therefore

ż · ∇z logµ(z) = 0 . (5.21)

Furthermore, we have considerable freedom about the particular Hamiltonian
operating on the system. We could choose to change the volume in any arbi-
trarily prescribed way by pushing on a piston to change the volume, or we could
choose to vary an external magnetic field. Either way we can change H(t) and
therefore ż at will. The time derivative dS/dt must still vanish irrespective of
the particular choice of the vector ż. We conclude that

∇z logµ(z) = 0 or µ(z) = const . (5.22)

To summarize: the requirement that information is not lost in Hamiltonian
dynamics implies that the measure of information must be a constant of the
motion,

d

dt
S(t) = 0 , (5.23)

and this singles out the Gibbs entropy,

S(t) = −
∫
dz f(z, t) log f(z, t) , (5.24)

(in 6N -dimensional configuration space) as the correct information entropy.
It is sometimes asserted that (5.23) implies that the Gibbs entropy cannot

be identified with the thermodynamic entropy because this would be in contra-
diction to the second law. As we shall see below, this is not true; in fact, it is
quite the opposite.
Remark: In section 4.1 we pointed out that the interpretation of entropy S[p, µ]
as a measure of information has its shortcomings. This could potentially un-
dermine our whole program of deriving statistical mechanics as an example of
entropic inference. Fortunately, as we shall see later in chapter 6 the framework
of entropic inference can be considerably strengthened by removing any refer-
ence to questionable information measures. In this approach entropy S[p, µ]
requires no interpretation; it is a tool designed for updating from a prior µ to
a posterior p distribution. More explicitly the entropy S[p, µ] is introduced to
rank distributions candidate p according to “preference” relative to a prior µ
in accordance to certain “reasonable” design specifications. Recasting statis-
tical mechanics into this entropic inference framework is straightforward. For
example, the requirement that Hamiltonian time evolution does not affect the
ranking of distributions — that is, if f1(z, t) is preferred over f2(z, t) at time t
then the corresponding f1(z, t′) is preferred over f2(z, t′) at any other time t′

— is expressed through eq.(5.14) so the proof of the Equal a Priori Theorem
proceeds exactly as above.
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5.3 The relevant constraints

Thermodynamics is mostly concerned with situations of thermal equilibrium.
What is the relevant information needed to make inferences in these special
cases? A problem here is that the notion of relevance is relative — a particular
piece of information might be relevant to one specific question and irrelevant
to another. So in addition to the explicit assumption of equilibrium we will
also need to make a somewhat more vague assumption that our general interest
is in those questions that are the typical concern of thermodynamics, namely,
questions involving equilibrium macrostates and the processes that take us from
one to another.

The first condition we must impose on f (z, t) to describe equilibrium is that
it be independent of time. Thus we require that {H, f} = 0 and f must be a
function of conserved quantities such as energy, momentum, angular momentum,
or number of particles. But we do not want f to be merely stationary, as say,
for a rotating fluid, we want it to be truly static. We want f to be invariant
under time reversal. For these problems it turns out that it is not necessary to
impose that the total momentum and total angular momentum vanish; these
constraints will turn out to be satisfied automatically. To simplify the situation
even more we will only consider problems where the number of particles is held
fixed. Processes where particles are exchanged as in the equilibrium between a
liquid and its vapor, or where particles are created and destroyed as in chemical
reactions, constitute an important but straightforward extension of the theory.

It thus appears that it is sufficient to impose that f be some function of the
energy. According to the formalism developed in section 4.9 and the remarks in
4.10 this is easily accomplished: the constraints codifying the information that
could be relevant to problems of thermal equilibrium should be the expected
values of functions φ(ε) of the energy. For example, 〈φ(ε)〉 could include various
moments, 〈ε〉, 〈ε2〉,. . . or perhaps more complicated functions. The remaining
question is which functions φ(ε) and how many of them.

To answer this question we look at thermal equilibrium from the point of
view leading to what is known as the microcanonical formalism. Let us enlarge
our description to include the system of interest A and its environment, that
is, the thermal bath B with which it is in equilibrium. The advantage of this
broader view is that the composite system C = A + B can be assumed to be
isolated and we know that its energy εc is some fixed constant. This is highly
relevant information: when the value of εc is known, not only do we know
〈εc〉 = εc but we know the expected values 〈φ(εc)〉 = φ(εc) for absolutely all
functions φ(εc). In other words, in this case we have succeeded in identifying
the relevant information and we are finally ready to assign probabilities using
the MaxEnt method. (When the value of εc is not known we are in that state
of “intermediate” knowledge described as case (B) in section 4.10.)

To simplify the notation it is convenient to divide phase space into discrete
cells of equal a priori probability so we can use the discrete Shannon entropy.
By the equal a priori theorem the cells are of equal phase volume. For system
A let the (discretized) microstate za have energy εa. For the thermal bath B a
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much less detailed description is sufficient. Let the number of bath microstates
with energy εb be ΩB(εb). Our relevant information includes the fact that A
and B interact very weakly, just barely enough to attain equilibrium, and thus
the known total energy εc constrains the allowed microstates of A + B to the
subset that satisfies

εa + εb = εc . (5.25)

The total number of such microstates is

Ω(εc) =
∑
aΩB(εc − εa) . (5.26)

We are in a situation where we know absolutely nothing beyond the fact
that the composite system C can be in any one of its Ω(εc) allowed microstates.
This is precisely the problem tackled in section 4.8: the maximum entropy
distribution is uniform, eq.(4.72), the probability of any microstate of C is
1/Ω(εc), and the entropy is Sc = k log Ω(εc). More importantly, the probability
that system A is in the particular microstate a with energy εa when it is in
thermal equilibrium with the bath B is

pa =
ΩB(εc − εa)

Ω(εc)
. (5.27)

This is the result we sought; now we need to interpret it. There is one final
piece of relevant information we can use: the thermal bath B is usually much
larger than system A, εc � εa, then it is convenient to rewrite pa as

pa ∝ exp log ΩB(εc − εa) . (5.28)

and Taylor expand

log ΩB(εc − εa) = log ΩB(εc)− βεa + . . . , (5.29)

where the inverse temperature β = 1/kT of the bath has been introduced ac-
cording to the standard thermodynamic definition,

∂ log ΩB
∂εb

∣∣∣∣
εc

def= β . (5.30)

and we conclude that the distribution that codifies the relevant information
about equilibrium is

pa =
1
Z

exp(−βεa) , (5.31)

which has the canonical form of eq.(4.76). (Being independent of a the factor
ΩB(εc)/Ω(εc) has been absorbed into the normalization Z.)

Our goal in this section was to identify the relevant variables. Here is the
answer: the relevant information about thermal equilibrium can be summarized
by the expected value of the energy 〈ε〉 because someone who just knows 〈ε〉
and is maximally ignorant about everything else is led to assign probabilities
according to eq.(4.76) which coincides with (5.31).
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But our analysis has also disclosed an important limitation. Eq.(5.27) shows
that in general the distribution for a system in equilibrium with a bath depends
in a complicated way on the properties of the bath. The information in 〈ε〉 is
adequate only when the system and the bath interact weakly enough that the
energy of the composite system C can be neatly partitioned into the energies of
A and of B, eq.(5.25), and the bath is so much larger than the system that its
effects can be represented by a single parameter, the temperature T .

Conversely, if these conditions are not met, then more information is needed.
When the system-bath interactions are not sufficiently weak eq.(5.25) will not be
valid and additional information concerning the correlations between A and B
will be required. On the other hand if the system-bath interactions are too weak
then within the time scales of interest the system A will reach only a partial
thermal equilibrium with those few degrees of freedom in its very immediate
vicinity. It is effectively surrounded by a thermal bath of finite size and the
information contained in the single parameter β or the expected value 〈ε〉 will
not suffice. This situation is briefly discussed in section 5.5.

So what’s the big deal?

We have identified all the ingredients required to derive (see next section) the
canonical formalism of statistical mechanics as an example of entropic inference.
We saw that the identification of 〈ε〉 as relevant information relied on the micro-
canonical formalism in an essential way. Does this mean that the information
theory approach was ultimately unnecessary? That MaxEnt adds nothing to
our understanding of statistical mechanics? Absolutely not.

Alternative derivations of statistical mechanics all rely on invoking the right
cocktail of ad hoc hypothesis such as an ergodic assumption or a postulate for
equal a priori probabilities. This is not too bad; all theories, MaxEnt included,
require assumptions. Where MaxEnt can claim an unprecedented success is that
the assumptions it does invoke are not at all ad hoc; they are precisely the type
of assumptions one would naturally expect of any theory of inference — a spec-
ification of the subject matter (the microstates plus their underlying measure)
plus an identification of the relevant constraints. Ultimately the justification
of any formal system must be pragmatic: does the entropic model successfully
predict, explain and unify? As we shall see in the next sections the answer is:
yes.

5.4 The canonical formalism

We consider a system in thermal equilibrium. The energy of the (conveniently
discretized) microstate za is εa = εa(V ) where V represents a parameter over
which we have experimental control. For example, in fluids V is the volume of
the system. We assume further that the expected value of the energy is known,
〈ε〉 = E.
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Maximizing the (discretized) Gibbs entropy,

S[p] = −k
∑
a
pa log pa where pa = f(za)∆z , (5.32)

subject to constraints on normalization and energy 〈ε〉 = E yields, eq.(4.76),

pa =
1
Z
e−βεa (5.33)

where the Lagrange multiplier β is determined from

−∂ logZ
∂β

= E and Z(β, V ) =
∑
ae
−βεa . (5.34)

The maximized value of the Gibbs entropy is, eq.(4.79),

S(E, V ) = k logZ + kβE . (5.35)

Differentiating with respect to E we obtain the analogue of eq.(4.87),(
∂S

∂E

)
V

= k
∂ logZ
∂β

∂β

∂E
+ k

∂β

∂E
E + kβ = kβ , (5.36)

where eq.(5.34) has been used to cancel the first two terms.
The connection between the formalism above and thermodynamics hinges on

a suitable identification of internal energy, work and heat. The first step is the
crucial one: we adopt Boltzmann’s assumption, eq.(3.37), and identify 〈ε〉 = E
with the thermodynamical internal energy. Next we consider a small change in
the internal energy,

δE = δ
∑
apaεa =

∑
apaδεa +

∑
aεaδpa . (5.37)

Since εa = εa(V ) the first term 〈δε〉 on the right can be physically induced by
pushing or pulling on a piston to change the volume,

〈δε〉 =
∑
apa

∂εa
∂V

δV =
〈
∂ε

∂V

〉
δV . (5.38)

Thus, it is reasonable to identify 〈δε〉 with mechanical work,

〈δε〉 = δW = −PδV , (5.39)

where P is the pressure,

P = −
〈
∂ε

∂V

〉
. (5.40)

Having identified the work δW the second term in eq.(5.37) must therefore
represent heat,

δQ = δE − δW = δ 〈ε〉 − 〈δε〉 . (5.41)
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The corresponding change in entropy is obtained from eq.(5.35),

1
k
δS = δ logZ + δ(βE)

= − 1
Z

∑
ae
−βεa (εaδβ + βδεa) + Eδβ + βδE

= β(δE − 〈δε〉) , (5.42)

therefore,
δS = kβδQ . (5.43)

In thermodynamics temperature is defined by(
∂S

∂E

)
V

def=
1
T

so that δS =
δQ

T
. (5.44)

which suggests the identification

kβ =
1
T

or β =
1
kT

. (5.45)

Therefore the maximized information entropy, S(E, V ), corresponds to the
thermodynamic entropy originally introduced by Clausius and the Lagrange mul-
tiplier β corresponds to the inverse temperature.

Thus, the framework of entropic inference provides a natural explanation
for both the temperature and the thermodynamic entropy. These are precisely
the kind of theoretical concepts that must inevitably appear in all theories of
inference.1

Substituting into eq.(5.41), yields the fundamental thermodynamic identity,

δE = TδS − PδV . (5.46)

Incidentally, this identity shows that the “natural” variables for energy are S
and V , that is, E = E(S, V ). Similarly, writing

δS =
1
T
δE +

P

T
δV (5.47)

confirms that S = S(E, V ).
Equation (5.46) is useful either for processes at constant V so that δE = δQ,

or for processes at constant S for which δE = δW . But except for these latter
adiabatic processes (δQ = 0) the entropy is not a quantity that can be directly
controlled in the laboratory. For processes that occur at constant temperature

1It might not be a bad idea to stop for a moment and let this marvelous notion sink in:
temperature, that which we identify with hot things being hot and cold things being cold
is, in the end, nothing but a Lagrange multiplier. It turns out that temperature is in some
common cases also a measure of mean kinetic energy per molecule. This conception is useful
but limited; it fails to capture the full significance of the concept of temperature.
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it is more convenient to introduce a new quantity, called the free energy, that is
a function of T and V . The free energy is given by a Legendre transform,

F (T, V ) = E − TS , (5.48)

so that
δF = −SδT − PδV . (5.49)

For processes at constant T we have δF = δW which justifies the name ‘free’
energy. Eq.(5.35) then leads to

F = −kT logZ(T, V ) or Z = e−βF . (5.50)

Several useful thermodynamic relations can be easily obtained from eqs.(5.46),
(5.47), and (5.49). For example, the identities(

∂F

∂T

)
V

= −S and
(
∂F

∂V

)
V

= −P , (5.51)

can be read directly from eq.(5.49).

5.5 Equilibrium with a heat bath of finite size

In section 5.3 we saw that the canonical Boltzmann-Gibbs distribution applies to
situations where the system is in thermal equilibrium with an environment that
is much larger than itself. But this latter condition can be violated. For example,
when we deal with very fast phenomena or in situations where the system-
environment interactions are very weak then over the time scales of interest
the system will reach a partial equilibrium but only with those few degrees of
freedom in its immediate vicinity. In such cases the effective environment has
a finite size and the information contained in the single parameter β will not
suffice. We will not pursue the subject beyond giving the briefest hints about
how to approach the subject.

One might account for such finite size effects by keeping additional terms in
the expansion (5.29),

log ΩB(εc − εa) = log ΩB(εc)− βεa −
1
2
γε2
a . . . , (5.52)

leading to corrections to the Boltzmann distribution,

pa =
1
Z

exp(−βεa −
1
2
γε2
a . . .) . (5.53)

An alternative path is to provide a more detailed model of the bath [Plastino
1994]. As before, we consider a system A that is weakly coupled to a heat bath
B that has a finite size. The microstates of A and B are labelled a and b and
have energies εa and εb respectively. The composite system C = A + B can
be assumed to be isolated and have a constant energy εc = εa + εb (or more
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precisely C has energy in some arbitrarily narrow interval about εc). To model
the bath B we assume that the number of microstates of B with energy less
than ε is W (ε) = Cεα, where the exponent α is some constant that depends on
the size of the bath. Such a model is quite realistic; for example, α = N when
the bath consists of N harmonic oscillators; and α = 3N/2 when it is an ideal
gas of N molecules.

Then the number of microstates of B in a narrow energy range δε is

ΩB(ε) = W (ε+ δε)−W (ε) = αCεα−1δε , (5.54)

and the probability that A is in a microstate a of energy εa is given by eq.(5.27),

pa ∝ ΩB(εc − εa) ∝ (1− εa
εc

)α−1 , (5.55)

so that
pa =

1
Z

(1− εa
εc

)α−1 with Z =
∑
a(1− εa

εc
)α−1 . (5.56)

When the bath is sufficiently large εa/εc → 0 and α → ∞ one recovers the
Boltzmann distribution with appropriate corrections as in eq.(5.53). Indeed,
using

log(1 + x) = x− 1
2
x2 + . . . (5.57)

we expand

(1− εa
εc

)α−1 = exp(α− 1)(−εa
εc
− 1

2
ε2
a

ε2
c

+ . . .) , (5.58)

to get eq.(5.53) with

β =
α− 1
εc

and γ =
α− 1
ε2
c

. (5.59)

We will not pursue the subject any further except to comment that distri-
butions of this type have been proposed by C. Tsallis on the basis of a very
different logic [Tsallis 1988].

Non-extensive thermodynamics

The idea proposed by Tsallis is to generalize the Boltzmann-Gibbs canonical
formalism by adopting a different “non-extensive entropy”,

Tη(p1, . . . , pn) =
1−

∑
ip
η
i

η − 1
,

that depends on a parameter η. Equivalent versions of such “entropies” have
been proposed as alternative measures of information by several other authors;
see, for example [Renyi 1961], [Aczel 1975], [Amari 1985].

One important feature is that the standard Shannon entropy is recovered in
the limit η → 0. Indeed, let η = 1 + δ and use

pδi = eδ log pi = 1 + δ log pi + . . . . (5.60)
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As δ → 0 we get

T1+δ =
1
δ

(1−
∑
ip

1+δ
i )

=
1
δ

[1−
∑
ipi(1 + δ log pi)] = −

∑
ipi log pi . (5.61)

The distribution that maximizes the Tsallis entropy subject to the usual
normalization and energy constraints,∑

ipi = 1 and
∑
iεipi = E ,

is
pi =

1
Zη

[1− λεi]1/(η−1) , (5.62)

where Zη is a normalization constant and the constant λ is a ratio of Lagrange
multipliers. This distribution is precisely of the form (5.56) with λ = 1/εc and
η = 1 + (α− 1)−1.

Our conclusion is that Tsallis distributions make perfect sense within stan-
dard statistical mechanics. In order to justify them it is not necessary to intro-
duce an alternative thermodynamics through new ad hoc entropies; it is merely
necessary to recognize that sometimes a partial thermal equilibrium is reached
with heat baths that are not extremely large. What changes is the relevant
information on the basis of which we draw inferences and not the inference
method. An added avantage is that the free and undetermined parameter η
can, within the standard formalism advocated here, be calculated in terms of
the size of the bath.

5.6 The Second Law of Thermodynamics

We saw that in 1865 Clausius summarized the two laws of thermodynamics into
“The energy of the universe is constant. The entropy of the universe tends
to a maximum.” We can be a bit more explicit about the Second Law: In an
adiabatic non-quasi-static process that starts and ends in equilibrium the total
entropy increases; if the process is adiabatic and quasi-static the total entropy
remains constant. The Second Law was formulated in a somewhat stronger form
by Gibbs (1878): For irreversible processes not only does the entropy tend to
increase, but it does increase to the maximum value allowed by the constraints
imposed on the system.

We are now ready to prove the Second Law following [Jaynes 1965]. Jaynes’
proof is mathematically very simple but it is also conceptually subtle. It may
be useful to recall some of our previous results. The entropy mentioned in the
Second Law is the thermodynamic entropy of Clausius SC . It is defined only
for equilibrium states,

SC(B)− SC(A) =
B∫
A

dQ

T
, (5.63)
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where the integral is along a reversible path of intermediate equilibrium states.
But as we saw in section 5.4, in thermal equilibrium the maximized Gibbs
entropy Scan

G — that is, the entropy computed from the canonical distribution
— satisfies the same relation, eq.(5.43),

δScan
G =

δQ

T
⇒ Scan

G (B)− Scan
G (A) =

B∫
A

dQ

T
, (5.64)

which means that SC and Scan
G differ only by an additive constant. Adjusting

the constant so that Scan
G matches SC for one equilibrium state they will match

for all equilibrium states. Therefore, if at any time t the system is in thermal
equilibrium and its relevant macrovariables agree with expected values, sayX(t),
calculated using the canonical distribution then,

SC(t) = Scan
G (t) . (5.65)

The system, which is assumed to be thermally insulated from its environ-
ment, is allowed (or forced) to evolve according to a certain Hamiltonian, H(t).
The evolution could, for example, be the free expansion of a gas into vacuum, or
it could be given by the time-dependent Hamiltonian that describes some exter-
nally prescribed influence, say, a moving piston or an imposed field. Eventually
a new equilibrium is reached at some later time t′. Such a process is adiabatic;
no heat was exchanged with the environment. Under these circumstances the
initial canonical distribution fcan(t), e.g. eq.(4.76) or (5.33), evolves according
to Liouville’s equation, eq.(5.6),

fcan(t)
H(t)−→ f(t′) , (5.66)

and, according to eq.(5.23), the corresponding Gibbs entropy remains constant,

Scan
G (t) = SG(t′) . (5.67)

Since the Gibbs entropy remains constant it is sometimes argued that this
contradicts the Second Law but note that the time-evolved SG(t′) is not the
thermodynamic entropy because f(t′) is not necessarily of the canonical form,
eq.(4.76).

From the new distribution f(t′) we can, however, compute the new expected
values X(t′) that apply to the state of equilibrium at t′. Of all distributions
agreeing with the new values X(t′) the canonical distribution fcan(t′) is that
which has maximum Gibbs entropy, Scan

G (t′). Therefore

SG(t′) ≤ Scan
G (t′) . (5.68)

But Scan
G (t′) coincides with the thermodynamic entropy of the new equilibrium

state,
Scan
G (t′) = SC(t′) . (5.69)
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Collecting all these results, eqs.(5.65)-(5.69), we conclude that the thermody-
namic entropy has increased,

SC(t) ≤ SC(t′) . (5.70)

This is the Second Law. The equality applies when the time evolution is quasi-
static so that throughout the process the distribution is always canonical; in
particular, f(t′) = fcan(t′). The argument above can be generalized consider-
ably by allowing heat exchanges or by introducing uncertainties into the actual
Hamiltonian dynamics.

To summarize, the chain of steps is

SC(t) =
(1)
Scan
G (t) =

(2)
SG(t′) ≤

(3)
Scan
G (t′) =

(4)
SC(t′) . (5.71)

Steps (1) and (4) hinge on identifying the maximized Gibbs entropy with the
thermodynamic entropy — which works provided we have correctly identified
the relevant macrovariables for the particular problem at hand. Step (2) follows
from the constancy of the Gibbs entropy under Hamiltonian evolution — this is
the least controversial step. Of course, if we did not have complete knowledge
about the exact Hamiltonian H(t) acting on the system an inequality would
have been introduced already at this point. The crucial inequality, however, is
introduced in step (3) where information is discarded. The distribution f(t′)
contains information about the macrovariables X(t′) at the final time t′, but
since the Hamiltonian is known, it also contains information about the whole
previous history of f(t) back to the initial time t and including the initial values
X(t). In contrast, a description in terms of the distribution fcan(t′) contains
information about the macrovariables X(t′) at time t′ and nothing else. In a
thermodynamic description all memory of the history of the system is lost.

The Second Law refers to thermodynamic entropies only. These entropies
measure the amount of information available to someone with only macroscopic
means to observe and manipulate the system. The irreversibility implicit in the
Second Law arises from this restriction to thermodynamic descriptions.

Thus, the Second law is not a Law of Nature; it is not even a law within those
imperfect and idealized models — such as classical mechanics — that attempt
to describe Nature itself. The Second Law is a law but its connection to Nature
is more indirect. It is a law within those models that attempt — not to describe
Nature itself — but our limited and inadequate information about Nature.

It is important to emphasize what has just been proved: in an adiabatic
process from one state of equilibrium to another the thermodynamic entropy
increases. This is the Second Law. Many questions remain unanswered: We
have assumed that the system tends towards and finally reaches an equilibrium;
how do we know that this happens? What are the relaxation times, transport
coefficients, etc.? There are all sorts of aspects of non-equilibrium irreversible
processes that remain to be explained but this does not detract from what
Jaynes’ explanation did in fact accomplish, namely, it explained the Second
Law, no more and, most emphatically, no less.
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5.7 The thermodynamic limit

If the Second Law “has only statistical certainty” (Maxwell, 1871) and any
violation “seems to be reduced to improbability” (Gibbs, 1878) how can ther-
modynamic predictions attain so much certainty? Part of the answer hinges on
restricting the kind of questions we are willing to ask to those concerning the few
macroscopic variables over which we have some control. Most other questions
are not “interesting” and thus they are never asked. For example, suppose we
are given a gas in equilibrium within a cubic box, and the question is where
will we find particle #23. The answer is that we expect the particle to be at
the center of the box but with a very large standard deviation — the particle
can be anywhere in the box. Such an answer is not particularly impressive. On
the other hand, if we ask for the energy of the gas at temperature T , or how it
changes as the volume is changed by δV , then the answers are truly impressive.

Consider a system in thermal equilibrium in a macrostate described by a
canonical distribution f(z) assigned on the basis of constraints on the values of
certain macrovariables X. For simplicity we will assume X is a single variable,
the energy, X = 〈ε〉 = E. The microstates z can be divided into typical and
atypical microstates. The typical microstates are all contained within a “high
probability” region Rδ to be defined below that has total probability 1 − δ,
where δ is a small positive number, and within which f(z) is greater than some
lower bound. The “phase” volume of the typical region is

Vol(Rδ) =
∫
Rδdz = Wδ . (5.72)

Our goal is to establish that the thermodynamic entropy and the volume of the
region Rδ are related through Boltzmann’s equation,

SC ≈ k logWδ . (5.73)

The surprising feature is that the result is essentially independent of δ. The fol-
lowing theorems which are adaptations of the Asymptotic Equipartition Prop-
erty (section 4.7) state this result in a mathematically precise way.
The Asymptotic Equipartition Theorem: Let f(z) be the canonical dis-
tribution and kS = SG = SC the corresponding entropy,

f(z) =
e−βε(z)

Z
and S = βE + logZ . (5.74)

Then as N →∞,

− 1
N

log f(z) −→ S

N
in probability, (5.75)

provided that the system is such that the energy fluctuations ∆ε increase slower
than N , that is, limN→∞∆ε/N = 0. (∆ denotes the standard deviation.)

The theorem roughly means that the probabilities of the accessible microstates
are essentially equal. The microstates z for which (− log f(z))/N differs substan-
tially from S/N have either too low probability and are deemed “inaccessible”
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or they might individually have a high probability but are too few to contribute
significantly.
Remark: The word ‘essentially’ is tricky because f(z) may differ from e−S by
a huge multiplicative factor — perhaps several billion — but log f(z) still differs
from −S by an unimportant amount that grows less rapidly than N .
Remark: The left hand side of (5.75) is a quantity associated to a microstate z
while the right side contains the entropy S. This may mislead us into thinking
that the entropy S can be associated to microstate rather than macrostates.
The crucial point is that the limit in (5.75) is valid ‘in probability’ only.
Proof: Apply the Tchebyshev inequality, eq.(2.93),

P (|x− 〈x〉| ≥ δ) ≤
(

∆x
δ

)2

, (5.76)

to the variable
x =

−1
N

log f(z) . (5.77)

Its expected value is the entropy per particle,

〈x〉 =
−1
N
〈log f〉

=
S

N
=

1
N

(βE + logZ) . (5.78)

To calculate the variance,

(∆x)2 =
1
N2

[〈
(log f)2

〉
− 〈log f〉2

]
, (5.79)

use 〈
(log f)2

〉
=
〈

(βε+ logZ)2
〉

= β2
〈
ε2
〉

+ 2β 〈ε〉 logZ + (logZ)2
, (5.80)

so that

(∆x)2 =
β2

N2

(〈
ε2
〉
− 〈ε〉2

)
=
(
β∆ε
N

)2

. (5.81)

Collecting these results gives

Prob
[∣∣∣∣− 1

N
log f(z)− S

N

∣∣∣∣ ≥ δ] ≤ (βδ
)2(∆ε

N

)2

. (5.82)

For systems such that the relative energy fluctuations ∆ε/N tend to 0 asN →∞
the limit on the right is zero,

lim
N→∞

Prob
[∣∣∣∣− 1

N
log f(z)− S

N

∣∣∣∣ ≥ δ] = 0 , (5.83)

which concludes the proof.
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Remark: Note that the theorem applies only to those systems with interparticle
interactions such that the energy fluctuations ∆ε are sufficiently well behaved.
For example, it is not uncommon that ∆ε/E ∝ N−1/2 and that the energy is
an extensive quantity, E/N → const. Then

∆ε
N

=
∆ε
E

E

N
∝ 1
N1/2

→ 0 . (5.84)

Typically this requires that as N and V tend to infinity with N/V constant, the
spatial correlations fall sufficiently fast that distant particles are uncorrelated.
Under these circumstances both energy and entropy are extensive quantities.

The following theorem elaborates on these ideas further. To be precise let
us redefine the typical region Rδ as the set of microstates with probability f(z)
such that

e−S−Nδ ≤ f(z) ≤ e−S+Nδ , (5.85)

or, using eq.(5.74),

1
Z
e−βE−Nδ ≤ f(z) ≤ 1

Z
e−βE+Nδ . (5.86)

This last expression shows that typical microstates are those for which the
energy per particle ε(z)/N lies within a narrow interval 2δkT about its expected
value E/N .
Remark: Even though some states z (namely those with energy ε(z) < E) can
individually be more probable than the typical states it turns out (see below)
that they are too few and their volume is negligible compared to Wδ.
Theorem of typical microstates: For N sufficiently large

(1) Prob[Rδ] > 1− δ

(2) Vol(Rδ) = Wδ ≤ eS+Nδ.

(3) Wδ ≥ (1− δ)eS−Nδ.

(4) limN→∞(logWδ − S)/N = 0.

In words:

The typical region has probability close to one; typical microstates are
almost equally probable; the phase volume they occupy is about eS, that is,
S = k logW .

For large N the entropy is a measure of the logarithm of the phase volume of
typical states,

S = logWδ ±Nδ , (5.87)

where logWδ = N × O(1) while δ � 1 and it does not much matter what we
precisely we mean by typical (i.e., whether we choose for δ = 10−6 or 10−12).
Incidentally, note that it is the (maximized) Gibbs entropy that satisfies the
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Boltzmann formula SG = SC = k logW (where the irrelevant subscript δ has
been dropped).
Proof: Eq.(5.83) states that for fixed δ, for any given η there is an Nη such
that for all N > Nη, we have

Prob
[∣∣∣∣− 1

N
log f(z)− S

N

∣∣∣∣ ≤ δ] ≥ 1− η . (5.88)

Thus, the probability that a microstate z drawn from the distribution f(z) is
δ-typical tends to one, and therefore so must Prob[Rδ]. Setting η = δ yields
part (1). This also shows that the total probability of the set of states with

ε(z) < E or f(z) > e−S+Nδ =
1
Z
e−βE+Nδ (5.89)

is negligible — states that individually are more probable than typical occupy
a negligible volume. To prove (2) write

1 ≥ Prob[Rδ] =
∫
Rδdz f(z)

≥ e−S−Nδ
∫
Rδdz = e−S−NδWδ . (5.90)

Similarly, to prove (3) use (1),

1− δ < Prob[Rδ] =
∫
Rδdz f(z)

≤ e−S+Nδ
∫
Rδdz = e−S+NδWδ , (5.91)

Finally, from (2) and (3),

(1− δ)eS−Nδ ≤Wδ ≤ eS+Nδ , (5.92)

which is the same as

S

N
− δ +

log(1− δ)
N

≤ logWδ

N
≤ S

N
+ δ , (5.93)

and proves (4).
Remark: The theorems above can be generalized to situations involving several
macrovariables Xk in addition to the energy. In this case, the expected value
of log f(z) is

〈− log f〉 = S = λk
〈
Xk
〉

+ logZ , (5.94)

and its variance is

(∆ log f)2 = λkλm
(〈
XkXm

〉
−
〈
Xk
〉
〈Xm〉

)
. (5.95)
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5.8 Interpretation of the Second Law: Repro-
ducibility

First a summary of the previous sections: We saw that within the typical region
R(t) fluctuations of the X(t) are negligible — all microstates are characterized
by the same values of X, eq.(5.86) — and that given X(t) the typical region
has probability one — it includes essentially all possible initial states compat-
ible with the values X(t). Having been prepared in equilibrium at time t the
system is then subjected to an adiabatic process and it eventually attains a new
equilibrium at time t′. The Hamiltonian evolution deforms the initial region
R(t) into a new region R(t′) with exactly the same volume W (t) = W (t′); the
macrovariables evolve from their initial values X(t) to new values X(t′). Now
suppose that for the new equilibrium we adopt a thermodynamic description:
the preparation history is forgotten, and all we know are the new values X(t′).
The new typical region R′(t′) has a volume W ′(t′) > W (t) and it includes all
microstates compatible with the information X(t′).

The volume W (t) = eSC(t)/k of the typical region can be interpreted in two
ways. On one hand it is a measure of our ignorance as to the true microstate
when all we know are the macrovariables X(t). On the other hand, the volume
W (t) is also a measure of the extent that we can experimentally control the
actual microstate of the system when the X(t) are the only parameters we can
manipulate.

After these preliminaries we come to the crux of the argument: With the
limited experimental means at our disposal we can guarantee that the initial
microstate will be somewhere within W (t) and therefore that in due course
of time it will evolve to be within W (t′). (See fig.6-1.) In order for the pro-
cess X(t) → X(t′) to be experimentally reproducible it must be that all the
microstates in W (t′) will also evolve to be within W ′(t′) which means that
W (t) = W (t′) ≤ W ′(t′). Conversely, if it were true that W (t) > W ′(t′) we
would sometimes observe that an initial microstate within W (t) would evolve
into a final microstate lying outside W ′(t′) that is, sometimes we would observe
that X(t) does not evolve to X(t′). Thus, when W (t) > W ′(t′) the experiment
is definitely not reproducible.

A new element has been introduced into the discussion of the Second Law:
reproducibility [Jaynes 1965]. Thus, we can express the Second Law in the
somewhat tautological form:

In a reproducible adiabatic process from one state of equilibrium to another
the thermodynamic entropy cannot decrease.

We can address this question from a different angle: How do we know that
the chosen constraints X are the relevant macrovariables that provide an ade-
quate thermodynamic description? In fact, what do we mean by an adequate
description? Let us rephrase these questions differently: Could there exist addi-
tional unknown physical constraints Y that significantly restrict the microstates
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)(tR

)(t′R )(t′′R

Figure 5.1: A system prepared by specifying X(t) at the initial time t lies
somewhere within R(t). It evolves to the region R(t′) characterized by values
X(t′). The experiment is reproducible because all states within the larger region
R′(t′) are characterized by the same X(t′).

compatible with the initial macrostate and which therefore provide an even bet-
ter description? The answer is that such variables can, of course, exist but that
including them in the description need not necessarily lead to improved predic-
tions. If the process X(t) → X(t′) is reproducible when no particular care has
been taken to control the values of Y we can expect that to the extent that we
are only interested in the Xs; keeping track of the Y s will not yield a better
description. Reproducibility is the pragmatic criterion whereby we can decide
whether a particular thermodynamic description is adequate or not.

5.9 Remarks on irreversibility

A considerable source of confusion on the question of reversibility is that the
same word ‘reversible’ is used with several different meanings [Uffink 2001]:
(a) Mechanical or microscopic reversibility refers to the possibility of reversing
the velocities of every particle. Such reversals would allow a completely isolated
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system not just to retrace its steps from the final macrostate to the initial
macrostate but it would also allow it to retrace its detailed microstate trajectory
as well.

(b) Carnot or macroscopic reversibility refers to the possibility of retracing the
history of macrostates of a system in the opposite direction. The required
amount of control over the system can be achieved by forcing the system along
a prescribed path of intermediate macroscopic equilibrium states that are in-
finitesimally close to each other. Such a reversible process is appropriately called
quasi-static. There is no implication that the trajectories of the individual par-
ticles will be retraced.

(c) Thermodynamic reversibility refers to the possibility of starting from a final
macrostate and completely recovering the initial macrostate without any other
external changes. There is no need to retrace the intermediate macrostates in
reverse order. In fact, rather than ‘reversibility’ it may be more descriptive to
refer to ‘recoverability ’. Typically a state is irrecoverable when there is friction,
decay, or corruption of some kind.

Notice that when one talks about the “irreversibility” of the Second Law and
about the “reversibility” of mechanics there is no inconsistency or contradiction:
the word ‘reversibility’ is being used with two entirely different meanings.

Classical thermodynamics assumes that isolated systems approach and even-
tually attain a state of equilibrium. By definition the state of equilibrium is such
that, once attained, it will not spontaneously change in the future. On the other
hand, it is understood that changes might have happened in the past. Classical
thermodynamics introduces a time asymmetry: it treats the past and the future
differently.

The situation with statistical mechanics, however, is different. Once equi-
librium has been attained fluctuations are possible. In fact, if we are willing to
wait long enough we can be certain that large fluctuations will necessarily hap-
pen in the future just as they might have happened in the past. The situation is
quite symmetric. The interesting asymmetry arises when we realize that for an
improbable state — a large fluctuation — to happen spontaneously in the future
we may have to wait an extremely long time while we are perfectly willing to en-
tertain the possibility that a similarly improbable state was observed in the very
recent past. This might seem paradoxical because the formalism of statistical
mechanics does not introduce any time asymmetry. The solution to the puzzle
is that the improbable state in the recent past did not in all probability happen
spontaneously but was brought about by some external intervention. The sys-
tem might, for example, have been deliberately prepared in some unusual state
by applying appropriate constraints which were subsequently removed — we do
this all the time.

Thus, the time asymmetry is not introduced by the laws of mechanics; it
is introduced through the information we accept as relevant for this kind of
situation: we know that deliberate manipulations have happened in the past
and that they will not happen in the future.
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5.10 Entropies, descriptions and the Gibbs para-
dox

Under the generic title of “Gibbs Paradox” one usually considers a number of
related questions in both phenomenological thermodynamics and in statistical
mechanics: (1) The entropy change when two distinct gases are mixed happens
to be independent of the nature of the gases. Is this in conflict with the idea
that in the limit as the two gases become identical the entropy change should
vanish? (2) Should the thermodynamic entropy of Clausius be an extensive
quantity or not? (3) Should two microstates that differ only in the exchange of
identical particles be counted as two or just one microstate?

The conventional wisdom asserts that the resolution of the paradox rests
on quantum mechanics but this analysis is unsatisfactory; at best it is incom-
plete. While it is true that the exchange of identical quantum particles does not
lead to a new microstate this approach ignores the case of classical, and even
non-identical particles. For example, nanoparticles in a colloidal suspension or
macromolecules in solution are both classical and non-identical. Several authors
(e.g., [Grad 1961, Jaynes 1992]) have recognized that quantum theory has no
bearing on the matter; indeed, as remarked in section 3.5, this was already clear
to Gibbs.

Our purpose here is to discuss the Gibbs paradox from the point of view of
information theory. The discussion follows [Tseng Caticha 2001]. Our conclu-
sion will be that the paradox is resolved once it is realized that there is no such
thing as the entropy of a system, that there are many entropies. The choice
of entropy is a choice between a description that treats particles as being dis-
tinguishable and a description that treats them as indistinguishable; which of
these alternatives is more convenient depends on the resolution of the particular
experiment being performed.

The “grouping” property of entropy, eq.(4.3),

S[p] = SG[P ] +
∑
gPgSg[p·|g]

plays an important role in our discussion. It establishes a relation between
several different descriptions and refers to three different entropies. One can
describe the system with high resolution as being in a microstate i (with prob-
ability pi), or alternatively, with lower resolution as being in one of the groups
g (with probability Pg). Since the description in terms of the groups g is less
detailed we might refer to them as ‘mesostates’. A thermodynamic description,
on the other hand, corresponds to an even lower resolution that merely specifies
the equilibrium macrostate. For simplicity, we will define the macrostate with a
single variable, the energy. Including additional variables is easy and does not
modify the gist of the argument.

The standard connection between the thermodynamic description in terms of
macrostates and the description in terms of microstates is established in section
5.4. If the energy of microstate a is εa, to the macrostate of energy E = 〈ε〉 we
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associate that canonical distribution (5.33)

pa =
e−βεa

ZH
, (5.96)

where the partition function ZH and the Lagrange multiplier β are determined
from eqs.(5.34),

ZH =
∑
i

e−βεi and
∂ logZH
∂β

= −E . (5.97)

The corresponding entropy, eq.(5.35) is (setting k = 1)

SH = βE + logZH , (5.98)

measures the amount of information required to specify the microstate when all
we know is the value E.

Identical particles

Before we compute and interpret the probability distribution over mesostates
and its corresponding entropy we must be more specific about which mesostates
we are talking about. Consider a system of N classical particles that are exactly
identical. The interesting question is whether these identical particles are also
“distinguishable”. By this we mean the following: we look at two particles now
and we label them. We look at the particles later. Somebody might have
switched them. Can we tell which particle is which? The answer is: it depends.
Whether we can distinguish identical particles or not depends on whether we
were able and willing to follow their trajectories.

A slightly different version of the same question concerns an N -particle sys-
tem in a certain state. Some particles are permuted. Does this give us a different
state? As discussed earlier the answer to this question requires a careful speci-
fication of what we mean by a state.

Since by a microstate we mean a point in the N -particle phase space, then
a permutation does indeed lead to a new microstate. On the other hand, our
concern with particle exchanges suggests that it is useful to introduce the notion
of a mesostate defined as the group of those N ! microstates that are obtained
by particle permutations. With this definition it is clear that a permutation of
the identical particles does not lead to a new mesostate.

Now we can return to discussing the connection between the thermodynamic
macrostate description and the description in terms of mesostates using, as
before, the method of Maximum Entropy. Since the particles are (sufficiently)
identical, all those N ! microstates i within the same mesostate g have the same
energy, which we will denote by Eg (i.e., Ei = Eg for all i ∈ g). To the
macrostate of energy Ē = 〈E〉 we associate the canonical distribution,

Pg =
e−βEg

ZL
, (5.99)
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where
ZL =

∑
g
e−βEg and

∂ logZL
∂β

= −Ē . (5.100)

The corresponding entropy, eq.(5.35) is (setting k = 1)

SL = βĒ + logZL , (5.101)

measures the amount of information required to specify the mesostate when all
we know is Ē.

Two different entropies SH and SL have been assigned to the same macrostate
Ē; they measure the different amounts of additional information required to
specify the state of the system to a high resolution (the microstate) or to a low
resolution (the mesostate).

The relation between ZH and ZL is obtained from

ZH =
∑
i

e−βEi = N !
∑
g
e−βEg = N !ZL or ZL =

ZH
N !

. (5.102)

The relation between SH and SL is obtained from the “grouping” property,
eq.(4.3), with S = SH and SG = SL, and pi|g = 1/N !. The result is

SL = SH − logN ! . (5.103)

Incidentally, note that

SH = −
∑
apa log pa = −

∑
gPg logPg/N ! . (5.104)

Equations (5.102) and (5.103) both exhibit the Gibbs N ! “corrections.” Our
analysis shows (1) that the justification of the N ! factor is not to be found in
quantum mechanics, and (2) that the N ! does not correct anything. The N !
is not a fudge factor that fixes a wrong (possibly nonextensive) entropy SH
into a correct (possibly extensive) entropy SL. Both entropies SH and SL are
correct. They differ because they measure different things: one measures the
information to specify the microstate, the other measures the information to
specify the mesostate.

An important goal of statistical mechanics is to provide a justification, an
explanation of thermodynamics. Thus, we still need to ask which of the two
statistical entropies, SH or SL, should be identified with the thermodynamic
entropy of Clausius ST . Inspection of eqs.(5.102) and (5.103) shows that, as long
as one is not concerned with experiments that involve changes in the number
of particles, the same thermodynamics will follow whether we set SH = ST or
SL = ST .

But, of course, experiments involving changes in N are very important (for
example, in the equilibrium between different phases, or in chemical reactions).
Since in the usual thermodynamic experiments we only care that some number
of particles has been exchanged, and we do not care which were the actual par-
ticles exchanged, we expect that the correct identification is SL = ST . Indeed,
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the quantity that regulates the equilibrium under exchanges of particles is the
chemical potential defined by

µ = −kT
(
∂ST
∂N

)
E,V,...

(5.105)

The two identifications SH = ST or SL = ST , lead to two different chemical
potentials, related by

µL = µH −NkT . (5.106)

It is easy to verify that, under the usual circumstances where surface effects
can be neglected relative to the bulk, µL has the correct functional dependence
on N : it is intensive and can be identified with the thermodynamic µ. On the
other hand, µH is not an intensive quantity and cannot therefore be identified
with µ.

Non-identical particles

We saw that classical identical particles can be treated, depending on the res-
olution of the experiment, as being distinguishable or indistinguishable. Here
we go further and point out that even non-identical particles can be treated as
indistinguishable. Our goal is to state explicitly in precisely what sense it is up
to the observer to decide whether particles are distinguishable or not.

We defined a mesostate as a subset of N ! microstates that are obtained as
permutations of each other. With this definition it is clear that a permutation
of particles does not lead to a new mesostate even if the exchanged particles
are not identical. This is an important extension because, unlike quantum
particles, classical particles cannot be expected to be exactly identical down to
every minute detail. In fact in many cases the particles can be grossly different –
examples might be colloidal suspensions or solutions of organic macromolecules.
A high resolution device, for example an electron microscope, would reveal that
no two colloidal particles or two macromolecules are exactly alike. And yet,
for the purpose of modelling most of our macroscopic observations it is not
necessary to take account of the myriad ways in which two particles can differ.

Consider a system of N particles. We can perform rather crude macroscopic
experiments the results of which can be summarized with a simple phenomeno-
logical thermodynamics where N is one of the relevant variables that define the
macrostate. Our goal is to construct a statistical foundation that will explain
this macroscopic model, reduce it, so to speak, to “first principles.” The par-
ticles might ultimately be non-identical, but the crude phenomenology is not
sensitive to their differences and can be explained by postulating mesostates g
and microstates i with energies Ei ≈ Eg, for all i ∈ g, as if the particles were
identical. As in the previous section this statistical model gives

ZL =
ZH
N !

with ZH =
∑
i

e−βEi , (5.107)
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and the connection to the thermodynamics is established by postulating

ST = SL = SH − logN ! . (5.108)

Next we consider what happens when more sophisticated experiments are
performed. The examples traditionally offered in discussions of this sort refer to
the new experiments that could be made possible by the discovery of membranes
that are permeable to some of the N particles but not to the others. Other,
perhaps historically more realistic examples, are afforded by the availability
of new experimental data, for example, more precise measurements of a heat
capacity as a function of temperature, or perhaps measurements in a range of
temperatures that had previously been inaccessible.

Suppose the new phenomenology can be modelled by postulating the exis-
tence of two kinds of particles. (Experiments that are even more sophisticated
might allow us to detect three or more kinds, perhaps even a continuum of
different particles.) What we previously thought were N identical particles we
will now think as being Na particles of type a and Nb particles of type b. The
new description is in terms of macrostates defined by Na and Nb as the relevant
variables.

To construct a statistical explanation of the new phenomenology from ‘first
principles’ we need to revise our notion of mesostate. Each new mesostate will
be a group of microstates which will include all those microstates obtained by
permuting the a particles among themselves, and by permuting the b particles
among themselves, but will not include those microstates obtained by permuting
a particles with b particles. The new mesostates, which we will label ĝ and to
which we will assign energy εĝ, will be composed of Na!Nb! microstates ı̂, each
with a well defined energy Eı̂ = Eĝ, for all ı̂ ∈ ĝ. The new statistical model
gives

ẐL =
ẐH

Na!Nb!
with ẐH =

∑
ı̂

e−βEı̂ , (5.109)

and the connection to the new phenomenology is established by postulating

ŜT = ŜL = ŜH − logNa!Nb! . (5.110)

In discussions of this topic it is not unusual to find comments to the effect
that in the limit as particles a and b become identical one expects that the
entropy of the system with two kinds of particles tends to the entropy of a
system with just one kind of particle. The fact that this expectation is not met
is one manifestation of the Gibbs paradox.

From the information theory point of view the paradox does not arise because
there is no such thing as the entropy of the system, there are several entropies.
It is true that as a → b we will have ẐH → ZH , and accordingly ŜH → SH ,
but there is no reason to expect a similar relation between ŜL and SL because
these two entropies refer to mesostates ĝ and g that remain different even as
a and b became identical. In this limit the mesostates ĝ, which are useful for
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descriptions that treat particles a and b as indistinguishable among themselves
but distinguishable from each other, lose their usefulness.

Conclusion

The Gibbs paradox in its various forms arises from the widespread misconception
that entropy is a real physical quantity and that one is justified in talking about
the entropy of the system. The thermodynamic entropy is not a property of the
system. Entropy is a property of our description of the system, it is a property of
the macrostate. More explicitly, it is a function of the macroscopic variables used
to define the macrostate. To different macrostates reflecting different choices of
variables there correspond different entropies for the very same system.

But this is not the complete story: entropy is not just a function of the
macrostate. Entropies reflect a relation between two descriptions of the same
system: in addition to the macrostate, we must also specify the set of mi-
crostates, or the set of mesostates, as the case might be. Then, having specified
the macrostate, an entropy can be interpreted as the amount of additional in-
formation required to specify the microstate or mesostate. We have found the
‘grouping’ property very valuable precisely because it emphasizes the depen-
dence of entropy on the choice of micro or mesostates.



Chapter 6

Entropy III: Updating
Probabilities

Inductive inference is a framework for reasoning with incomplete information,
for coping with uncertainty. The framework must include a means to repre-
sent a state of partial knowledge — this is handled through the introduction of
probabilities — and it must allow us to change from one state of partial knowl-
edge to another when new information becomes available. Indeed any inductive
method that recognizes that a situation of incomplete information is in some
way unfortunate — by which we mean that it constitutes a problem in need of
a solution — would be severely deficient if it failed to address the question of
how to proceed in the fortunate circumstance that some additional information
has become available. The theory of probability, if it is to useful at all, cannot
be separate from a theory for updating probabilities.

The challenge is to develop updating methods that are both systematic,
objective and practical. In Chapter 2 we saw that Bayes’ rule is the natural
way to update when the information is available in the form of data and of
a likelihood function. We also saw that Bayes’ rule could not be derived just
from the requirements of consistency implicit in the sum and product rules of
probability theory. An additional principle of parsimony — the Principle of
Minimal Updating (PMU) — was necessary: Whatever was learned in the past
is valuable and should not be disregarded; beliefs should be revised but only to
the extent required by the new data. A few interesting questions were just barely
hinted at: How do we update when the information is not in the form of data?
If the information is not data, what else could it possibly be? Indeed what,
after all, is information?

Then in Chapter 4 we saw that the method of maximum entropy, MaxEnt,
allowed one to deal with information in the form of constraints on the allowed
probability distributions. So here we have a partial answer to one of our ques-
tions: in addition to data information can also take the form of constraints.
However, MaxEnt was not designed as a method for updating; it is a method
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for assigning probabilities on the basis of the constraint information, but it does
not allow us to take into account the information contained in generic prior
distributions.

Thus, Bayes’ rule allows for the information contained in arbitrary priors
and in data, but not in arbitrary constraints,1 while on the other hand, MaxEnt
can handle arbitrary constraints but not arbitrary priors. In this chapter we
bring those two methods together: by generalizing the PMU we show how the
MaxEnt method can be extended beyond its original scope, as a rule to assign
probabilities, to a full-fledged method for inductive inference, that is, a method
for updating from arbitrary priors given information in the form of arbitrary
constraints. It should not be too surprising that the extended Maximum En-
tropy method — which we will henceforth abbreviate as ME, and also refer to as
‘entropic inference’ or ‘entropic updating’ — includes both MaxEnt and Bayes’
rule as special cases.

Historically the ME method is a direct descendant of MaxEnt. As we saw in
chapter 4 in the MaxEnt framework entropy is interpreted through the Shannon
axioms as a measure of the amount of information that is missing in a probability
distribution. We discussed some limitations of this approach. The Shannon
axioms refer to probabilities of discrete variables; for continuous variables the
entropy is not defined. But a more serious objection was raised: even if we grant
that the Shannon axioms do lead to a reasonable expression for the entropy, to
what extent do we believe the axioms themselves? Shannon’s third axiom, the
grouping property, is indeed sort of reasonable, but is it necessary? Is entropy
the only consistent measure of uncertainty or of information? What is wrong
with, say, the standard deviation? Indeed, there exist examples in which the
Shannon entropy does not seem to reflect one’s intuitive notion of information
[Uffink 1995]. Other entropies, justified by a different choice of axioms, can be
introduced (for example, [Renyi 1961] and [Tsallis 1988]); which one should one
adopt?

From our point of view the real limitation is that neither Shannon nor Jaynes
were concerned with the problem of updating. Shannon was analyzing the
capacity of communication channels and characterizing the potential diversity
of messages generated by information sources (section 4.7). His entropy makes
no reference to prior distributions. On the other hand, as we already mentioned,
Jaynes conceived MaxEnt as a method to assign probabilities on the basis of
constraint information and a fixed underlying measure, not an arbitrary prior.
He never meant to update from one probability distribution to another.

Considerations such as these motivated several attempts to develop ME di-
rectly as a method for updating probabilities without invoking questionable
measures of uncertainty. Prominent among them are [Shore and Johnson 1980,
Skilling 1988-90, Csiszar 1991]. The important contribution by Shore and John-
son was the realization that one could axiomatize the updating method itself
rather than the information measure. Their axioms are justified on the basis of

1Bayes’ rule can handle constraints when they are expressed in the form of data that can
be plugged into a likelihood function but not all constraints are of this kind.
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a fundamental principle of consistency — if a problem can be solved in more
than one way the results should agree — but the axioms themselves and other
assumptions they make have raised some objections [Karbelkar 1986, Uffink
1995]). Despite such criticism Shore and Johnson’s pioneering papers have had
an enormous influence: they identified the correct goal to be achieved.

The main goal of this chapter is to design a framework for updating — the
method of entropic inference. The concept of relative entropy is introduced
as a tool for reasoning — it is designed to perform a certain function defined
through certain design criteria or specifications. There is no implication that
the method is “true”, or that it succeeds because it achieves some special contact
with reality. Instead the claim is that the method succeeds in the sense that it
works as designed — and that this is satisfactory because it leads to empirically
adequate models. The presentation below is based on [Caticha 2003, Caticha
Giffin 2006, Caticha 2007].

As we argued earlier when developing the theory of degrees of belief, our
general approach differs from the way in which many physical theories have been
developed in the past. The more traditional approach consists of first setting
up the mathematical formalism and then seeking an acceptable interpretation.
The drawback of this procedure is that questions can always be raised about the
uniqueness of the proposed interpretation, and about the criteria that makes it
acceptable or not.

In contrast, here we proceed in the opposite order: we first decide what we
are talking about, what goal we want to achieve, and only then we construct a
suitable mathematical formalism designed with that specific goal in mind. The
advantage is that issues of meaning and interpretation are resolved from the
start. The preeminent example of this approach is Cox’s algebra of probable
inference (see chapter 2) which clarified the meaning and use of the notion
of probability: after Cox it is no longer possible to raise doubts about the
legitimacy of adopting the degree of rational belief interpretation. Similarly,
the concept of entropy is introduced as a tool for reasoning without recourse
to notions of heat, multiplicity of states, disorder, uncertainty, or even in terms
of an amount of information. In this approach entropy needs no interpretation.
We do not need to know what ‘entropy’ means; we only need to know how to
use it. Incidentally, this may help explain why previous searches failed to find a
uniquely correct and unobjectionably precise meaning for the concept of entropy
— there is none to be found.

Since the PMU is the driving force behind both Bayesian and ME updating
it is worthwhile to investigate the precise relation between the two. We show
that Bayes’ rule can be derived as a special case of the ME method. This
important result was first obtained by Williams (see [Williams 80][Diaconis 82])
long before the use of relative entropy as a tool for inference had been properly
justified — that is, without appealing to questionable measures of information.
Accordingly Williams’ achievement did not receive the widespread appreciation
it deserved. The virtue of the derivation presented here [Caticha Giffin 2006],
which hinges on translating information in the form of data into a constraint
that can be processed using ME, is that it is particularly clear. It throws light
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on Bayes’ rule and demonstrates its complete compatibility with ME updating.
Thus, within the ME framework maximum entropy and Bayesian methods are
unified into a single consistent theory of inference. One advantage of this insight
is that it allows a number of generalizations of Bayes’ rule (see section 2.9.2).
Another is that it has implications for physics: it provides an important missing
piece for the big puzzle of quantum mechanics (see chapter 10).

There is another function that the ME method must perform in order to
fully qualify as a method of inductive inference: once we have decided that the
distribution of maximum entropy is to be preferred over all others the following
question arises immediately: the maximum of the entropy functional is never
infinitely sharp, are we really confident that distributions that lie very close to
the maximum are totally ruled out? We must find a quantitative way to assess
the extent to which distributions with lower entropy are ruled out. This matter
will be later addressed in chapter 8.

6.1 What is information?

The term ‘information’ is used with a wide variety of different meanings [Cover
Thomas 1991, Jaynes 2003, Caticha 2007, Golan 2008, Floridi 2011, Adriaans
2012]. There is the Shannon notion of information, a technical term that, as we
have seen, is meant to measure an amount of information and is quite divorced
from semantics. There is also an algorithmic notion of information, which cap-
tures the notion of complexity and originates in the work of Solomonov, Kol-
mogorov and Chaitin, and has been developed as an alternative approach to
induction, learning, artificial intelligence, and as a general theory of knowledge
— it has been suggested that data compression is one of the principles that
governs human cognition. Despite the obvious relevance to our subject, the al-
gorithmic approach will not be pursued here. Instead we develop an epistemic
notion of information that is somewhat closer to the everyday colloquial use of
the term — roughly, information is what we seek when we ask a question.

It is not unusual to hear that systems “carry” or “contain” information and
that “information is physical”. This mode of expression can perhaps be traced to
the origins of information theory in Shannon’s theory of communication. We say
that we have received information when among the vast variety of messages that
could conceivably have been generated by a distant source, we discover which
particular message was actually sent. It is thus that the message “carries”
information. The analogy with physics is immediate: the set of all possible
states of a physical system can be likened to the set of all possible messages,
and the actual state of the system corresponds to the message that was actually
sent. Thus, the system “conveys” a message: the system “carries” information
about its own state. Sometimes the message might be difficult to read, but it is
there nonetheless.

This language — information is physical — useful as it has turned out to
be, does not exhaust the meaning of the word ‘information’. The goal of infor-
mation theory, or better, communication theory, is to characterize the sources
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of information, to measure the capacity of the communication channels, and to
learn how to control the degrading effects of noise. It is somewhat ironic but
nevertheless true that this “information” theory is unconcerned with the central
Bayesian issue of how message affect the beliefs of a rational agent.2

A fully Bayesian information theory demands an explicit account of the
relation between information and the beliefs of an ideally rational agent.

Implicit in the recognition that most of our beliefs are held on the basis
of incomplete information is the idea that our beliefs would be better if only
we had more information. Thus a theory of probability demands a theory for
updating probabilities. The desire and need to update our beliefs is driven by
the conviction that not all probability assignments are equally good. In fact, it
is a presupposition of thought itself that some beliefs are better than others —
otherwise why go through the trouble of thinking?

The concern with ‘good’ and ‘better’ bears on the issue of whether probabil-
ities are subjective, objective, or somewhere in between. We argued earlier that
what makes one probability assignment better than another is that it better
reflects something “objective” about the world. What precisely it is that we
are being objective about is a difficult philosophical conundrum which, fortu-
nately, we do not need to address. Suffice it to say that the adoption of better
beliefs has real consequences: they provide a better guidance about how to cope
with the world, and in this pragmatic sense, they provide a better guide to the
“truth”.

Objectivity is desirable; objectivity is the goal. Probabilities are useful to
the extent that they incorporate some degree of objectivity. What we seek are
updating mechanisms that allow us to process information and incorporate its
objective features into our beliefs. Bayes’ rule behaves precisely in this way.
We saw in section 2.9.3 that as more and more data are taken into account the
original (possibly subjective) prior becomes less and less relevant, and all ratio-
nal agents become more and more convinced of the same truth. This is crucial:
were it not this way Bayesian reasoning would not be deemed acceptable.

To set the stage for the discussion below consider some examples. Suppose
a new piece of information is acquired. This could take a variety of forms. The
typical example in data analysis would be something like: The prior probability
of a certain proposition might have been q and after analyzing some data we
feel rationally justified in asserting that a better assignment would be p. More
explicitly, propositions such as “the value of the variable X lies between x − ε
and x+ ε” might initially have had probabilities that were broadly spread over
the range of x and after a measurement is performed the new data might induce
us to revise our beliefs to a distribution that favors values in a narrower more
localized region.

The typical example in statistical mechanics would run something like this:
Total ignorance about the state of a system is expressed by a prior distribution
that assigns equal probabilities to all microstates. The information that the

2We mentioned earlier, and emphasize again here, that the qualifier ‘rational’ is crucial:
we are interested in the reasoning of an idealized rational agent and not of real imperfect
humans.
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system happens to be in thermal equilibrium induces us to update such beliefs
to a probability distribution satisfying the constraint that the expected energy
takes on a specific value, 〈ε〉 = E.

Here is another more generic example. Let’s say we have received a message
— but the carrier of information could equally well have been in the form of
input from our senses or data from an experiment. If the message agrees with
our prior beliefs we can safely ignore it. The message is boring; it carries no
news; literally, it carries no information. The interesting situation arises when
the message surprises us; it is not what we expected. A message that disagrees
with our prior beliefs presents us with a problem that demands a decision. If the
source of the message is not deemed reliable then the contents of the message
can be safely ignored — it carries no information; it is no different from noise.
On the other hand, if the source of the message is deemed reliable then we
have an opportunity to improve our beliefs — we ought to update our beliefs to
agree with the message. Choosing between these two options requires a rational
decision, a judgement. The message (or the sensation, or the data) become
information precisely at that moment when as a result of our evaluation we feel
compelled to revise our beliefs.

We are now ready to address the question: What, after all, is ‘information’?
The main observation is that the result of being confronted with new information
is to restrict our options as to what we are honestly and rationally allowed to
believe. This, I propose, is the defining characteristic of information.

Information, in its most general form, is whatever affects and therefore
constrains rational beliefs.

Since our objective is to update from a prior distribution to a posterior when
new information becomes available we can state that

New information is what forces a change of beliefs.

New information is a set of constraints on the family of acceptable posterior
distributions.

An important aspect of this notion is that for a rational agent, the identifi-
cation of what constitutes information — as opposed to mere noise — already
involves a judgement, an evaluation; it is a matter of facts and also a matter of
values. Furthermore, once a certain proposition has been identified as informa-
tion, the revision of beliefs acquires a moral component; it is no longer optional:
it becomes a moral imperative.

Our definition captures an idea of information that is directly related to
changing our minds: information is the driving force behind the process of
learning. But note that although there is no need to talk about amounts of
information, whether measured in units of bits or otherwise, our notion of in-
formation allows precise quantitative calculations. Indeed, constraints on the
acceptable posteriors are precisely the kind of information the method of max-
imum entropy (to be developed below) is designed to handle.
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The constraints that convey, or rather, that are information can take a wide
variety of forms including, in addition to the examples above, anything that
affects beliefs. For example, in Bayesian inference both the prior distribution
and the likelihood function constitute valuable information — they are not
something that can be measured but they certainly contribute to constrain our
beliefs. And constraints need not be just in the form of expected values; they
can specify the functional form of a distribution or be imposed through various
geometrical relations. (See chapters 8, 9, and also [Caticha 2001, Caticha Cafaro
2007].)

Concerning the act of updating it may be worthwhile to point out an analogy
with dynamics — the study of change. In Newtonian dynamics the state of
motion of a system is described in terms of momentum — the “quantity” of
motion — while the change from one state to another is explained in terms of
an applied force. Similarly, in Bayesian inference a state of belief is described in
terms of probabilities — a “quantity” of belief — and the change from one state
to another is due to information. Just as a force is that which induces a change
from one state of motion to another, so information is that which induces a
change from one state of belief to another. Updating is a form of dynamics.

What about prejudices and superstitions? What about divine revelations?
Do they constitute information? Perhaps they lie outside our restriction to
beliefs of ideally rational agents, but to the extent that their effects are indistin-
guishable from those of other sorts of information, namely, they affect beliefs,
they should qualify as information too. Whether the sources of such information
are reliable or not is quite another matter. False information is information too.
In fact, even ideally rational agents can be affected by false information because
the evaluation that assures them that the data was competently collected or
that the message originated from a reliable source involves an act of judgement
that is not completely infallible. Strictly, all those judgements, which constitute
the first step of the inference process, are themselves the end result of other
inference processes that are not immune from uncertainty.

What about limitations in our computational power? Such practical limi-
tations are unavoidable and they do influence our inferences so should they be
considered information? No. Limited computational resources may affect the
numerical approximation to the value of, say, an integral, but they do not affect
the actual value of the integral. Similarly, limited computational resources may
affect the approximate imperfect reasoning of real humans and real computers
but they do not affect the reasoning of those ideal rational agents that are the
subject of our present concerns.

6.2 The design of entropic inference

Once we have decided, as a result of the confrontation of new information with
old beliefs, that our beliefs require revision the problem becomes one of deciding
how precisely this ought to be done. First we identify some general features of
the kind of belief revision that one might consider desirable, of the kind of
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belief revision that one might count as rational. Then we design a method,
a systematic procedure, that implements those features. To the extent that
the method performs as desired we can claim success. The point is not that
success derives from our method having achieved some intimate connection to
the inner wheels of reality; success just means that the method seems to be
working. Whatever criteria of rationality we choose, they are meant to be only
provisional — they are not immune from further change and improvement.

Typically the new information will not affect our beliefs in just one propo-
sition — in which case the updating would be trivial. Tensions immediately
arise because the beliefs in various propositions are not independent; they are
interconnected by demands of consistency. Therefore the new information also
affects our beliefs in all those “neighboring” propositions that are directly linked
to it, and these in turn affect their neighbors, and so on. The effect can po-
tentially spread over the whole network of beliefs; it is the whole web of beliefs
that must be revised.

The one obvious requirement is that the updated beliefs ought to agree with
the newly acquired information. Unfortunately, this requirement, while neces-
sary, is not sufficiently restrictive: we can update in many ways that preserve
both internal consistency and consistency with the new information. Additional
criteria are needed. What rules is it rational to choose?

6.2.1 General criteria

The rules are motivated by the same pragmatic design criteria that motivate
the design of probability theory itself — universality, consistency, and practical
utility. But this is admittedly too vague; we must be very specific about the
precise way in which they are implemented.

Universality

The goal is to design a method for induction, for reasoning when not much is
known. In order for the method to perform its function we must impose that it
be of universal applicability. Consider the alternative: We could design methods
that are problem-specific, and employ different induction methods for different
problems. Such a framework, unfortunately, would fail us precisely when we
need it most, namely, in those situations where the information available is so
incomplete that we do not know which method to employ.

We can argue this point somewhat differently: It is quite conceivable that
different situations could require different problem-specific induction methods.
What we want to design here is a general-purpose method that captures what
all the other problem-specific methods have in common.

Parsimony

To specify the updating we adopt a very conservative criterion that recognizes
the value of information: what has been laboriously learned in the past is valu-
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able and should not be disregarded unless rendered obsolete by new information.
The only aspects of one’s beliefs that should be updated are those for which new
evidence has been supplied. Thus we adopt a

Principle of Minimal Updating: Beliefs should be updated only to the ex-
tent required by the new information.

This version of the principle generalizes the earlier version presented in section
2.9.2 which was restricted to information in the form of data.

The special case of updating in the absence of new information deserves
special attention. It states that when there is no new information an ideally
rational agent should not change its mind.3 In fact, it is difficult to imagine
any notion of rationality that would allow the possibility of changing one’s mind
for no apparent reason. This is important and it is worthwhile to consider it
from a different angle. Degrees of belief, probabilities, are said to be subjective:
two different individuals might not share the same beliefs and could conceivably
assign probabilities differently. But subjectivity does not mean arbitrariness.
It is not a blank check allowing the rational agent to change its mind for no
good reason. Valuable prior information should not be discarded unless it is
absolutely necessary.

Minimal updating offers yet another pragmatic advantage. As we shall see
below, rather than identifying what features of a distribution are singled out
for updating and then specifying the detailed nature of the update, we will
adopt design criteria that stipulate what is not to be updated. The practical
advantage of this approach is that it enhances objectivity — there are many
ways to change something but only one way to keep it the same.

The analogy with mechanics can be pursued further: if updating is a form
of dynamics, then minimal updating is the analogue of inertia. Rationality and
objectivity demand a considerable amount of inertia.

Independence

The next general requirement turns out to be crucially important: without
it the very possibility of scientific theories would not be possible. The point
is that every scientific model, whatever the topic, if it is to be useful at all,
must assume that all relevant variables have been taken into account and that
whatever was left out — the rest of the universe — should not matter. To put
it another way: in order to do science we must be able to understand parts of
the universe without having to understand the universe as a whole. Granted, it
is not necessary that the understanding be complete and exact; it must just be
adequate for our purposes.

The assumption, then, is that it is possible to focus our attention on a suit-
ably chosen system of interest and neglect the rest of the universe because they

3We refer to ideally rational agents who have fully processed all information acquired in the
past. Humans do not normally behave this way; they often change their minds by processes
that are not fully conscious.
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are “sufficiently independent”. Thus, in any form of science the notion of sta-
tistical independence must play a central and privileged role. This idea — that
some things can be neglected, that not everything matters — is implemented
by imposing a criterion that tells us how to handle independent systems. The
requirement is quite natural: When two systems are a priori believed to be in-
dependent and we receive information about one then it should not matter if
the other is included in the analysis or not (and vice versa). This amounts to
requiring that independence be preserved unless information about correlations
is explicitly introduced.

The independence requirement is rather subtle and one must be careful about
its precise implementation. To demonstrate the robustness of the design we
provide (in a later section) an alternative version that takes the form of a con-
sistency constraint: Whenever systems are known to be independent it should
not matter whether the analysis treats them jointly or separately.

Again we emphasize: none of these criteria are imposed by Nature. They
are desirable for pragmatic reasons; they are imposed by design.

6.2.2 Entropy as a tool for updating probabilities

Consider a variable x the value of which is uncertain; x can be discrete or
continuous, in one or in several dimensions. It could, for example, represent
the possible microstates of a physical system, a point in phase space, or an
appropriate set of quantum numbers. The uncertainty about x is described by
a probability distribution q(x). Our goal is to update from the prior distribution
q(x) to a posterior distribution p(x) when new information — by which we mean
a set of constraints — becomes available. The question is: which distribution
among all those that are in principle acceptable — they all satisfy the constraints
— should we select?

Our goal is to design a method that allows a systematic search for the pre-
ferred posterior distribution. The central idea, first proposed in [Skilling 1988],4

is disarmingly simple: to select the posterior first rank all candidate distribu-
tions in increasing order of preference and then pick the distribution that ranks
the highest. Irrespective of what it is that makes one distribution preferable over
another (we will get to that soon enough) it is clear that any ranking according
to preference must be transitive: if distribution p1 is preferred over distribution
p2, and p2 is preferred over p3, then p1 is preferred over p3. Such transitive
rankings are implemented by assigning to each p(x) a real number S[p], which
is called the entropy of p, in such a way that if p1 is preferred over p2, then
S[p1] > S[p2]. The selected distribution (one or possibly many, for there may
be several equally preferred distributions) is that which maximizes the entropy
functional.

The importance of this particular approach to ranking distributions cannot
be overestimated: it implies that the updating method will take the form of a

4[Skilling 88] deals with the more general problem of ranking positive additive distributions
which includes intensity as well as probability distributions.
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variational principle — the method of Maximum Entropy (ME) — and that the
latter will involve a certain functional — the entropy — that maps distributions
to real numbers and that is designed to be maximized. These features are not
imposed by Nature; they are all imposed by design. They are dictated by the
function that the ME method is supposed to perform. (Thus, it makes no sense
to seek a generalization in which entropy is a complex number or a vector; such
a generalized entropy would just not perform the desired function.)

Next we specify the ranking scheme, that is, we choose a specific functional
form for the entropy S[p]. Note that the purpose of the method is to update
from priors to posteriors so the ranking scheme must depend on the particular
prior q and therefore the entropy S must be a functional of both p and q. The
entropy S[p, q] describes a ranking of the distributions p relative to the given
prior q. S[p, q] is the entropy of p relative to q, and accordingly S[p, q] is com-
monly called relative entropy. This is appropriate and sometimes we will follow
this practice. However, since all entropies are relative, even when relative to a
uniform distribution, the qualifier ‘relative’ is redundant and can be dropped.
This is somewhat analogous to the situation with energy: it is implicitly under-
stood that all energies are relative to some reference frame but there is no need
to constantly refer to a ‘relative energy’ — it is just not convenient.

The functional S[p, q] is designed by a process of elimination — one might call
it a process of eliminative induction. First we state the desired design criteria;
this is the crucial step that defines what makes one distribution preferable over
another. Then we analyze how each criterion constrains the form of the entropy.
As we shall see the design criteria adopted below are sufficiently constraining
that there is a single entropy functional S[p, q] that survives the process of
elimination.

This approach has a number of virtues. First, to the extent that the design
criteria are universally desirable, then the single surviving entropy functional
will be of universal applicability too. Second, the reason why alternative entropy
candidates are eliminated is quite explicit — at least one of the design criteria
is violated. Thus, the justification behind the single surviving entropy is not that
it leads to demonstrably correct inferences, but rather, that all other candidate
entropies demonstrably fail to perform as desired.

6.2.3 Specific design criteria

Three criteria and their consequences for the functional form of the entropy are
given below. Detailed proofs are deferred to the next section.

Locality

DC1 Local information has local effects.

Suppose the information to be processed does not refer to a particular subdo-
main D of the space X of xs. In the absence of any new information about D the
PMU demands we do not change our minds about probabilities that are con-
ditional on D. Thus, we design the inference method so that q(x|D), the prior
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probability of x conditional on x ∈ D, is not updated. The selected conditional
posterior is

P (x|D) = q(x|D) . (6.1)

(The notation will be as follows: we denote priors by q, candidate posteriors by
lower case p, and the selected posterior by upper case P .)

We emphasize: the point is not that we make the unwarranted assumption
that keeping q(x|D) unchanged is guaranteed to lead to correct inferences. It
need not; induction is risky. The point is, rather, that in the absence of any
evidence to the contrary there is no reason to change our minds and the prior
information takes priority.
The consequence of DC1 is that non-overlapping domains of x contribute
additively to the entropy,

S[p, q] =
∫
dxF (p(x), q(x), x) , (6.2)

where F is some unknown function — not a functional, just a regular function
of three arguments. The proof is given in section 6.3.
Comment 1:

It is essential that DC1 refers to conditional probabilities. An example may
help to see why: Consider a loaded die with faces f = 1 . . . 6. A priori we
have no reason to favor any face, therefore q(f) = 1/6. Then we are told that
the die is loaded in favor of 2. The criterion DC1 tells nothing about how to
update the P (f)s. If the die were very loaded in favor of 2, say, P (2) = 0.9
then it must be that P (f) < 1/6 for f 6= 2 and therefore all P (f)s must
be updated. Let us continue with the example: suppose we are further told
that the die is loaded so that p(2) = 2p(5). The criterion DC1 is meant to
capture the fact that information about faces 2 and 5 does not change our
preferences among the remaining four faces D ={1, 3, 4, 6}; the DC1 implies
that P (f |D) = q(f |D) = 1/4; it says nothing about whether P (f) for f ∈ D is
less or more than 1/6.5

Comment 2:
If the variable x is continuous the criterion DC1 requires that information

that refers to points infinitely close but just outside the domain D will have
no influence on probabilities conditional on D. This may seem surprising as it
may lead to updated probability distributions that are discontinuous. Is this a
problem? No.

In certain situations (e.g., physics) we might have explicit reasons to believe
that conditions of continuity or differentiability should be imposed and this
information might be given to us in a variety of ways. The crucial point, however
— and this is a point that we keep and will keep reiterating — is that unless
such information is in fact explicitly given we should not assume it. If the new
information leads to discontinuities, so be it.
Comment 3:

5For f ∈ D, if p(2) < 2/9 then P (f) > 1/6 ; if p(2) > 2/9 then P (f) < 1/6.
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The locality criterion DC1 includes Bayesian conditionalization as a special
case. Indeed, if the information is given through the constraint p(D) = 1 — or
more precisely p(D̃) = 0 where D̃ is the complement of D so that the information
does not directly refer to D — then P (x|D) = q(x|D), which is known as
Bayesian conditionalization. More explicitly, if θ is the variable to be inferred
on the basis of information about a likelihood function q(x|θ) and observed data
x′, then the update from the prior q to the posterior P ,

q(x, θ) = q(x)q(θ|x)→ P (x, θ) = P (x)P (θ|x) (6.3)

consists of updating q(x)→ P (x) = δ(x−x′) to agree with the new information
and invoking the PMU so that P (θ|x′) = q(θ|x′) remains unchanged. Therefore,

P (x, θ) = δ(x− x′)q(θ|x) and P (θ) = q(θ|x′) , (6.4)

which is Bayes’ rule (see sections 2.9.2 and 6.6 below). Thus, entropic inference
is designed to include Bayesian inference as a special case. Note however that
imposing locality is not identical to imposing Bayesian conditionalization —
locality is more general because it is not restricted to absolute certainties such
as p(D) = 1.

Coordinate invariance

DC2 The system of coordinates carries no information.

The points x ∈ X can be labeled using any of a variety of coordinate systems.
In certain situations we might have explicit reasons to believe that a particular
choice of coordinates should be preferred over others and this information might
have been given to us in a variety of ways, but unless it was in fact given we
should not assume it: the ranking of probability distributions should not depend
on the coordinates used.
The consequence of DC2 is that S[p, q] can be written in terms of coordinate
invariants such as dxm(x) and p(x)/m(x), and q(x)/m(x):

S[p, q] =
∫
dxm(x)Φ

(
p(x)
m(x)

,
q(x)
m(x)

)
. (6.5)

The proof is given in section 6.3. Thus the single unknown function F which
had three arguments has been replaced by two unknown functions: Φ which has
two arguments, and the density m(x).

To grasp the meaning of DC2 it may be useful to recall some facts about
coordinate transformations. Consider a change from old coordinates x to new
coordinates x′ such that x = Γ(x′). The new volume element dx′ includes the
corresponding Jacobian,

dx = γ(x′)dx′ where γ(x′) =
∣∣∣∣ ∂x∂x′

∣∣∣∣ . (6.6)
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Let m(x) be any density; the transformed density m′(x′) is such that m(x)dx =
m′(x′)dx′. This is true, in particular, for probability densities such as p(x) and
q(x), therefore

m(x) =
m′(x′)
γ(x′)

, p(x) =
p′(x′)
γ(x′)

and q(x) =
q′(x′)
γ(x′)

. (6.7)

The coordinate transformation gives

S[p, q] =
∫
dxF (p(x), q(x), x)

=
∫
γ(x′)dx′ F

(
p′(x′)
γ(x′)

,
q′(x′)
γ(x′)

,Γ(x′)
)
, (6.8)

which is a mere change of variables. The identity above is valid always, for all Γ
and for all F ; it imposes absolutely no constraints on S[p, q]. The real constraint
arises from realizing that we could have started in the x′ coordinate frame, in
which case we would have ranked the distributions using the entropy

S[p′, q′] =
∫
dx′ F (p′(x′), q′(x′), x′) , (6.9)

but this should have no effect on our conclusions. This is the nontrivial content
of DC2. It is not that we can change variables, we can always do that; but rather
that the two rankings, the one according to S[p, q] and the other according to
S[p′, q′] must coincide. This requirement is satisfied if, for example, S[p, q] and
S[p′, q′] turn out to be numerically equal, but this is not necessary.

Locality (again)

Next we determine the density m(x) by invoking the locality criterion DC1 once
again. A situation in which no new information is available is dealt by allowing
the domain D to cover the whole space of xs, D = X and DC1 requires that in
the absence of any new information the prior conditional probabilities should
not be updated, P (x|X ) = q(x|X ) or P (x) = q(x). Thus, when there are no
constraints the selected posterior distribution should coincide with the prior
distribution, which is expressed as

DC1′ When there is no new information there is no reason to change one’s
mind and one shouldn’t.

The consequence of DC1′ (a second use of locality) is that the arbitrariness
in the density m(x) is removed: up to normalization m(x) must be the prior
distribution q(x), and therefore at this point we have succeeded in restricting
the entropy to functionals of the form

S[p, q] =
∫
dx q(x)Φ

(
p(x)
q(x)

)
. (6.10)
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Independence

DC3 When two systems are a priori believed to be independent and we receive
independent information about each then it should not matter if one is
included in the analysis of the other or not (and vice versa).

Consider a composite system, x = (x1, x2) ∈ X = X1 × X2. Assume that
all prior evidence led us to believe the systems were independent. This belief
is reflected in the prior distribution: if the individual system priors q1(x1) and
q2(x2), then the prior for the whole system is q1(x1)q2(x2). Further suppose
that new information is acquired such that q1(x1) would by itself be updated
to P1(x1) and that q2(x2) would be itself be updated to P2(x2). DC3 requires
that S[p, q] be such that the joint prior q1(x1)q2(x2) updates to the product
P1(x1)P2(x2) so that inferences about one do not affect inferences about the
other.
The consequence of DC3 is that the remaining unknown function Φ is de-
termined to be Φ(z) = −z log z. Thus, probability distributions p(x) should be
ranked relative to the prior q(x) according to the relative entropy,

S[p, q] = −
∫
dx p(x) log

p(x)
q(x)

. (6.11)

Comment:
We emphasize that the point is not that when we have no evidence for

correlations we draw the firm conclusion that the systems must necessarily be
independent. They could indeed have turned out to be correlated and then our
inferences would be wrong. Induction involves risk. The point is rather that
if the joint prior reflected independence and the new evidence is silent on the
matter of correlations, then the prior takes precedence and there is no reason
to change our minds. As before, a feature of the probability distribution — in
this case, independence — will not be updated unless the evidence requires it.
Comment:

We also emphasize that DC3 is not a consistency requirement. The argument
we deploy is not that both the prior and the new information tell us the systems
are independent in which case consistency requires that it should not matter
whether the systems are treated jointly or separately. DC3 refers to a situation
where the new information does not say whether the systems are independent or
not. Rather, the updating is being designed so that the independence reflected
in the prior is maintained in the posterior by default.

6.2.4 The ME method

We can now summarize the overall conclusion:

The ME method: We want to update from a prior distribution q to a poste-
rior distribution when there is new information in the form of constraints
C that specify a family {p} of allowed posteriors. The posterior is selected
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through a ranking scheme that recognizes the value of prior information
and the privileged role of independence. Within the family {p} the pre-
ferred posterior P is that which maximizes the relative entropy S[p, q]
subject to the available constraints. No interpretation for S[p, q] is given
and none is needed.

This extends the method of maximum entropy beyond its original purpose
as a rule to assign probabilities from a given underlying measure (MaxEnt) to a
method for updating probabilities from any arbitrary prior (ME). Furthermore,
the logic behind the updating procedure does not rely on any particular meaning
assigned to the entropy, either in terms of information, or heat, or disorder.
Entropy is merely a tool for inductive inference; we do not need to know what
entropy means; we only need to know how to use it.
Comment: In chapter 8 we will refine the method further. There we will
address the question of assessing the extent to which distributions close to the
entropy maximum ought to be included in the analysis. Their contribution
— which accounts for fluctuation phenomena — turns out to be particularly
significant in situations where the entropy maximum is not particularly sharp.

The derivation above has singled out a unique S[p, q] to be used in inductive
inference. Other “entropies” (such as, e.g., Sη[p, q] in eq.(6.53) below] might
turn out to be useful for other purposes — perhaps as measures of some kinds
of information, or measures of discrimination or distinguishability among dis-
tributions, or of ecological diversity, or for some altogether different function —
but they are unsatisfactory in that they do not perform the function stipulated
by the design criteria DC1-3.

6.3 The proofs

In this section we establish the consequences of the three criteria leading to the
final result eq.(6.11). The details of the proofs are important not just because
they lead to our final conclusions, but also because the translation of the verbal
statement of the criteria into precise mathematical form is a crucial part of
unambiguously specifying what the criteria actually say.

DC1: Locality

Here we prove that criterion DC1 leads to the expression eq.(6.2) for S[p, q]. The
requirement that probabilities be normalized is handled by imposing normal-
ization as one among so many other constraints that one might wish to impose.
To simplify the proof we initially consider the case of a discrete variable, pi
with i = 1 . . . n, so that S[p, q] = S(p1 . . . pn, q1 . . . qn). The generalization to a
continuum is straightforward.

Suppose the space of states X is partitioned into two non-overlapping do-
mains D and D̃ with D ∪ D̃ = X , and that the information to be processed is
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in the form of a constraint that refers to the domain D̃,∑
j∈D̃

ajpj = A . (6.12)

DC1 states that the constraint on D̃ does not have an influence on the condi-
tional probabilities pi|D. It may however influence the probabilities pi within D
through an overall multiplicative factor. To deal with this complication consider
then a special case where the overall probabilities of D and D̃ are constrained
too, ∑

i∈D
pi = PD and

∑
j∈D̃

pj = PD̃ , (6.13)

with PD+PD̃ = 1. Under these special circumstances constraints on D̃ will not
influence pis within D, and vice versa.

To obtain the posterior maximize S[p, q] subject to these three constraints,

0 =
[
δS − λ

(∑
i∈D

pi − PD
)

+

− λ̃

(∑
j∈D̃

pi − PD̃

)
+ µ

(∑
j∈D̃

ajpj −A

)]
,

leading to

∂S

∂pi
= λ for i ∈ D , (6.14)

∂S

∂pj
= λ̃+ µaj for j ∈ D̃ . (6.15)

Eqs.(6.12-6.15) are n + 3 equations we must solve for the pis and the three
Lagrange multipliers. Since S = S(p1 . . . pn, q1 . . . qn) its derivative

∂S

∂pi
= fi(p1 . . . pn, q1 . . . qn) (6.16)

could in principle also depend on all 2n variables. But this violates the locality
criterion because any arbitrary change in aj within D̃ would influence the pis
within D. The only way that probabilities within D can be shielded from ar-
bitrary changes in the constraints pertaining to D̃ is that the functions fi with
i ∈ D depend only on pis while the functions fj depend only on pjs. Further-
more, this must hold not just for one particular partition of X into domains D
and D̃, it must hold for all conceivable partitions. Therefore fi can depend only
on pi and, at this point, on any of the qs,

∂S

∂pi
= fi(pi, q1 . . . qn) . (6.17)

But the power of the locality criterion is not exhausted yet. The information
to be incorporated into the posterior can enter not just through constraints but
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also through the prior. Suppose that the local information about domain D̃ is
altered by changing the prior within D̃. Let qj → qj + δqj for j ∈ D̃. Then
(6.17) becomes

∂S

∂pi
= fi(pi, q1 . . . qj + δqj . . . qn) (6.18)

which shows that pi with i ∈ D will be influenced by information about D̃ unless
fi with i ∈ D is independent of all the qjs for j ∈ D̃. Again, this must hold for
all partitions into D and D̃, and therefore,

∂S

∂pi
= fi(pi, qi) for all i ∈ X . (6.19)

Integrating, one obtains

S[p, q] =
∑
i

Fi(pi, qi) + constant . (6.20)

for some undetermined functions Fi. The corresponding expression for a contin-
uous variable x is obtained replacing i by x, and the sum over i by an integral
over x leading to eq.(6.2),

S[p, q] =
∫
dxF (p(x), q(x), x) . (6.21)

Remark: One might wonder whether in taking the continuum limit there might
be room for introducing first and higher derivatives of p and q so that the
function F might include more arguments,

F
?= F (p, q,

dp

dx
,
dq

dx
, . . . ;x) . (6.22)

The answer is no! As discussed in the previous section one must not allow the
inference method to introduce assumptions about continuity or differentiability
unless such conditions are explicitly introduced as information. In the absence
of any information to the contrary the prior information takes precedence; if this
leads to discontinuities we must accept them. On the other hand, we may find
ourselves in situations where our intuition insists that the discontinuities should
just not be there. The right way to handle such situations (see section 4.11) is
not to blame the method but the user: perhaps there is additional information
concerning continuity that is relevant but we did not recognize it and failed to
take it into account.

DC2: Coordinate invariance

Next we prove eq.(6.5). It is convenient to introduce an unspecified function
m(x) which transforms as a density and rewrite the expression (6.2) in the form

S[p, q] =
∫
dxm(x)

1
m(x)

F

(
p(x)
m(x)

m(x),
q(x)
m(x)

m(x), x
)

(6.23)

=
∫
dxm(x)Φ

(
p(x)
m(x)

,
q(x)
m(x)

,m(x), x
)
, (6.24)



6.3 The proofs 149

where the function Φ is defined by

Φ(α, β,m, x) def=
1
m
F (αm, βm, x). (6.25)

Next, we consider a special situation where the new information are con-
straints which do not favor one coordinate system over another. For example
consider the constraint ∫

dx p(x)a(x) = A (6.26)

where a(x) is a scalar function, that is, it is invariant under coordinate trans-
formations,

a(x)→ a′(x′) = a(x). (6.27)

The usual normalization condition
∫
dx p(x) = 1 is a simple example of a scalar

constraint.
Maximizing S[p, q] subject to the constraint,

δ

[
S[p, q] + λ

(∫
dx p(x)a(x)−A

)]
= 0, (6.28)

gives

Φ̇
(
p(x)
m(x)

,
q(x)
m(x)

,m(x), x
)

= λa(x) , (6.29)

where the dot represents the derivative with respect to the first argument,

Φ̇ (α, β,m, x) def=
∂Φ (α, β,m, x)

∂α
(6.30)

But we could have started using the primed coordinates,

Φ̇
(
p′(x′)
m′(x′)

,
q′(x′)
m′(x′)

,m′(x′), x′
)

= λ′a′(x′), (6.31)

or, using (6.7) and (6.27),

Φ̇
(
p(x)
m(x)

,
q(x)
m(x)

,m(x)γ(x′), x′
)

= λ′a(x). (6.32)

Dividing (6.32) by (6.29) we get

Φ̇ (α, β,mγ, x′)
Φ̇ (α, β,m, x)

=
λ′

λ
. (6.33)

This identity should hold for any transformation x = Γ(x′). On the right hand
side the multipliers λ and λ′ are just constants; the ratio λ′/λ might depend on
the transformation Γ but it does not depend on x. Consider the special case
of a transformation Γ that has unit determinant everywhere, γ = 1, and differs
from the identity transformation only within some arbitrary region D. Since for
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x outside this region D we have x = x′, the left hand side of eq.(6.33) equals
1. Thus, for this particular Γ the ratio is λ′/λ = 1; but λ′/λ = constant, so
λ′/λ = 1 holds within D as well. Therefore, for x within D,

Φ̇ (α, β,m, x′) = Φ̇ (α, β,m, x) . (6.34)

Since the choice of D is arbitrary we conclude is that the function Φ̇ cannot
depend on its fourth argument, Φ̇ = Φ̇ (α, β,m).

Having eliminated the fourth argument, let us go back to eq.(6.33),

Φ̇ (α, β,mγ)
Φ̇ (α, β,m)

=
λ′

λ
, (6.35)

and consider a different transformation Γ, one with unit determinant γ = 1 only
outside the region D. Therefore the constant ratio λ′/λ is again equal to 1, so
that

Φ̇ (α, β,mγ) = Φ̇ (α, β,m) . (6.36)

But within D the transformation Γ is quite arbitrary, it could have any arbitrary
Jacobian γ 6= 1. Therefore the function Φ̇ cannot depend on its third argument
either, and therefore Φ̇ = Φ̇(α, β). Integrating with respect to α gives Φ =
Φ(α, β) + constant. The additive constant, which could depend on β, has no
effect on the maximization and can be dropped. This completes the proof of
eq.(6.5).

DC1′: Locality again

The locality criterion implies that when there are no constraints the selected
posterior distribution should coincide with the prior distribution. This provides
us with an interpretation of the as yet unspecified density m(x). The argu-
ment is simple: maximize S[p, q] in (6.5) subject to the single requirement of
normalization,

δ

[
S[p, q] + λ

(∫
dx p(x)− 1

)]
= 0, (6.37)

to get

Φ̇
(
p(x)
m(x)

,
q(x)
m(x)

)
= λ. (6.38)

Since λ is a constant, the left hand side must be independent of x for arbitrary
choices of the prior q(x). This could, for example, be accomplished if the func-
tion Φ̇(α, β) were itself a constant, independent of its arguments α and β. But
this gives

Φ(α, β) = c1α+ c2 (6.39)

where c1 and c2 are constants and leads to the unacceptable form S[p, q] ∝∫
dx p(x) + constant.

If the independence on x cannot be eliminated by an appropriate choice
of Φ̇, we must secure it by a choice of m(x). Eq.(6.38) is an equation for
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p(x). In the absence of new information the selected posterior distribution must
coincide with the prior, P (x) = q(x). The obvious way to secure that (6.38) be
independent of x is to choose m(x) ∝ q(x). Therefore m(x) must, except for an
overall normalization, be chosen to coincide with the prior distribution.

DC3: independence

If x = (x1, x2) ∈ X = X1 × X2, and the individual system priors q1(x1) and
q2(x2) are separately updated to P1(x1) and P2(x2) respectively, then we deter-
mine the unknown function Φ so that the joint prior for the combined system
q1(x1)q2(x2) is updated to P1(x1)P2(x2).

We need only consider a special case of extremely constraining information:
for system 1 we want to maximize S1[p1, q1] subject to the constraint that p1(x1)
is P1(x1), the result being, naturally, p1(x1) = P1(x1). A similar result holds
for system 2. When the systems are treated jointly, however, the inference is
not nearly as trivial. We want to maximize the entropy of the joint system,

S[p, q] =
∫
dx1dx2 q1(x1)q2(x2)Φ

(
p(x1, x2)

q1(x1)q2(x2)

)
, (6.40)

subject to the following constraints on the joint distribution p(x1, x2):∫
dx2 p(x1, x2) = P1(x1) and

∫
dx1 p(x1, x2) = P2(x2) . (6.41)

Notice that here we have not written just two constraints. We actually have one
constraint for each value of x1 and of x2; this is an infinity of constraints, each
of which must be multiplied by its own Lagrange multiplier, λ1(x1) or λ2(x2).
Then,

δ

[
S −

∫
dx1λ1(x1)

(∫
dx2 p(x1, x2)− p1(x1)

)
− {1↔ 2}

]
= 0, (6.42)

where {1 ↔ 2} indicates a third term, similar to the second, with 1 and 2
interchanged. The independent variations δp(x1, x2) yield

Φ′
(

p(x1, x2)
q1(x1)q2(x2)

)
= λ1(x1) + λ2(x2). (6.43)

(The prime indicates a derivative with respect to the argument.)
Next we impose that the selected posterior be the product P (x1, x2) =

P1(x1)P2(x2) and find the Φ that delivers the desired posterior. Then,

Φ′ (y) = λ1(x1) + λ2(x2), where y =
P1(x1)P2(x2)
q1(x1)q2(x2)

. (6.44)

Differentiating with respect to x1 and to x2, yields

yΦ′′′(y) + Φ′′(y) = 0 , (6.45)
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which can easily be integrated three times to give

Φ(y) = ay log y + by + c. (6.46)

The additive constant c may be dropped: its contribution to the entropy would
appear in a term that does not depend on the probabilities and would have no
effect on the ranking scheme. At this point the entropy takes the form

S[p, q] =
∫
dx

(
ap(x) log

p(x)
q(x)

+ bp(x)
)
. (6.47)

This S[p] will be maximized subject to constraints which will always include
normalization. Since this is implemented by adding a term λ

∫
dx p(x), the b

constant can always be absorbed into the undetermined multiplier λ. Thus, the
term bp(x) has no effect on the selected distribution and can be dropped.

Finally, a is just an overall multiplicative constant, it also does not affect
the overall ranking except in the trivial sense that inverting the sign of a will
transform the maximization problem to a minimization problem or vice versa.
We can therefore set a = −1 so that maximum S corresponds to maximum
preference which gives us eq.(6.11) and concludes our derivation.

6.4 An alternative independence criterion: con-
sistency

The robustness of the entropic inference framework can be illustrated by explor-
ing an alternative version of the independence criterion. DC3 referred to new
information that was silent on the matter of correlations among systems. Now
we consider an alternative where the new information is not silent; it explicitly
states that there are no correlations. Instead of DC3 we require the following
consistency requirement:6

DC3′ When systems are known to be independent it should not matter whether
the inference procedure treats them separately or jointly.

The consequence of DC3′ is that the remaining unknown function Φ is
determined to be Φ(z) = −z log z. Thus, probability distributions p(x) should
be ranked relative to the prior q(x) according to the relative entropy S[p, q]
given by eq.(6.11).

Criterion DC3′ is perhaps subtler than it might appear at first sight. Two
points must be made clear. The first point concerns how the information about
independence is to be handled as a constraint. Consider two (or more) systems
that we know are independent. This means that both the prior and the posterior

6Since DC3 and its alternative DC3′ lead to the same entropic inference framework this
section may be skipped on a first reading. The use of DC3′ involves a considerably more
involved derivation but has the advantage of illuminating how it is that the alternative η-
entropies, eq.(6.53), are ruled out.
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are products. If the priors for the individual systems are q1(x1) and q2(x2), then
the prior for the combined system is the product

q(x1, x2) = q1(x1)q2(x2) , (6.48)

while the joint posterior is constrained within the family

p(x1, x2) = p1(x1)p2(x2) . (6.49)

Further suppose that new information is acquired, say constraints C1 such that
q1(x1) is updated to P1(x1), and constraints C2 such that q2(x2) is updated to
P2(x2). The constraints C1 could, for example, include normalization, and in
addition they could also involve the known expected value of a function f1(x1),∫

dx1f1(x1)p1(x1) =
∫
dx1dx2 f1(x1)p(x1, x2) = F1 . (6.50)

Criterion DC3′ is implemented as follows: First we treat the two individual
systems separately. For system 1 the result of maximizing

S[p1, q1] =
∫
dx1 q1(x1)Φ

(
p1(x1)
q1(x1)

)
, (6.51)

subject to constraints C1 on p1(x1) is to select the posterior P1(x1). Similarly,
for system 2 maximizing S[p2, q2] subject to constraints C2 on p2(x2) is to select
the posterior P2(x2).

Next the two systems are treated jointly. Since we are concerned with a
situation where we have the information that the systems are independent, we
are required to search for the posterior within the restricted family of joint
distributions that take the form of the product (6.49); this is an additional
constraint C3 over and above the original C1 and C2. The new constraint C3 = {
p = p1p2} is easily implemented by direct substitution. Instead of maximizing
the joint entropy, S[p, q1q2], we maximize

S[p1p2, q1q2] =
∫
dx1dx2 q1(x1)q2(x2)Φ

(
p1(x1)p2(x2)
q1(x1)q2(x2)

)
, (6.52)

under independent variations δp1 and δp2 subject to the same constraints C1
and C2. The function Φ is then designed — or at least constrained — so that
that the selected posterior be P1(x1)P2(x2).

The second point is that the criterion DC3′ is universal; it applies to all
instances of systems that happen to be independent. DC3′ applies to situations
where the independent systems are identical, and also when they are not; it
applies when we deal with just two systems — as in the previous paragraph —
and it also applies when we deal with many, whether just a few or a very large
number.
Remark: Imposing DC3′ in its full generality, which includes the limit of a
large number of independent systems, leads to an inductive framework that is
consistent with the laws of large numbers.7

7Conversely, imposing DC3′ for just two identical independent systems is bad design: it
leads to inductive frameworks that are inconsistent with laws of large numbers.
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The lengthy proof leading to (6.11) given below involves three steps. First
we show that applying DC3′ to independent systems that happen to be identical
restricts the entropy functional to a member of the family of entropies

Sη[p, q] =
1

η(η + 1)

(
1−

∫
dx pη+1q−η

)
(6.53)

labeled by a single real parameter η.
It is easy to see that there are no singularities for η = 0 or −1; the limits

η → 0 and η → −1 are well behaved. For example, to take η → 0 use

yη = exp(η log y) ≈ 1 + η log y , (6.54)

which leads to the usual logarithmic entropy, S0[p, q] = S[p, q] given in eq.(6.11).
Similarly, for η → −1 we get S−1[p, q] = S[q, p].

In the second step DC3′ is applied to two independent systems that are not
identical and could in principle be described by different parameters η1 and η2.
The consistency demanded by DC3′ implies that the two parameters must be
equal, η1 = η2, and since this must hold for all pairs of independent systems
consistency demands that η must be a universal constant. In the third and final
step the value of this constant — which turns out to be η = 0 — is determined
by demanding that DC3′ apply to N identical systems where N is very large.

Step 1: Consistency for identical independent systems

In this subsection we show that applying DC3′ to systems that happen to be
identical restricts the entropy functional to a member of the one-parameter
family of η-entropies Sη[p, q] parametrized by η. For η = 0 one obtains the
standard logarithmic entropy, eq.(6.11),

S0[p, q] = −
∫
dx p(x) log

p(x)
q(x)

. (6.55)

For η = −1 one obtains

S−1[p, q] =
∫
dx q(x) log

p(x)
q(x)

, (6.56)

which coincides with S0[q, p] with the arguments switched. Finally, for a generic
value of η 6= −1, 0 the result is

Sη[p, q] = −
∫
dx p(x)

(
p(x)
q(x)

)η
. (6.57)

It is worthwhile to recall that the objective of this whole exercise is to
rank probability distributions according to preference and therefore different
entropies that induce the same ranking scheme are effectively equivalent. This
is very convenient as it allows considerable simplifications by an appropriate
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choice of additive and multiplicative constants. Taking advantage of this free-
dom we can, for example, combine the three expressions (6.55), (6.56), and
(6.57) into the single expression

Sη[p, q] =
1

η(η + 1)

(
1−

∫
dx pη+1q−η

)
, (6.58)

that we met earlier in eq.(6.53).
The proof below is fairly lengthy and may be skipped on a first reading.

It follows the treatment in [Caticha Giffin 06] and is based upon and extends
a previous proof by Karbelkar who showed that belonging to the family of η-
entropies is a sufficient condition to satisfy the consistency criterion for identical
systems. He conjectured but did not prove that this was perhaps also a necessary
condition [Karbelkar 86]. Although necessity was not essential to his argument
it is crucial for ours. We show below that for identical systems there are no
acceptable entropies outside the Sη family.

First we treat the two systems separately. For system 1 we maximize the
entropy S[p1, q1] subject to normalization and the constraint C1 in eq.(6.50).
Introduce Lagrange multipliers α1 and λ1,

δ
[
S[p1, q1]− λ1

(∫
dx1f1p1 − F1

)
− α1

(∫
dx1p1 − 1

)]
= 0, (6.59)

which gives

Φ′
(
p1(x1)
q1(x1)

)
= λ1f1(x1) + α1 , (6.60)

where the prime indicates a derivative with respect to the argument, Φ′(y) =
dΦ(y)/dy. For system 2 we need only consider the extreme situation where the
constraints C2 determine the posterior completely: p2(x2) = P2(x2).

Next we treat the two systems jointly. The constraints C2 are easily imple-
mented by direct substitution and thus, we maximize the entropy S[p1P2, q1q2]
by varying p1 subject to normalization and the constraint C1 in eq.(6.50). In-
troduce Lagrange multipliers α and λ,

δ
[
S[p1P2, q1q2]− λ

(∫
dx1f1p1 − F1

)
− α

(∫
dx1 p1 − 1

)]
= 0, (6.61)

which gives ∫
dx2 P2Φ′

(
p1P2

q1q2

)
= λ[P2, q2]f1(x1) + α[P2, q2] , (6.62)

where the multipliers λ and α are independent of x1 but could in principle be
functionals of P2 and q2.

The consistency condition that constrains the form of Φ is that if the solution
to eq.(6.60) is P1(x1) then the solution to eq.(6.62) must also be P1(x1), and
this must be true irrespective of the choice of P2(x2). Let us then consider
a small change P2 → P2 + δP2 that preserves the normalization of P2. First
introduce a Lagrange multiplier α2 and rewrite eq.(6.62) as∫

dx2 P2Φ′
(
P1P2

q1q2

)
− α2

[∫
dx2P2 − 1

]
= λ[P2, q2]f1(x1) + α[P2, q2] , (6.63)
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where we have replaced p1 by the known solution P1 and thereby effectively
transformed eqs.(6.60) and (6.62) into an equation for Φ. The δP2 variation
gives,

Φ′
(
P1P2

q1q2

)
+
P1P2

q1q2
Φ′′
(
P1P2

q1q2

)
=

δλ

δP2
f1(x1) +

δα

δP2
+ α2 . (6.64)

Next use eq.(6.60) to eliminate f1(x1),

Φ′
(
P1P2

q1q2

)
+
P1P2

q1q2
Φ′′
(
P1P2

q1q2

)
= A[P2, q2]Φ′

(
P1

q1

)
+B[P2, q2] , (6.65)

where

A[P2, q2] =
1
λ1

δλ

δP2
and B[P2, q2] = − δλ

δP2

α1

λ1
+

δα

δP2
+ α2 , (6.66)

are at this point unknown functionals of P2 and q2. Differentiating eq.(6.65)
with respect to x1 the B term drops out and we get

A[P2, q2] =
[
d

dx1
Φ′
(
P1

q1

)]−1
d

dx1

[
Φ′
(
P1P2

q1q2

)
+
P1P2

q1q2
Φ′′
(
P1P2

q1q2

)]
, (6.67)

which shows that A is not a functional of P2 and q2 but a mere function of P2/q2.
Substituting back into eq.(6.65) we see that the same is true for B. Therefore
eq.(6.65) can be written as

Φ′ (y1y2) + y1y2Φ′′ (y1y2) = A(y2)Φ′ (y1) +B(y2) , (6.68)

where y1 = P1/q1, y2 = P2/q2, and A(y2), B(y2) are unknown functions of y2.
Now we specialize to identical systems. Then we can exchange the labels

1↔ 2, and we get

A(y2)Φ′ (y1) +B(y2) = A(y1)Φ′ (y2) +B(y1) . (6.69)

To find the unknown functions A and B differentiate with respect to y2,

A′(y2)Φ′ (y1) +B′(y2) = A(y1)Φ′′ (y2) (6.70)

and then with respect to y1 to get

A′(y1)
Φ′′ (y1)

=
A′(y2)
Φ′′ (y2)

= a = const . (6.71)

Integrate to get
A(y1) = aΦ′ (y1) + b , (6.72)

then substitute back into eq.(6.70) and integrate again to get

B′(y2) = bΦ′′ (y2) and B(y2) = bΦ′ (y2) + c , (6.73)



6.4 An alternative independence criterion: consistency 157

where b and c are constants. We can check directly that A(y) and B(y) are
indeed solutions of eq.(6.69). Substituting into eq.(6.68) gives

Φ′ (y1y2) + y1y2Φ′′ (y1y2) = aΦ′ (y1) Φ′ (y2) + b [Φ′ (y1) + Φ′ (y2)] + c . (6.74)

This is a peculiar differential equation. We can think of it as one differential
equation for Φ′ (y1) for each given constant value of y2 but there is a complication
in that the various (constant) coefficients Φ′ (y2) are themselves unknown. To
solve for Φ choose a fixed value of y2, say y2 = 1,

yΦ′′ (y)− ηΦ′ (y)− κ = 0 , (6.75)

where η = aΦ′ (1) + b − 1 and κ = bΦ′ (1) + c. To eliminate the constant κ
differentiate with respect to y,

yΦ′′′ + (1− η) Φ′′ = 0 , (6.76)

which is a linear homogeneous equation and is easy to integrate.
For generic values of η 6= −1, 0 the solution is

Φ′′(y) ∝ yη−1 ⇒ Φ′(y) = αyη + β . (6.77)

The constants α and β are chosen so that this is a solution of eq.(6.74) for all
values of y2 (and not just for y2 = 1). Substituting into eq.(6.74) and equating
the coefficients of various powers of y1y2, y1, and y2 gives three conditions on
the two constants α and β,

α(1 + η) = aα2, 0 = aαβ + bα, β = aβ2 + 2bβ + c . (6.78)

The nontrivial (α 6= 0) solutions are α = (1 + η)/a and β = −b/a, while the
third equation gives c = b(1 − b)/4a. We conclude that for generic values of η
the solution of eq.(6.74) is

Φ(y) =
1
a
yη+1 − b

a
y + C , (6.79)

where C is a new constant. Substituting into eq.(6.10) yields

Sη[p, q] =
1
a

∫
dx p(x)

(
p(x)
q(x)

)η
− b

a

∫
dx p(x) + C

∫
dx q(x) . (6.80)

This complicated expression can be simplified considerably by exploiting the
freedom to choose additive and multiplicative constants. We can drop the last
two terms and choose a = −1 so that the preferred distribution is that which
maximizes entropy. This reproduces eq.(6.57).

For η = 0 we return to eq.(6.76) and integrate twice to get

Φ(y) = a′y log y + b′y + c′ , (6.81)



158 Entropy III: Updating Probabilities

for some new constants a′, b′, and c′. Substituting into eq.(6.10) yields

S0[p, q] = a′
∫
dx p(x) log

p(x)
q(x)

+ b′
∫
dx p(x) + c′

∫
dx q(x) . (6.82)

Again, choosing a′ = −1 and dropping the last two terms does not affect
the ranking scheme. This yields the standard expression for relative entropy,
eq.(6.55).

Finally, for η = −1 integrating eq.(6.76) twice gives

Φ(y) = a′′ log y + b′′y + c′′ , (6.83)

for some new constants a′′, b′′, and c′′. Substituting into eq.(6.10) yields

S0[p, q] = a′′
∫
dx q(x) log

p(x)
q(x)

+ b′′
∫
dx p(x) + c′′

∫
dx q(x) . (6.84)

Again, choosing a′′ = 1 and dropping the last two terms yields eq.(6.56). This
completes our derivation.

Step 2: Consistency for non-identical systems

Let us summarize our results so far. The goal is to update probabilities by rank-
ing the distributions according to an entropy S that is of general applicability.
The allowed functional forms of the entropy S have been constrained down to a
member of the one-dimensional family Sη. One might be tempted to conclude
that there is no S of universal applicability; that inferences about different sys-
tems could to be carried out with different η-entropies. But we have not yet
exhausted the full power of the consistency DC3. Consistency is universally
desirable; there is no reason why it should be limited to identical systems.

To proceed further we ask: What is η? Is it a property of the individual
carrying out the inference or of the system under investigation? The former is
unacceptable; we insist that the updating must be objective in that different
individuals with the same prior and with the same constraints must make the
same inference. Therefore the “inference parameter” η can only be a property
of the system.

Consider two different systems characterized by η1 and η2. Let us further
suppose that these systems are known to be independent (perhaps system #1
lives here on Earth while system #2 lives in a distant galaxy) so that they fall
under the jurisdiction of DC3′. Separate inferences about systems #1 and #2
are carried out with Sη1 [p1, q1] and Sη2 [p2, q2] respectively. For the combined
system we are also required to use an η-entropy, say Sη[p1p2, q1q2]. Consistency
is possible only if we impose η1 = η2 from the start.

But this is not all: consider a third system #3 that also lives here on Earth.
We do not know whether system #3 is independent from system #1 or not but
we can confidently assert that it will certainly be independent of the system
#2 living in the distant galaxy. The argument of the previous paragraph leads
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us to conclude that η3 = η2, and therefore that η3 = η1 even when systems
#1 and #3 are not known to be independent! We conclude that all systems
must be characterized by the same parameter η whether they are independent or
not because we can always find a common reference system that is sufficiently
distant to be independent of any two of them. The inference parameter η is a
universal constant, the value of which is at this point still unknown.

The power of a consistency argument resides in its universal applicability:
if an entropy S[p, q] exists then it must be one chosen from among the Sη[p, q].
The remaining problem is to determine this universal constant η. Here we give
one argument; in the next subsection we give another one.

One possibility is to regard η as a quantity to be determined experimen-
tally. Are there systems for which inferences based on a known value of η have
repeatedly led to success? The answer is yes; they are quite common.

As we discussed in Chapter 5 statistical mechanics and thus thermodynamics
are theories of inference based on the value η = 0. The relevant entropy, which
is the Boltzmann-Gibbs-Shannon entropy, can be interpreted as the special case
of the ME when one updates from a uniform prior. It is an experimental fact
without any known exceptions that inferences about all physical, chemical and
biological systems that are in thermal equilibrium or close to it can be carried
out by assuming that η = 0. Let us emphasize that this is not an obscure and
rare example of purely academic interest; these systems comprise essentially all
of natural science. (Included is every instance where it is useful to introduce a
notion of temperature.)

In conclusion: consistency for non-identical systems requires that η be a
universal constant and there is abundant experimental evidence for its value
being η = 0. Other η-entropies may turn out to be useful for other purposes but
the logarithmic entropy S[p, q] in eq.(6.11) provides the only consistent ranking
criterion for updating probabilities that can claim general applicability.

Step 3: Consistency with the law of large numbers

Here we offer a second argument, also based on a broader application of DC3′,
that the value of the universal constant η must be η = 0.

DC3′ applies generally; in particular it applies to large numbers of indepen-
dent identical systems. In such cases we can calculate η by demanding that
entropic updates be consistent with the weak law of large numbers.

Let the state for each individual system be described by a discrete variable
i = 1 . . .m.

First we treat the individual systems separately. The identical priors for
the individual systems are qi and the available information is that the potential
posteriors pi are subject, for example, to an expectation value constraint such
as 〈a〉 = A, where A is some specified value and 〈a〉 =

∑
aipi. The preferred

posterior Pi is found maximizing the η-entropy Sη[p, q] subject to 〈a〉 = A.
To treat the systems jointly we let the number of systems found in state i

be ni, and let fi = ni/N be the corresponding frequency. The two descriptions
are related by the law of large numbers: for large N the frequencies fi converge
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(in probability) to the desired posterior Pi while the sample average ā =
∑
aifi

converges (also in probability) to the expected value 〈a〉 = A.
Now we consider the set of N systems treated jointly. The probability of

a particular frequency distribution f = (f1 . . . fn) generated by the prior q is
given by the multinomial distribution,

QN (f |q) =
N !

n1! . . . nm!
qn1
1 . . . qnmm with

m∑
i=1

ni = N . (6.85)

When the ni are sufficiently large we can use Stirling’s approximation,

log n! = n log n− n+ log
√

2πn+O(1/n) . (6.86)

Then

logQN (f |q) ≈ N logN −N + log
√

2πN

−
∑
i

(
ni log ni − ni + log

√
2πni − ni log qi

)
= −N

∑
i

ni
N

log
ni
Nqi

−
∑
i

log
√
ni
N
− (N − 1) log

√
2πN

= NS[f, q]−
∑
i

log
√
fi − (N − 1) log

√
2πN , (6.87)

where S[f, q] is the η = 0 entropy given by eq.(6.11). Therefore for large N can
be written as

QN (f |q) ≈ CN (
∏
i

fi)−1/2 exp(NS[f, q]) (6.88)

where CN is a normalization constant. The Gibbs inequality S[f, q] ≤ 0,
eq.(4.23), shows that for large N the probability QN (f |q) shows an exceedingly
sharp peak. The most likely frequency distribution is numerically equal to the
probability distribution qi. This is the weak law of large numbers. Equivalently,
we can rewrite it as

1
N

logQN (f |q) ≈ S[f, q] + rN , (6.89)

where rN is a correction that vanishes (in probability) as N →∞. This means
that finding the most probable frequency distribution is equivalent to maximiz-
ing the entropy S[f, q].

The most probable frequency distribution f is q. The most probable fre-
quency distribution that satisfies the constraint ā = A is the distribution that
maximizes QN (f |q) subject to the constraint ā = A, which is equivalent to
maximizing the entropy S[f, q] subject to ā = A. In the limit of large N the
frequencies fi converge (in probability) to the desired posterior Pi while the
sample average ā =

∑
aifi converges (also in probability) to the expected value

〈a〉 = A. The two procedures agree only when we choose η = 0. The reason the
alternative η-entropies are discarded is clear: η 6= 0 is inconsistent with the law
of large numbers.
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[Csiszar 1984] and [Grendar 2001] have argued that the asymptotic argument
above provides by itself a valid justification for the ME method of updating. An
agent whose prior is q receives the information 〈a〉 = A which can be reasonably
interpreted as a sample average ā = A over a large ensemble of N trials. The
agent’s beliefs are updated so that the posterior P coincides with the most
probable f distribution. This is quite compelling but, of course, as a justification
of the ME method it is restricted to situations where it is natural to think in
terms of ensembles with large N . This justification is not nearly as compelling
for singular events for which large ensembles either do not exist or are too
unnatural and contrived. From our point of view the asymptotic argument
above does not by itself provide a fully convincing justification for the universal
validity of the ME method but it does provide considerable inductive support.
It serves as a valuable consistency check that must be passed by any inductive
inference procedure that claims to be of general applicability.

6.5 Random remarks

6.5.1 On priors

All entropies are relative entropies. In the case of a discrete variable, if one
assigns equal a priori probabilities, qi = 1, one obtains the Boltzmann-Gibbs-
Shannon entropy, S[p] = −

∑
i pi log pi . The notation S[p] has a serious draw-

back: it misleads one into thinking that S depends on p only. In particular,
we emphasize that whenever S[p] is used, the prior measure qi = 1 has been
implicitly assumed. In Shannon’s axioms, for example, this choice is implicitly
made in his first axiom, when he states that the entropy is a function of the
probabilities S = S(p1...pn) and nothing else, and also in his second axiom when
the uniform distribution pi = 1/n is singled out for special treatment.

The absence of an explicit reference to a prior qi may erroneously suggest that
prior distributions have been rendered unnecessary and can be eliminated. It
suggests that it is possible to transform information (i.e., constraints) directly
into posterior distributions in a totally objective and unique way. This was
Jaynes’ hope for the MaxEnt program. If this were true the old controversy,
of whether probabilities are subjective or objective, would have been resolved
in favor of complete objectivity. But the prior qi = 1 is implicit in S[p]; the
postulate of equal a priori probabilities or Laplace’s “Principle of Insufficient
Reason” still plays a major, though perhaps hidden, role. Any claims that
probabilities assigned using maximum entropy will yield absolutely objective
results are unfounded; not all subjectivity has been eliminated. Just as with
Bayes’ theorem, what is objective here is the manner in which information is
processed to update from a prior to a posterior, and not the prior probabilities
themselves. And even then the updating is objective because we have agreed to
adopt very specific criteria — this is objectivity by design.

Choosing the prior density q(x) can be tricky. Sometimes symmetry consid-
erations can be useful in fixing the prior (three examples were given in section
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4.5) but otherwise there is no fixed set of rules to translate information into
a probability distribution except, of course, for Bayes’ theorem and the ME
method themselves.

What if the prior q(x) vanishes for some values of x? S[p, q] can be infinitely
negative when q(x) vanishes within some region D. In other words, the ME
method confers an overwhelming preference on those distributions p(x) that
vanish whenever q(x) does. One must emphasize that this is as it should be; it
is not a problem. As we saw in section 2.9.4 a similar situation also arises in the
context of Bayes’ theorem where a vanishing prior represents a tremendously
serious commitment because no amount of data to the contrary would allow us to
revise it. In both ME and Bayes updating we should recognize the implications
of assigning a vanishing prior. Assigning a very low but non-zero prior represents
a safer and less prejudiced representation of one’s beliefs.

For more on the choice of priors see the review [Kass Wasserman 1996]; in
particular for entropic priors see [Rodriguez 1990-2003, Caticha Preuss 2004]

6.5.2 Comments on other axiomatizations

One feature that distinguishes the axiomatizations proposed by various authors
is how they justify maximizing a functional. In other words, why maximum
entropy? In the approach of Shore and Johnson this question receives no answer;
it is just one of the axioms. Csiszar provides a better answer. He derives the
‘maximize a functional’ rule from reasonable axioms of regularity and locality
[Csiszar 1991]. In Skilling’s and in the approach developed here the rule is not
derived, but it does not go unexplained either: it is imposed by design, it is
justified by the function that S is supposed to perform, namely, to achieve a
transitive ranking.

Both Shore and Johnson and Csiszar require, and it is not clear why, that
updating from a prior must lead to a unique posterior, and accordingly, there
is a restriction that the constraints define a convex set. In Skilling’s approach
and in the one advocated here there is no requirement of uniqueness, we are
perfectly willing to entertain situations where the available information points
to several equally preferable distributions. To this subject we will return in
chapter 8.

There is another important difference between the axiomatic approach pre-
sented by Csiszar and the design approach presented here. Our ME method
is designed to be of universal applicability. As with all inductive procedures,
in any particular instance of induction can turn out to be wrong — perhaps
because, for example, not all relevant information has been taken into account
— but this does not change the fact that ME is still the unique inductive in-
ference method obeying rational design criteria. On the other hand Csiszar’s
version of the MaxEnt method is not designed to generalize beyond its axioms.
His method was developed for linear constraints and therefore he does not feel
justified in carrying out his deductions beyond the cases of linear constraints.
In our case, the application to non-linear constraints is precisely the kind of
induction the ME method was designed to perform.
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It is interesting that if instead of axiomatizing the inference process, one
axiomatizes the entropy itself by specifying those properties expected of a mea-
sure of separation between (possibly unnormalized) distributions one is led to a
continuum of η-entropies, [Amari 1985]

Sη[p, q] =
1

η(η + 1)

∫
dx
[
(η + 1)p− ηq − pη+1q−η

]
, (6.90)

labelled by a parameter η. These entropies are equivalent, for the purpose of
updating, to the relative Renyi entropies [Renyi 1961, Aczel 1975]. The short-
coming of this approach is that it is not clear when and how such entropies are
to be used, which features of a probability distribution are being updated and
which preserved, or even in what sense do these entropies measure an amount of
information. Remarkably, if one further requires that Sη be additive over inde-
pendent sources of uncertainty, as one could reasonably expect from a measure,
then the continuum in η is restricted to just the two values η = 0 and η = −1
which correspond to the logarithmic entropies S[p, q] and S[q, p].

For the special case when p is normalized and a uniform prior q = 1 we get
(dropping the integral over q)

Sη =
1
η

(
1− 1

η + 1

∫
dx pη

)
. (6.91)

A related entropy

S′η =
1
η

(
1−

∫
dx pη+1

)
(6.92)

has been proposed in [Tsallis 1988] (see section 5.5) and forms the foundation
of a so-called non-extensive statistical mechanics. Clearly these two entropies
are equivalent in that they generate equivalent variational problems – maxi-
mizing Sη is equivalent to maximizing S′η. To conclude our brief remarks on
the entropies Sη we point out that quite apart from the difficulty of achieving
consistency with the law of large numbers, some the probability distributions
obtained maximizing Sη may also be derived through a more standard use of
MaxEnt or ME as advocated in these lectures (section 5.5).

6.6 Bayes’ rule as a special case of ME

Since the ME method and Bayes’ rule are both designed for updating probabili-
ties, and both invoke a Principle of Minimal Updating, it is important to explore
the relations between them. In section 6.2.3 we showed that ME is designed to
include Bayes’ rule as a special case. Here we would like to revisit this topic in
greater depth, and, in particular to explore some variations and generalizations
[Caticha Giffin 2006].

As described in section 2.9 the goal is to update our beliefs about θ ∈ Θ (θ
represents one or many parameters) on the basis of three pieces of information:
(1) the prior information codified into a prior distribution q(θ); (2) the data
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x ∈ X (obtained in one or many experiments); and (3) the known relation
between θ and x given by the model as defined by the sampling distribution
or likelihood, q(x|θ). The updating consists of replacing the prior probability
distribution q(θ) by a posterior distribution P (θ) that applies after the data has
been processed.

The crucial element that will allow Bayes’ rule to be smoothly incorporated
into the ME scheme is the realization that before the data information is avail-
able not only we do not know θ, we do not know x either. Thus, the relevant
space for inference is not Θ but the product space Θ×X and the relevant joint
prior is q(x, θ) = q(θ)q(x|θ). Let us emphasize two points: first, the likelihood
function is prior information too; and second, we should emphasize that the
information about how x is related to θ is contained in the functional form of
the distribution q(x|θ) — for example, whether it is a Gaussian or a Cauchy
distribution or something else – and not in the actual values of the arguments
x and θ which are, at this point, still unknown.

Next we collect data and the observed values turn out to be x′. We must
update to a posterior that lies within the family of distributions p(x, θ) that
reflect the fact that x is now known to be x′,

p(x) =
∫
dθ p(θ, x) = δ(x− x′) . (6.93)

This data information constrains but is not sufficient to determine the joint
distribution

p(x, θ) = p(x)p(θ|x) = δ(x− x′)p(θ|x′) . (6.94)

Any choice of p(θ|x′) is in principle possible. So far the formulation of the
problem parallels section 2.9 exactly. We are, after all, solving the same problem.
Next we apply the ME method and show that we get the same answer.

According to the ME method the selected joint posterior P (x, θ) is that
which maximizes the entropy,

S[p, q] = −
∫
dxdθ p(x, θ) log

p(x, θ)
q(x, θ)

, (6.95)

subject to the appropriate constraints. Note that the information in the data,
eq.(6.93), represents an infinite number of constraints on the family p(x, θ):
for each value of x there is one constraint and one Lagrange multiplier λ(x).
Maximizing S, (6.95), subject to (6.93) and normalization,

δ
{
S + α

[∫
dxdθ p(x, θ)− 1

]
+
∫
dxλ(x)

[∫
dθ p(x, θ)− δ(x− x′)

]}
= 0 ,

(6.96)

yields the joint posterior,

P (x, θ) = q(x, θ)
eλ(x)

Z
, (6.97)

where Z is a normalization constant, and the multiplier λ(x) is determined from
(6.93), ∫

dθ q(x, θ)
eλ(x)

Z
= q(x)

eλ(x)

Z
= δ(x− x′) , (6.98)
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so that the joint posterior is

P (x, θ) = q(x, θ)
δ(x− x′)
q(x)

= δ(x− x′)q(θ|x) , (6.99)

The corresponding marginal posterior probability P (θ) is

P (θ) =
∫
dxP (θ, x) = q(θ|x′) = q(θ)

q(x′|θ)
q(x′)

, (6.100)

which is recognized as Bayes’ rule. Thus, Bayes’ rule is derivable from and
therefore consistent with the ME method.

To summarize: the prior q(x, θ) = q(x)q(θ|x) is updated to the posterior
P (x, θ) = P (x)P (θ|x) where P (x) = δ(x − x′) is fixed by the observed data
while P (θ|x′) = q(θ|x′) remains unchanged. Note that in accordance with the
philosophy that drives the ME method one only updates those aspects of one’s
beliefs for which corrective new evidence has been supplied.

I conclude with a few simple examples that show how ME allows general-
izations of Bayes’ rule. The general background for these generalized Bayes
problems is the familiar one: We want to make inferences about some variables
θ on the basis of information about other variables x and of a relation between
them.

Bayes updating with uncertain data

As before, the prior information consists of our prior beliefs about θ given by
the distribution q(θ) and a likelihood function q(x|θ) so the joint prior q(x, θ)
is known. But now the information about x is much more limited. The data
is uncertain: x is not known. The marginal posterior p(x) is no longer a sharp
delta function but some other known distribution, p(x) = PD(x). This is still
an infinite number of constraints

p(x) =
∫
dθ p(θ, x) = PD(x) , (6.101)

that are easily handled by ME. Maximizing S, (6.95), subject to (6.101) and
normalization, leads to

P (x, θ) = PD(x)q(θ|x) . (6.102)

The corresponding marginal posterior,

P (θ) =
∫
dxPD(x)q(θ|x) = q(θ)

∫
dxPD(x)

q(x|θ)
q(x)

, (6.103)

is known as Jeffrey’s rule which we met earlier in section 2.9.

Bayes updating with information about x moments

Now we have even less information about the “data” x: the marginal distribution
p(x) is not known. All we know about p(x) is an expected value

〈f〉 =
∫
dx p(x)f(x) = F . (6.104)
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Maximizing S, (6.95), subject to (6.104) and normalization,

δ
{
S + α

[∫
dxdθ p(x, θ)− 1

]
+ λ
∫
dxdθ p(x, θ)f(x)− F

}
= 0 , (6.105)

yields the joint posterior,

P (x, θ) = q(x, θ)
eλf(x)

Z
, (6.106)

where the normalization constant Z and the multiplier λ are obtained from

Z =
∫
dx q(x)eλf(x) and

d logZ
dλ

= F . (6.107)

The corresponding marginal posterior is

P (θ) = q(θ)
∫
dx

eλf(x)

Z
q(x|θ) . (6.108)

These two examples (6.103) and (6.108) are sufficiently intuitive that one could
have written them down directly without deploying the full machinery of the ME
method, but they do serve to illustrate the essential compatibility of Bayesian
and Maximum Entropy methods. Next we consider a slightly less trivial exam-
ple.

Updating with data and information about θ moments

Here we follow [Giffin Caticha 2007]. In addition to data about x we have
additional information about θ in the form of a constraint on the expected
value of some function f(θ),∫

dxdθ P (x, θ)f(θ) = 〈f(θ)〉 = F . (6.109)

In the standard Bayesian practice it is possible to impose constraint infor-
mation at the level of the prior, but this information need not be preserved
in the posterior. What we do here that differs from the standard Bayes’ rule
is that we can require that the constraint (6.109) be satisfied by the posterior
distribution.

Maximizing the entropy (6.95) subject to normalization, the data constraint
(6.93), and the moment constraint (6.109) yields the joint posterior,

P (x, θ) = q(x, θ)
eλ(x)+βf(θ)

z
, (6.110)

where z is a normalization constant,

z =
∫
dxdθ eλ(x)+βf(θ)q(x, θ) . (6.111)

The Lagrange multipliers λ(x) are determined from the data constraint, (6.93),

eλ(x)

z
=
δ(x− x′)
Zq(x′)

where Z(β, x′) =
∫
dθ eβf(θ)q(θ|x′) , (6.112)
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so that the joint posterior becomes

P (x, θ) = δ(x− x′)q(θ|x′)e
βf(θ)

Z
. (6.113)

The remaining Lagrange multiplier β is determined by imposing that the pos-
terior P (x, θ) satisfy the constraint (6.109). This yields an implicit equation for
β,

∂ logZ
∂β

= F . (6.114)

Note that since Z = Z(β, x′) the multiplier β will depend on the observed data
x′. Finally, the new marginal distribution for θ is

P (θ) = q(θ|x′)e
βf(θ)

Z
= q(θ)

q(x′|θ)
q(x′)

eβf(θ)

Z
. (6.115)

For β = 0 (no moment constraint) we recover Bayes’ rule. For β 6= 0 Bayes’ rule
is modified by a “canonical” exponential factor yielding an effective likelihood
function.

Updating with uncertain data and an unknown likelihood

The following example [Caticha 2010] derives and generalizes Zellner’s Bayesian
Method of Moments [Zellner 1997]. Usually the relation between x and θ is
given by a known likelihood function q(x|θ) but suppose this relation is not
known. This is the case when the joint prior is so ignorant that information
about x tells us nothing about θ and vise versa; such a prior treats x and θ
as statistically independent, q(x, θ) = q(x)q(θ). Since we have no likelihood
function the information about the relation between θ and the data x must be
supplied elsewhere. One possibility is through a constraint. Suppose that in
addition to normalization and the uncertain data constraint, eq.(6.101), we also
know that the expected value over θ of a function f(x, θ) is

〈f〉x =
∫
dθ p(θ|x)f(x, θ) = F (x) . (6.116)

We seek a posterior P (x, θ) that maximizes (6.95). Introducing Lagrange mul-
tipliers α, λ(x), and γ(x),

0 = δ
{
S + α

[∫
dxdθ p(x, θ)− 1

]
+
∫
dxλ(x)

[∫
dθ p(x, θ)− PD(x)

]
+
∫
dx γ(x)

[∫
dθ p(x, θ)f(x, θ)− PD(x)F (x)

]}
, (6.117)

the variation over p(x, θ) yields

P (x, θ) =
1
ζ
q(x)q(θ) eλ(x)+γ(x)f(x,θ) , (6.118)

where ζ is a normalization constant. The multiplier λ(x) is determined from
(6.101),

P (x) =
∫
dθ P (θ, x) =

1
ζ
q(x)eλ(x)

∫
dθ q(θ) eγ(x)f(x,θ) = PD(x) (6.119)
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then,

P (x, θ) = PD(x)
q(θ) eγ(x)f(x,θ)∫

dθ′ q(θ′) eγ(x)f(x,θ′)
(6.120)

so that

P (θ|x) =
P (x, θ)
P (x)

=
q(θ) eγ(x)f(x,θ)

Z(x)
with Z(x) =

∫
dθ′ q(θ′) eγ(x)f(x,θ′)

(6.121)
The multiplier γ(x) is determined from (6.116)

1
Z(x)

∂Z(x)
∂γ(x)

= F (x) . (6.122)

The corresponding marginal posterior is

P (θ) =
∫
dxPD(x)P (θ|x) = q(θ)

∫
dxPD(x)

eγ(x)f(x,θ)

Z(x)
. (6.123)

In the limit when the data are sharply determined PD(x) = δ(x − x′) the
posterior takes the form of Bayes theorem,

P (θ) = q(θ)
eγ(x′)f(x′,θ)

Z(x′)
, (6.124)

where up to a normalization factor eγ(x′)f(x′,θ) plays the role of the likelihood
and the normalization constant Z plays the role of the evidence.

In conclusion, these examples demonstrate that the method of maximum en-
tropy can fully reproduce the results obtained by the standard Bayesian methods
and allows us to extend them to situations that lie beyond their reach such as
when the likelihood function is not known.

6.7 Commuting and non-commuting constraints

The ME method allows one to process information in the form of constraints.
When we are confronted with several constraints we must be particularly cau-
tious. In what order should they be processed? Or should they be processed
together? The answer depends on the problem at hand. (Here we follow [Giffin
Caticha 2007].)

We refer to constraints as commuting when it makes no difference whether
they are handled simultaneously or sequentially. The most common example
is that of Bayesian updating on the basis of data collected in multiple experi-
ments: for the purpose of inferring θ it is well-known that the order in which
the observed data x′ = {x′1, x′2, . . .} is processed does not matter. (See section
2.9.3) The proof that ME is completely compatible with Bayes’ rule implies that
data constraints implemented through δ functions, as in (6.93), commute. It is
useful to see how this comes about.
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When an experiment is repeated it is common to refer to the value of x in
the first experiment and the value of x in the second experiment. This is a dan-
gerous practice because it obscures the fact that we are actually talking about
two separate variables. We do not deal with a single x but with a composite
x = (x1, x2) and the relevant space is X1 × X2 × Θ. After the first experiment
yields the value x′1, represented by the constraint C1 : P (x1) = δ(x1−x′1), we can
perform a second experiment that yields x′2 and is represented by a second con-
straint C2 : P (x2) = δ(x2 − x′2). These constraints C1 and C2 commute because
they refer to different variables x1 and x2. An experiment, once performed and
its outcome observed, cannot be un-performed ; its result cannot be un-observed
by a second experiment. Thus, imposing the second constraint does not imply
a revision of the first.

In general constraints need not commute and when this is the case the order
in which they are processed is critical. For example, suppose the prior is q and
we receive information in the form of a constraint, C1. To update we maximize
the entropy S[p, q] subject to C1 leading to the posterior P1 as shown in Figure
6.1. Next we receive a second piece of information described by the constraint
C2. At this point we can proceed in essentially two different ways:
(a) Sequential updating. Having processed C1, we use P1 as the current prior
and maximize S[p, P1] subject to the new constraint C2. This leads us to the
posterior Pa.
(b) Simultaneous updating. Use the original prior q and maximize S[p, q]
subject to both constraints C1 and C2 simultaneously. This leads to the poste-
rior Pb.8

To decide which path (a) or (b) is appropriate we must be clear about how the
ME method handles constraints. The ME machinery interprets a constraint such
as C1 in a very mechanical way: all distributions satisfying C1 are in principle
allowed and all distributions violating C1 are ruled out.

Updating to a posterior P1 consists precisely in revising those aspects of the
prior q that disagree with the new constraint C1. However, there is nothing final
about the distribution P1. It is just the best we can do in our current state of
knowledge and we fully expect that future information may require us to revise
it further. Indeed, when new information C2 is received we must reconsider
whether the original C1 remains valid or not. Are all distributions satisfying
the new C2 really allowed, even those that violate C1? If this is the case then
the new C2 takes over and we update from P1 to Pa. The constraint C1 may
still retain some lingering effect on the posterior Pa through P1, but in general
C1 has now become obsolete.

Alternatively, we may decide that the old constraint C1 retains its validity.
The new C2 is not meant to revise C1 but to provide an additional refinement
of the family of allowed posteriors. If this is the case, then the constraint that

8At first sight it might appear that there exists a third possibility of simultaneous updating:
(c) use P1 as the current prior and maximize S[p, P1] subject to both constraints C1 and C2

simultaneously. Fortunately, and this is a valuable check for the consistency of the ME method,
it is easy to show that case (c) is equivalent to case (b). Whether we update from q or from
P1 the selected posterior is Pb.
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Figure 6.1: Illustrating the difference between processing two constraints C1 and
C2 sequentially (q → P1 → Pa) and simultaneously (q → Pb or q → P1 → Pb).

correctly reflects the new information is not C2 but the more restrictive C1 ∧C2.
The two constraints should be processed simultaneously to arrive at the correct
posterior Pb.

To summarize: sequential updating is appropriate when old constraints be-
come obsolete and are superseded by new information; simultaneous updating is
appropriate when old constraints remain valid. The two cases refer to different
states of information and therefore we expect that they will result in different
inferences. These comments are meant to underscore the importance of under-
standing what information is and how it is processed by the ME method; failure
to do so will lead to errors that do not reflect a shortcoming of the ME method
but rather a misapplication of it.

6.8 Conclusion

Any Bayesian account of the notion of information cannot ignore the fact that
Bayesians are concerned with the beliefs of rational agents. The relation be-
tween information and beliefs must be clearly spelled out. The definition we
have proposed — that information is that which constrains rational beliefs and
therefore forces the agent to change its mind — is convenient for two reasons.
First, the information/belief relation very explicit, and second, the definition is
ideally suited for quantitative manipulation using the ME method.
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Dealing with uncertainty requires that one solve two problems. First, one
must represent a state of partial knowledge as a consistent web of interconnected
beliefs. The instrument to do it is probability. Second, when new information
becomes available the beliefs must be updated. The instrument for this is rela-
tive entropy. It is the only candidate for an updating method that is of universal
applicability; that recognizes the value of prior information; and that recognizes
the privileged role played by the notion of independence in science. The re-
sulting general method — the ME method — can handle arbitrary priors and
arbitrary constraints; it includes MaxEnt and Bayes’ rule as special cases; and
it provides its own criterion to assess the extent that non maximum-entropy
distributions are ruled out.

The design of the ME method is essentially complete. However, the fact
that ME operates by ranking distributions according to preference immediately
raises questions about why should distributions that lie very close to the entropy
maximum be totally ruled out; and if not ruled out completely, to what extent
should they contribute to the inference. Do they make any difference? To what
extent can we even distinguish similar distributions? Such matters discussed in
the next two chapters significantly extend the utility of the ME method as a
framework for inference.





Chapter 7

Information Geometry

A main concern of any theory of inference is to pick a probability distribution
from a set of candidates and this immediately raises many questions. What if we
had picked a neighboring distribution? What difference would it make? What
makes two distributions similar? To what extent can we distinguish one dis-
tribution from another? Are there quantitative measures of distinguishability?
The goal of this chapter is to address such questions by introducing methods of
geometry. More specifically the goal will be to introduce a notion of “distance”
between two probability distributions.

A parametric family of probability distributions — distributions pθ(x) la-
beled by parameters θ = (θ1 . . . θn) — forms a statistical manifold, namely, a
space in which each point, labeled by coordinates θ, represents a probability
distribution pθ(x). Generic manifolds do not come with a pre-installed notion
of distance; such additional structure has to be purchased separately in the
form of a metric (that is, the metric tensor). Statistical manifolds are, however,
an exception. One of the main goals of this chapter is to show that statistical
manifolds possess a uniquely natural notion of distance — the so-called infor-
mation metric. And the metric does not merely come as some optional software
that is conveniently pre-installed; it is part of the hardware and it is inevitable.
Geometry is intrinsic to statistical manifolds.

We will not develop the subject in all its possibilities — for a more extensive
treatment see [Amari 1985, Amari Nagaoka 2000] — but we do wish to empha-
size one specific result. Having a notion of distance means we have a notion of
volume and this in turn implies that there is a unique and objective notion of a
prior distribution that is uniform over the space of parameters — equal volumes
are assigned equal prior probabilities. Whether such uniform distributions are
maximally non-informative, or whether they define ignorance, or whether they
reflect the actual prior beliefs of any rational agent, are all important issues but
they are quite beside the specific point that we want to make, namely, that they
are uniform — and this is not a matter of subjective judgment but of objective
mathematical proof.

The distance d` between two neighboring points θ and θ + dθ is given by
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Pythagoras’ theorem, which written in terms of a metric tensor gab, is1

d`2 = gabdθ
adθb . (7.1)

The singular importance of the metric tensor gab derives from a theorem due
to N. Čencov that states that the metric gab on the manifold of probability
distributions is essentially unique: up to an overall scale factor there is only
one metric that takes into account the fact that these are not distances between
simple structureless dots but between probability distributions [Cencov 1981].

7.1 Examples of statistical manifolds

An n-dimensional manifoldM is a smooth, possibly curved, space that is locally
like Rn. What this means is that one can set up a coordinate frame (that is
a map M → Rn) so that each point θ ∈ M is identified or labelled by its
coordinates, θ = (θ1 . . . θn).

A statistical manifold is a manifold in which each point θ represents a prob-
ability distribution pθ(x). Thus, a statistical manifold is a family of probability
distributions pθ(x) that depend on n parameters θ = (θ1 . . . θn); the distribu-
tions are labelled by the parameters θ. As we shall later see a very convenient
notation is pθ(x) = p(x|θ).
The multinomial distributions are given by

p({ni}|θ) =
N !

n1!n2! . . . nm!
(θ1)n1(θ2)n2 . . . (θm)nm , (7.2)

where θ = (θ1, θ2 . . . θm), N =
∑m
i=1ni and

∑m
i=1θ

i = 1. They form a statistical
manifold of dimension (m − 1) called a simplex, Sm−1. The parameters θ =
(θ1, θ2 . . . θm) are a convenient choice of coordinates.
The multivariate Gaussian distributions with means µa, a = 1 . . . n, and
variance σ2,

p(x|µ, σ) =
1

(2πσ2)
exp− 1

2σ2

n∑
a=1

(xa − µa)2 , (7.3)

form an (n+1)-dimensional statistical manifold with coordinates θ = (µ1, . . . , µn, σ2).
The canonical distributions, eq.(4.76),

p(i|F ) =
1
Z
e−λkf

k
i , (7.4)

are derived by maximizing the Shannon entropy S[p] subject to constraints on
the expected values of n functions fki = fk(xi) labeled by superscripts k =
1, 2, . . . n, 〈

fk
〉

=
∑
i

pif
k
i = F k . (7.5)

1The use of superscripts rather than subscripts for the indices labelling coordinates is a
standard and very convenient notational convention in differential geometry. We adopt the
standard Einstein convention of summing over repeated indices whenever one appears as a
superscript and the other as a subscript, that is, gabf

ab =
∑

a

∑
bgabf

ab.
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They form an n-dimensional statistical manifold. As coordinates we can ei-
ther use the expected values F = (F 1 . . . Fn) or, equivalently, the Lagrange
multipliers, λ = (λ1 . . . λn).

7.2 Vectors in curved spaces

In this section and the next we briefly review some basic notions of differential
geometry. First we will be concerned with the notion of a vector. The treatment
is not meant to be rigorous; the goal is to give an intuitive discussion of the
basic ideas and to establish the notation.

Vectors as displacements

Perhaps the most primitive notion of a vector is associated to a displacement
in space and is visualized as an arrow; other vectors such as velocities and
accelerations are defined in terms of such displacements and from these one can
elaborate further to define forces, fields and so on.

This notion of vector as a displacement is useful in flat spaces but it does
not work in a curved space — a bent arrow is not useful. The appropriate gen-
eralization follows from the observation that smoothly curved spaces are locally
flat — by which one means that within a sufficiently small region deviations
from flatness can be neglected. Therefore one can imagine defining infinitesi-
mal displacement vectors, say d~x, and defining other finite vectors, say ~v, by
appropriate multiplication by a suitably large number, say ~v = d~x/dt.

Defined in this way vectors can no longer be thought of as “contained”
in the original curved space. The set of vectors that one can define at any
given point x of the curved manifold constitute the tangent space Tx at x. An
immediate implication is that vectors at different locations x1 and x2 belong to
different spaces, Tx1 and Tx2 , and therefore they cannot be added or subtracted
or even compared without additional structure — we must provide criteria that
“connect” the two tangent spaces and stipulate which vector at Tx2 corresponds
to or is the same as a given vector in Tx1 .

The consequences for physics are enormous. Concepts that are familiar and
basic in flat spaces cannot be defined in the curved spaces of general relativity.
For example, the natural definition of the relative velocity of two distant ob-
jects involves taking the difference of their two velocities but the operation of
subtraction is not available to us. The same happens with other concepts such
as the total momentum or the total energy of an extended system of particles;
the individual momenta live in different tangent spaces and there is no unique
way to add them.

An objection to using displacements as the starting point to the construction
of vectors is that it relies on our intuition of a curved space as being embedded
in a flat space of larger dimension. Such larger spaces need not exist. So, while
visualizing curved spaces in this way can be useful, it is also a good idea to
pursue alternative approaches to the subject.
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Vectors as tangents to curves

An alternative approach is to focus our attention directly on the velocities rather
than on the displacements. Introduce a coordinate frame so that a point x has
coordinates xa with a = 1 . . . n. A parametrized curve x(λ) is represented by n
functions xa(λ) and the vector ~v tangent to the curve x(λ) at the point labeled
by λ is represented by the n-tuple of real numbers {dxa/dλ},

~v ∼ (
dx1

dλ
. . .

dxn

dλ
) . (7.6)

A shortcoming of such a definition is that it relies on the notion of coordi-
nates. But coordinates depend on the choice of frame and therefore so do the
components of vectors. When we change to new coordinates,

xa′ = fa′(x1 . . . xn) , (7.7)

the components of the vector in the new frame change accordingly; they are
given by the chain rule,

~v ∼ (
dx1′

dλ
. . .

dxn′

dλ
) where

dxa′

dλ
=
∂xa′

∂xb
dxb

dλ
(7.8)

The notation we adopt is quite standard: when an index appears repeated as
an upper index and as a lower index it is understood that it is meant to be
summed over; a derivative with respect to an upper index counts as a lower
index, ∂/∂xa = ∂a, and vice versa; and the primed frame is indicated by priming
the indices, not the quantity — that is xa′ and not x′a.

In this approach a vector at the point x is defined as an n-tuple of real
numbers (v1 . . . vn) that under a change of coordinate frame transform according
to

va′ = Xa′
b v

b where Xa′
b =

∂xa′

∂xb
. (7.9)

In other words, the different representations relative to different frames refer to
the same vector; the vector itself is independent of the choice of coordinates.

The coordinate independence can be made more explicit by introducing the
notion of a basis. A coordinate frame singles out n special vectors {~ea} defined
so that the b component of ~ea is

eba = δba . (7.10)

More explicitly,

~e1 ∼ (1, 0 . . . 0), ~e2 ∼ (0, 1, 0 . . . 0), . . . , ~e1 ∼ (0, 0 . . . 1) . (7.11)

Any vector ~v can be expressed in terms of the basis vectors,

~v = va ~ea . (7.12)
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The basis vectors in the primed frame are defined in the same way

ea′b′ = δa′b′ . (7.13)

so that using eq.(7.9) we have

~v = va′ ~ea′ = Xa′
b v

b ~ea′ = vb ~eb , (7.14)

where
~eb = Xa′

b ~ea′ or, equivalently ~ea′ = Xb
a′ ~eb . (7.15)

Eq.(7.14) shows that while the components va and the basis vectors ~ea both
depend on the frame, the vector ~v itself is invariant, and eq.(7.15) shows that
the invariance follows from the fact that components and basis vectors transform
according to inverse matrices. Explicitly,

Xa′
b X

b
c′ =

∂xa′

∂xb
∂xb

∂xc′
=
∂xa′

∂xc′
= δa′c′ . (7.16)

Vectors as directional derivatives

There is yet a third way to introduce vectors. Let φ(x) be a scalar function and
consider its derivative along the parametrized curve x(λ) is given by the chain
rule,

dφ

dλ
=

∂φ

∂xa
dxa

dλ
=

∂φ

∂xa
va (7.17)

Note that dφ/dλ is independent of the choice of coordinates. Indeed, using the
chain rule

dφ

dλ
=

∂φ

∂xa
va =

∂φ

∂xa′
∂xa′

∂xa
va =

∂φ

∂xa′
va′ . (7.18)

But the function φ is arbitrary, therefore,

d

dλ
= va

∂

∂xa
. (7.19)

Note further that the partial derivatives ∂/∂xa transform exactly as the basis
vectors, eq.(7.15)

∂

∂xa
=
∂xa′

∂xa
∂

∂xa′
= Xa′

a

∂

∂xa′
, (7.20)

so that there is a 1 : 1 correspondence between the directional derivative d/dλ
and the vector ~v that is tangent to the curve x(λ). Since mathematical objects
are defined purely through the formal rules of manipulation it is legitimate to
ignore the distinction between the two concepts and set

~v =
d

dλ
and ~ea =

∂

∂xa
(7.21)

Indeed, the “vector” ∂/∂xa is the derivative along those curves parametrized by
µ = xa and defined by keeping the other coordinates constant, xb(µ) = xb(µ0)
for b 6= a.
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From a physical perspective, however, beyond the rules for formal manipu-
lation mathematical objects are also assigned a meaning, an interpretation, and
it is not clear that the two concepts, the derivative d/dλ and the tangent vector
~v, should be considered as physically identical. Nevertheless, we can still take
advantage of the isomorphism to calculate using one picture while providing
interpretations using the other.

7.3 Distance and volume in curved spaces

The notion of a distance between two points is not intrinsic to the manifold; it
has to be supplied as an additional structure — the metric tensor. Statistical
manifolds are a remarkable exception.

The basic intuition derives from the previous observation that curved spaces
are locally flat: at any point x, within a sufficiently small region curvature
effects can be neglected. The idea then is rather simple: within a very small
region in the vicinity of a point x we can always transform from the original
coordinates xa to new coordinates x̂α = fα(x1 . . . xn) that we declare as being
locally Cartesian (here denoted x̂ and with Greek superscripts). An infinitesimal
displacement is given by

dx̂α = Xα
a dx

a where Xα
a =

∂x̂α

∂xa
(7.22)

and the corresponding infinitesimal distance can be computed using Pythagoras
theorem,

d`2 = δαβdx̂
αdx̂β . (7.23)

Changing back to the original frame

d`2 = δαβdx̂
αdx̂β = δαβX

α
a X

β
b dx

adxb . (7.24)

Defining the quantities
gab

def= δαβX
α
a X

β
b , (7.25)

we can write the infinitesimal Pythagoras theorem in the generic initial frame
as

d`2 = gabdx
adxb . (7.26)

The quantities gab are the components of the metric tensor. One can easily
check that under a coordinate transformation gab transform according to

gab = Xa′
a X

b′
a ga′b′ , (7.27)

so that the infinitesimal distance d` is independent of the coordinate frame.
To find the finite length between two points along a curve x(λ) one integrates

along the curve,

` =
∫ λ2

λ1

d` =
∫ λ2

λ1

(
gab

dxa

dλ

dxb

dλ

)1/2

dλ . (7.28)
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Having decided on a measure of distance we can now also measure angles,
areas, volumes and all sorts of other geometrical quantities. To find an expres-
sion for the n-dimensional volume element dVn we use the same trick as before:
Transform to locally Cartesian coordinates so that the volume element is simply
given by the product

dVn = dx̂1dx̂2 . . . dx̂n , (7.29)

and then transform back to the original coordinates xa using eq.(7.22),

dVn =
∣∣∣∣∂x̂∂x

∣∣∣∣ dx1dx2 . . . dxn = |detXα
a | dnx . (7.30)

This is the volume we seek written in terms of the coordinates xa but we still
have to calculate the Jacobian of the transformation, |∂x̂/∂x| = |detXα

a |. The
transformation of the metric from its Euclidean form δαβ to gab, eq.(7.25), is
the product of three matrices. Taking the determinant we get

g
def= det(gab) = [detXα

a ]2 , (7.31)

so that
|det (Xα

a )| = g1/2 . (7.32)

We have succeeded in expressing the volume element in terms of the metric
gab(x) in the original coordinates xa. The answer is

dVn = g1/2(x)dnx . (7.33)

The volume of any extended region on the manifold is

Vn =
∫
dVn =

∫
g1/2(x)dnx . (7.34)

Example: A uniform distribution over such a curved manifold is one which
assigns equal probabilities to equal volumes,

p(x)dnx ∝ g1/2(x)dnx . (7.35)

Example: These ideas are also useful in flat spaces when dealing with non-
Cartesian coordinates. The distance element of three-dimensional flat space in
spherical coordinates (r, θ, φ) is

d`2 = dr2 + r2dθ2 + r2 sin2 θdφ2 , (7.36)

and the corresponding metric tensor is

(gab) =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (7.37)

The volume element is the familiar expression

dV = g1/2drdθdφ = r2 sin θ drdθdφ . (7.38)
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7.4 Derivations of the information metric

The distance d` between two neighboring distributions p(x|θ) and p(x|θ + dθ)
or, equivalently, between the two points θ and θ + dθ, is given by the metric
gab. Our goal is to compute the tensor gab corresponding to p(x|θ). We give
several different derivations because this serves to illuminate the meaning of the
information metric, its interpretation, and ultimately, how it is to be used.

At this point a word of caution (and encouragement) might be called for.
Of course it is possible to be confronted with sufficiently singular families of
distributions that are not smooth manifolds and studying their geometry might
seem a hopeless enterprise. Should we up on geometry? No. The fact that
statistical manifolds can have complicated geometries does not detract from the
value of the methods of information geometry any more than the existence of
surfaces with rugged geometries detracts from the general value of geometry
itself.

7.4.1 Derivation from distinguishability

We seek a quantitative measure of the extent that two distributions p(x|θ) and
p(x|θ+dθ) can be distinguished. The following argument is intuitively appealing
[Rao 1945]. The advantage of this approach is the emphasis on interpretation —
the metric measures distinguishability — the disadvantage is that the argument
does not address the issue of uniqueness of the metric.

Consider the relative difference,

∆ =
p(x|θ + dθ)− p(x|θ)

p(x|θ)
=
∂ log p(x|θ)

∂θa
dθa. (7.39)

The expected value of the relative difference, 〈∆〉, might seem a good candidate,
but it does not work because it vanishes identically,

〈∆〉 =
∫
dx p(x|θ) ∂ log p(x|θ)

∂θa
dθa = dθa

∂

∂θa

∫
dx p(x|θ) = 0. (7.40)

(Depending on the problem by the symbol
∫
dx we mean to represent either

discrete sums or integrals over one or more dimensions.) However, the variance
does not vanish,

d`2 = 〈∆2〉 =
∫
dx p(x|θ) ∂ log p(x|θ)

∂θa
∂ log p(x|θ)

∂θb
dθadθb . (7.41)

This is the measure of distinguishability we seek; a small value of d`2 means
that the relative difference ∆ is small and the points θ and θ + dθ are difficult
to distinguish. It suggests introducing the matrix gab

gab
def=
∫
dx p(x|θ) ∂ log p(x|θ)

∂θa
∂ log p(x|θ)

∂θb
(7.42)
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called the Fisher information matrix [Fisher 25], so that

d`2 = gab dθ
adθb . (7.43)

Up to now no notion of distance has been introduced. Normally one says that
the reason it is difficult to distinguish two points in say, the three dimensional
space we seem to inhabit, is that they happen to be too close together. It is very
tempting to invert this intuition and assert that the two points θ and θ+dθ must
be very close together because they are difficult to distinguish. Furthermore,
note that being a variance, d`2 = 〈∆2〉, the quantity d`2 is positive and vanishes
only when dθ vanishes. Thus it is natural to interpret gab as the metric tensor of
a Riemannian space [Rao 1945]. This is the information metric. The recognition
by Rao that gab is a metric in the space of probability distributions gave rise to
the subject of information geometry [Amari 1985], namely, the application of
geometrical methods to problems in inference and in information theory.

Other useful expressions for the information metric are

gab = 4
∫
dx

∂p1/2(x|θ)
∂θa

∂p1/2(x|θ)
∂θb

= −4
∫
dx p1/2(x|θ) ∂

2p1/2(x|θ)
∂θa∂θb

, (7.44)

and

gab = −
∫
dx p(x|θ) ∂

2 log p(x|θ)
∂θa∂θb

= −〈∂
2 log pθ
∂θa∂θb

〉 . (7.45)

The coordinates θ are quite arbitrary; one can freely relabel the points in the
manifold. It is then easy to check that gab are the components of a tensor and
that the distance d`2 is an invariant, a scalar under coordinate transformations.
Indeed, the transformation

θa′ = fa′(θ1 . . . θn) (7.46)

leads to

dθa =
∂θa

∂θa′
dθa′ and

∂

∂θa
=
∂θa′

∂θa
∂

∂θa′
(7.47)

so that, substituting into eq.(7.42),

gab =
∂θa′

∂θa
∂θb′

∂θb
ga′b′ (7.48)

7.4.2 Derivation from a Euclidean metric

Consider a discrete variable i = 1 . . .m. The possible probability distributions of
i can be labelled by the probability values themselves: a probability distribution
can be specified by a point p with coordinates (p1 . . . pm). The corresponding
statistical manifold is the simplex Sm−1 = {p = (p1 . . . pm) :

∑
ip
i = 1}.
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Next we change to new coordinates ψi =
(
pi
)1/2. In these new coordinates

the equation for the simplex Sm−1 — the normalization condition — reads∑(
ψi
)2 = 1, which we recognize as the equation of an (m−1)-sphere embedded

in an m-dimensional Euclidean space Rm, provided the ψi are interpreted as
Cartesian coordinates. This suggests that we assign the simplest possible metric:
the distance between the distribution p(i|ψ) and its neighbor p(i|ψ+ dψ) is the
Euclidean distance in Rm,

d`2 =
∑
i

(
dψi
)2

= δijdψ
idψj . (7.49)

Distances between more distant distributions are merely angles defined on the
surface of the unit sphere Sm−1. To express d`2 in terms of the original coordi-
nates pi =

(
pi
)2 substitute

dψi =
1
2

dpi

(pi)1/2
(7.50)

to get

d`2 =
1
4
∑
i

(
dpi
)2

pi
=

1
4
δij
pi
dpidpj . (7.51)

Except for an overall constant this is the same information metric (7.43) we
defined earlier! Indeed, consider an n-dimensional subspace (n ≤ m− 1) of the
simplex Sm−1 defined by ψi = ψi(θ1, . . . , θn). The parameters θa, i = 1 . . . n,
can be used as coordinates on the subspace. The Euclidean metric on Rm
induces a metric on the subspace. The distance between p(i|θ) and p(i|θ + dθ)
is

d`2 = δijdψ
idψj = δij

∂ψi

∂θa
dθa

∂ψj

∂θb
dθb

=
1
4
∑
i

pi
∂ log pi

∂θa
∂ log pi

∂θb
dθadθb , (7.52)

which (except for the factor 1/4) we recognize as the discrete version of (7.42)
and (7.43). This interesting result does not constitute a “derivation.” There is
a priori no reason why the coordinates ψi should be singled out as special and
attributed a Euclidean metric. But perhaps it helps to lift the veil of mystery
that might otherwise surround the strange expression (7.42).

7.4.3 Derivation from asymptotic inference

We have two very similar probability distributions. Which one do we prefer?
To decide we collect data in N independent trials. Then the question becomes:
To what extent does the data support one distribution over the other? This is
a typical inference problem. To be explicit consider multinomial distributions
specified by p = (p1 . . . pm). (Here it is slightly more convenient to revert to
the notation where indices appear as subscripts.) Suppose the data consists of
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the numbers (n1 . . . nm) where ni is the number of times that outcome i occurs.
The corresponding frequencies are

fi =
ni
N

with
m∑
i=1

ni = N . (7.53)

The probability of a particular frequency distribution f = (f1 . . . fn) is

PN (f |p) =
N !

n1! . . . nm!
pn1

1 . . . pnmm . (7.54)

For sufficiently largeN and ni we can use Stirling’s approximation [see eq.(6.88)],
to get

PN (f |p) ≈ CN (
∏
i

fi)−1/2 exp(NS[f, p]) (7.55)

where CN is a normalization constant and S[f, p] is the entropy given by eq.(6.11).
The Gibbs inequality S[f, p] ≤ 0, eq.(4.23), shows that for large N the prob-
ability PN (f |p) shows an exceedingly sharp peak. The most likely fi is pi —
this is the weak law of large numbers.

Now we come to the inference: the values of p best supported by the data f
are inferred from Bayes rule,

PN (p|f) ∝ exp(NS[f, p]) , (7.56)

where we have used the fact that for large N the exponential eNS dominates
both the prior and the pre-factor (

∏
fi)−1/2. For large N the data fi supports

the value pi = fi. But the distribution PN (p|f) is not infinitely sharp; there
is some uncertainty. Distributions with parameters p′i = fi + δpi can only be
distinguished from pi = fi provided δpi lies outside a small region of uncertainty
defined roughly by

NS[p, p′] = NS[p, p+ δp] ≈ −1 (7.57)

so that the probability PN (p′|f) is down by e−1 from the maximum. Expanding
to second order,

S[p, p+ δp] = −
∑
i

pi log
pi

pi + δpi
≈ −1

2
∑
i

(δpi)2

pi
(7.58)

Thus, the nearest that two neighboring points p and p+ δp can be and still be
distinguishable in N trials is such that

N

2
∑
i

(δpi)2

pi
≈ 1 . (7.59)

As N increases the resolution δp with which we can distinguish neighboring
distributions improves roughly as 1/

√
N .

We can now define a “statistical” distance on the simplex Sm−1. The argu-
ment below is given in [Wootters 1981]; see also [Balasubramanian 1997]. We
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define the length of a curve between two given points by counting the number
of distinguishable points that one can fit along the curve,

Statistical length = ` = lim
N→∞

1√
N/2

[
number of distinguishable (in N trials)
distributions that fit along the curve

]
(7.60)

Since the number of distinguishable points grows as
√
N it is convenient to

introduce a factor 1/
√
N so that there is a finite limit as N → ∞. The factor√

2 is purely conventional.
Remark: It is not actually necessary to include the

√
2/N factor; this leads to

a notion of statistical length `N defined on the space of N -trial multinomials.
(See section 7.6.)

More explicitly, let the curve p = p(λ) be parametrized by λ. The separation
δλ between two neighboring distributions that can barely be resolved in N trials
is

N

2
∑
i

1
pi

(
dpi
dλ

)2δλ2 ≈ 1 or δλ ≈
(
N

2
∑
i

1
pi

(
dpi
dλ

)2

)−1/2

. (7.61)

The number of distinguishable distributions within the interval dλ is dλ/δλ and
the corresponding statistical length, eq.(7.60), is

d` =
(∑

i

1
pi

(
dpi
dλ

)2

)1/2

dλ =
(∑

i

(dpi)2

pi

)1/2

(7.62)

The length of the curve from λ0 to λ1 is

` =
∫ λ1

λ0

d` where d`2 =
∑
i

(dpi)2

pi
. (7.63)

Thus, the width of the fluctuations is the unit used to define a local mea-
sure of “distance”. To the extent that fluctuations are intrinsic to statistical
problems the geometry they induce is unavoidably hardwired into the statisti-
cal manifolds. The statistical or distinguishability length differs from a possible
Euclidean distance d`2E =

∑
(dpi)2 because the fluctuations are not uniform

over the space Sm−1 which affects our ability to resolve neighboring points.
Equation (7.63) agrees the previous definitions of the information metric.

Consider the n-dimensional subspace (n ≤ m− 1) of the simplex Sm−1 defined
by pi = pi(θ1, . . . , θn). The distance between two neighboring distributions in
this subspace, p(i|θ) and p(i|θ + dθ), is

d`2 =
m∑
i=1

(δpi)2

pi
=

m∑
i,j=1

1
pi

∂pi
∂θa

dθa
∂pj
∂θb

dθb = gabdθ
adθb (7.64)

where
gab =

m∑
i=1

pi
∂ log pi
∂θa

∂ log pi
∂θb

, (7.65)

which is the discrete version of (7.42).
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7.4.4 Derivation from relative entropy

The relation we uncovered above between the information metric and entropy,
eq.(7.58), is not restricted to multinomials; it is quite general. Consider the
entropy of one distribution p(x|θ′) relative to another p(x|θ),

S(θ′, θ) = −
∫
dx p(x|θ′) log

p(x|θ′)
p(x|θ)

. (7.66)

We study how this entropy varies when θ′ = θ + dθ is in the close vicinity of a
given θ. As we had seen in section 4.2 – recall the Gibbs inequality S(θ′, θ) ≤ 0
with equality if and only if θ′ = θ — the entropy S(θ′, θ) attains an absolute
maximum at θ′ = θ . Therefore, the first nonvanishing term in the Taylor
expansion about θ is second order in dθ

S(θ + dθ, θ) =
1
2
∂2S(θ′, θ)
∂θ′a∂θ′b

∣∣∣∣
θ′=θ

dθadθb + . . . ≤ 0 , (7.67)

which suggests defining the distance d` by

S(θ + dθ, θ) = −1
2
d`2 . (7.68)

The second derivative is

−∂
2S(θ′, θ)
∂θ′a∂θ′b

=
∂

∂θ′a

∫
dx [log

p(x|θ′)
p(x|θ)

+ 1]
∂p(x|θ′)
∂θ′b

=
∫
dx [

∂ log p(x|θ′)
∂θ′a

∂p(x|θ′)
∂θ′b

+ [log
p(x|θ′)
p(x|θ)

+ 1]
∂2p(x|θ′)
∂θ′a∂θ′b

] ,

so that, evaluating at θ′ = θ, gives the desired result,

−∂S(θ′, θ)
∂θ′a∂θ′b

∣∣∣∣
θ′=θ

=
∫
dx p(x|θ)∂ log p(x|θ)

∂θa
∂ log p(x|θ)

∂θb
= gab . (7.69)

7.5 Uniqueness of the information metric

The most remarkable fact about the information metric is that it is essentially
unique: except for an constant scale factor it is the only Riemannian metric that
adequately takes into account the nature of the points of a statistical manifold,
namely, that these points are not “structureless”, that they are probability
distributions. This theorem was first proved by N. Čencov within the framework
of category theory [Cencov 1981]. The proof I give below follows the treatment
in [Campbell 1986].

Markov embeddings

Consider a discrete variable i = 1, . . . , n and let the probability of any particular
i be Pr(i) = pi. In practice the limitation to discrete variables is not very
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serious because we can choose an n large enough to approximate a continuous
distribution to any desirable degree. However, it is possible to imagine situations
where the continuum limit is tricky — here we avoid such situations.

The set of numbers p = (p1, . . . pn) can be used as coordinates to define a
point on a statistical manifold. In this particular case the manifold is the (n−1)-
dimensional simplex Sn−1 = {p = (p1, . . . pn) :

∑
pi = 1}. The argument

is, however, considerably simplified by considering instead the n-dimensional
space of non-normalized distributions. This is the positive “octant” R+

n = {p =
(p1, . . . pn) : pi > 0}. The boundary is explicitly avoided so that R+

n is an open
set.

Next we introduce the notion of Markov mappings. The set of values of i
can be grouped or partitioned into M disjoint subsets with 2 ≤ M ≤ n. Let
A = 1 . . .M label the subsets, then the probability of the Ath subset is

Pr(A) = PA =
∑
i∈Ap

i . (7.70)

The space of these coarser probability distributions is the simplex SM−1 =
{P = (P 1, . . . PM ) :

∑
PA = 1}. The corresponding space of non-normalized

distributions if the positive octant R+
M = {P = (P 1, . . . PM ) : PA > 0}.

Thus, the act of partitioning (or grouping, or coarse graining) has produced
a mapping G : R+

n → R+
M with P = G(p) given by eq.(7.70). This is a many-

to-one map; it has no inverse. An interesting map that runs in the opposite
direction R+

M → R+
n can be defined by introducing conditional probabilities.

Let

qiA =
{

Pr(i|A) if i ∈ A
0 if i /∈ A (7.71)

with ∑
i

qiA =
∑
i∈A

Pr(i|A) = 1 . (7.72)

Thus, to each choice of the set of numbers {qiA} we can associate a one-to-one
map Q : R+

m → R+
n with p = Q(P ) defined by

pi = qiAP
A . (7.73)

This is a sum over A but since qiA = 0 unless i ∈ A only one term in the sum is
non-vanishing and the map is clearly invertible. These Q maps, called Markov
mappings, define an embedding of R+

M into R+
n . Markov mappings preserve

normalization, ∑
i

pi =
∑
i

qiAP
A =

∑
A

PA . (7.74)

Example: A coarse graining map G for the case of R+
3 → R+

2 is

G(p1, p2, p3) = (p1, p2 + p3) = (P 1, P 2) . (7.75)

One Markov map Q running in the opposite direction R+
2 → R+

3 could be

Q(P 1, P 2) = (P 1,
1
3
P 2,

2
3
P 3) = (p1, p2, p3) . (7.76)
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This particular map is defined by setting all qiA = 0 except q1
1 = 1, q2

3 = 1/3,
and q3

2 = 2/3.
Example: We can use binomial distributions to analyze the act of tossing a
coin (the outcomes are either heads or tails) or, equally well, the act of throwing
a die (provided we only care about outcomes that are either even or odd). This
amounts to embedding the space of coin distributions (which are binomials,
R+
M with M = 2) as a subspace of the space of die distributions (which are

multinomials, R+
n with n = 6).

To minimize confusion between the two spaces we will use lower case symbols
to refer to the original larger space R+

n and upper case symbols to refer to the
coarse grained embedded space R+

M .
Having introduced the notion of Markov embeddings we can now state the

basic idea behind Campbell’s argument. For a fixed choice of {qiA}, that is for
a fixed Markov map Q, the distribution P and its image p = Q(P ) represent
exactly the same information. In other words, whether we talk about heads/tails
outcomes in coins or about even/odd outcomes in dice, binomials are binomials.
Therefore the map Q is invertible. The Markov image Q(SM−1) of the simplex
SM−1 in Sn−1 is statistically “identical” to SM−1,

Q(SM−1) = SM−1 (7.77)

in the sense that it is just as easy or just as difficult to distinguish the two
distributions P and P + dP as it is to distinguish their images p = Q(P ) and
p + dp = Q(P + dP ). Whatever geometrical relations are assigned to distribu-
tions in SM−1, exactly the same geometrical relations should be assigned to the
corresponding distributions in Q(SM−1). Thus Markov mappings are not just
embeddings, they are congruent embeddings; distances between distributions in
R+
m should match the distances between the corresponding images in R+

n .
Our goal is to find the Riemannian metrics that are invariant under Markov

mappings. It is easy to see why imposing such invariance is extremely restrictive:
The fact that distances computed in R+

M must agree with distances computed in
subspaces of R+

n introduces a constraint on the allowed metric tensors; but we
can always embed R+

M in spaces of larger and larger dimension which imposes
an infinite number of constraints. It could very well have happened that no
Riemannian metric survives such restrictive conditions; it is quite remarkable
that some do and it is even more remarkable that (up to an uninteresting scale
factor) the surviving Riemannian metric is unique.

The invariance of the metric is conveniently expressed as an invariance of
the inner product: inner products among vectors in R+

M should coincide with
the inner products among the corresponding images in R+

n . Let vectors tangent
to R+

M be denoted by
~V = V A

∂

∂PA
= V A ~EA , (7.78)

where {ĒA} is a coordinate basis. The inner product of two such vectors is

〈~V , ~U〉M = g
(M)
AB V AUB (7.79)
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where the metric is
g

(M)
AB

def= 〈 ~EA, ~EB〉M . (7.80)

Similarly, vectors tangent to R+
n are denoted by

~v = vi
∂

∂pi
= vi~ei , (7.81)

and the inner product of two such vectors is

〈~v, ~u〉n = g
(n)
ij v

iuj (7.82)

where
g

(n)
ij

def= 〈~ei, ~ej〉n . (7.83)

The images of vectors ~V tangent to R+
m under Q are obtained from eq.(7.73)

Q∗
∂

∂PA
=

∂pi

∂PA
∂

∂pi
= qiA

∂

∂pi
or Q∗ ~EA = qiA~ei , (7.84)

which leads to
Q∗~V = ~v with vi = qiaV

a . (7.85)

Therefore, the invariance or isometry we want to impose is expressed as

〈~V , ~U〉M = 〈Q∗~V ,Q∗~U〉n = 〈~v, ~u〉n . (7.86)

The Theorem

Let 〈 , 〉M be the inner product on R+
M for any M ∈ {2, 3, . . .}. The theorem

states that the metric is invariant under Markov embeddings if and only if

g
(M)
AB = 〈ēA, ēB〉M = α(|P |) + |P |β(|P |)δAB

PA
, (7.87)

where |P | def=
∑
A P

A, and α and β are smooth (C∞) functions with β > 0 and
α+ β > 0. The proof is given in the next section.

The metric above refers to the positive cone R+
M but ultimately we are

interested in the metric induced on the simplex SM−1 defined by |P | = 1. In
order to find the induced metric we first show that vectors that are tangent to
the simplex SM−1 are such that

|V | def=
∑
A

V A = 0 . (7.88)

Indeed, consider the derivative of any function f = f(|P |) defined on R+
M along

the direction defined by ~V ,

0 = V A
∂f

∂PA
= V A

df

d|P |
∂|P |
∂PA

= |V | df
d|P |

, (7.89)
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where we used ∂|P |/∂PA = 1. Therefore |V | = 0.
Next consider the inner product of any two vectors ~V and ~U ,

〈~V , ~U〉M =
∑
AB

V AUB
(
α(|P |) + |P |β(|P |)δAB

PA

)
= α(|P |)|V ||U |+ |P |β(|P |)

∑
A

V AUA

PA
. (7.90)

For vectors tangent to the simplex SM−1 this simplifies to

〈~V , ~U〉M = β(1)
∑
A

V AUA

PA
. (7.91)

Therefore the choice of the function α(|P |) is irrelevant and the corresponding
metric on SM−1 is determined up to a multiplicative constant β(1) = β

gAB = β
δAB
PA

. (7.92)

It is trivial to check that this is exactly the information metric that was
heuristically suggested earlier. Indeed, changing to new coordinates ψA =
(PA)1/2 reduces the metric to its Euclidean form

d`2 = gAB dPAdPB = 4β δAB dψAdψB , (7.93)

which, incidentally, shows that when the function α(|P |) = 0, the geometry of
the space R+

M is Euclidean. Furthermore, transforming to a generic coordinate
frame ψA = ψA(θ1, . . . , θM ) yields

d`2 = gabdθ
adθb (7.94)

with

gab = β
∑
A

PA
∂ logPA

∂θa
∂ logPA

∂θb
. (7.95)

The Proof

The strategy is to consider special cases of Markov embeddings to determine
what kind of constraints the impose on the metric. First we consider the con-
sequences of invariance under the family of Markov maps Q′ that embed R+

M

into itself. In this case n = M and the action of Q′ is to permute coordinates.
A simple example in which just two coordinates are permuted is

(p1, . . . pa, . . . pb, . . . pM ) = Q′(P 1, . . . PM )

= (P 1, . . . P b, . . . P a, . . . Pm) (7.96)

The required qiA are

qaA = δbA , qbA = δaA and qiA = δiA for A 6= a, b , (7.97)
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so that eq.(7.84), Q′∗ ~EA = qiA~ei, gives

Q′∗ ~Ea = ~eb , Q′∗ ~Eb = ~ea and Q′∗ ~EA = ~eA for A 6= a, b . (7.98)

The invariance
〈 ~EA, ~EB〉M = 〈Q′∗ ~EA, Q′∗ ~EB〉M (7.99)

yields,

g
(M)
aA (P ) = g

(M)
bA (p) and g

(M)
bA (P ) = g

(M)
aA (p) for A 6= a, b (7.100)

g(M)
aa (P ) = g

(M)
bb (p) and g

(M)
bb (P ) = g(M)

aa (p) (7.101)

g
(M)
AB (P ) = g

(M)
AB (p) for A,B 6= a, b .

These conditions are useful for points along the line along the center of R+
M ,

P 1 = P 2 = . . . = PM . Let Pc = (c/M, . . . , c/M) with c = |Pc|; we have
pc = Q′(Pc) = Pc. Using eqs.(7.100) and (7.101) for all choices of the pairs
(a, b) implies

g
(M)
AA (Pc) = FM (c)

g
(M)
AB (Pc) = GM (c) for A 6= B , (7.102)

where FM and GM are some unspecified functions.
Next we consider the family of Markov maps Q′′ : R+

M → R+
kM with k ≥ 2

Q′′(P 1, . . . PM ) = (p1, . . . pkM )

= (
P 1

k
, . . .

P 1

k︸ ︷︷ ︸
k times

,
P 2

k
, . . .

P 2

k︸ ︷︷ ︸
k times

, . . . ,
PM

k
, . . .

PM

k︸ ︷︷ ︸
k times

) . (7.103)

Q′′ is implemented by choosing

qiA =
{

1/k if i ∈ {k(A− 1) + 1, . . . kA}
0 if i /∈ {k(A− 1) + 1, . . . kA} (7.104)

Under the action of Q′′ vectors are transformed according to eq.(7.84),

Q′′∗ ~EA = qiA~ei =
1
k

(
~ek(A−1)+1 + . . .+ ~ekA

)
(7.105)

so that the invariance

〈 ~EA, ~EB〉M = 〈Q′′∗ ~EA, Q′′∗ ~EB〉kM (7.106)

yields,

g
(M)
AB (P ) =

1
k2

kA∑
i, j=k(A−1)+1

g
(kM)
ij (p) . (7.107)
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Along the center lines, Pc = (c/M, . . . , c/M) and pc = (c/kM, . . . , c/kM), equa-
tions (7.102) and (7.107) give

FM (c) =
1
k
FkM (c) +

k − 1
k

GkM (c) (7.108)

and
GM (c) = GkM (c) . (7.109)

But this holds for all values of M and k, therefore GM (c) = α(c) where α is a
function independent of M . Furthermore, eq.(7.108) can be rewritten as

1
M

[FM (c)− α(c)] =
1
kM

[FkM (c)− α(c)] = β(c) , (7.110)

where β(c) is a function independent of the integer M . Indeed, for any two
integers M1 and M2 we have

1
M1

[FM1(c)− α(c)] =
1

M1M2
[FM1M2(c)− α(c)] =

1
M2

[FM2(c)− α(c)] .

(7.111)
Therefore,

FM (c) = α(c) +Mβ(c) , (7.112)

and for points along the center line,

g
(M)
AB (Pc) = α(c) +Mβ(c)δAB . (7.113)

So far the invariance under the special Markov embeddings Q′ and Q′′ has
allowed us to find the metric of R+

M for arbitrary M but only along the center
line P = Pc for any c > 0. To find the metric g(M)

AB (P ) at any arbitrary P ∈ R+
M

we show that it is possible to cleverly choose the embedding Q′′′ : R+
M → R+

n

so that the image of P can be brought arbitrarily close to the center line of
R+
n , Q′′′(P ) ≈ pc, where the metric is known. Indeed, consider the embeddings

Q′′′ : R+
M → R+

n defined by

Q′′′(P 1, . . . PM ) = (
P 1

k1
, . . .

P 1

k1︸ ︷︷ ︸
k1 times

,
P 2

k2
, . . .

P 2

k2︸ ︷︷ ︸
k2 times

, . . . ,
PM

kM
, . . .

PM

kM︸ ︷︷ ︸
km times

) . (7.114)

Q′′′ is implemented by choosing

qiA =
{

1/kA if i ∈ {(k1 + . . .+ kA−1 + 1), (k1 + . . .+ kA−1 + 2) . . . , (k1 + . . .+ kA)}
0 if i /∈ {(k1 + . . .+ kA−1 + 1), (k1 + . . .+ kA−1 + 2) . . . , (k1 + . . .+ kA)}

(7.115)
Next note that any point P in R+

M can be arbitrarily well approximated by
points of the “rational” form

P =
(
ck1

n
,
ck2

n
, . . .

ckM
n

)
, (7.116)



192 Information Geometry

where the ks are positive integers and
∑
kA = n and |P | = c. For these rational

points the action of Q′′′ is

Q′′′(P 1, . . . PM ) = qiAP
A =

( c
n
,
c

n
, . . .

c

n

)
= pc (7.117)

which lies along the center line of R+
n where the metric is known, eq.(7.113).

The action of Q′′′ on vectors, eq.(7.84), gives

Q′′′∗ ~EA = qiA~ei =
1
kA

(
~ek1+...+kA−1+1 + . . .+ ~ek1+...+kA

)
. (7.118)

Using eq.(7.113) the invariance

〈 ~EA, ~EB〉M = 〈Q′′′∗ ~EA, Q′′′∗ ~EB〉n (7.119)

yields, for A = B,

g
(M)
AA (P ) =

1
(kA)2

k1+...+kA∑
i, j=k1+...+kA−1+1

g
(n)
ij (pc)

=
1

(kA)2

k1+...+kA∑
i, j=k1+...+kA−1+1

[α(c) + nβ(c)δij ]

=
1

(kA)2

[
(kA)2

α(c) + kAnβ(c)
]

= α(c) +
n

kA
β(c) = α(c) +

cβ(c)
PA

, (7.120)

where we used eq.(7.116), PA = ckA/n. Similarly, for A 6= B,

g
(M)
AB (P ) =

1
kAkB

k1+...+kA∑
i=k1+...+kA−1+1

k1+...+kB∑
j=k1+...+kB−1+1

g
(n)
ij (pc) (7.121)

=
1

kAkB
kAkBα(c) = α(c) . (7.122)

Therefore,

g
(M)
AB = 〈 ~EA, ~EB〉M = α(c) + cβ(c)

δAB
PA

, (7.123)

with c = |P |. This almost concludes the proof.
The sign conditions on α and β follow from the positive-definiteness of inner

products. Using eq.(7.90),

〈~V , ~V 〉 = α|V |2 + |P |β
∑
A

(
V A
)2

PA
, (7.124)



7.5 Uniqueness of the information metric 193

we see that for vectors with |V | = 0, 〈~V , ~V 〉 ≥ 0 implies that β > 0, while for
vectors with V A = KPA, where K is any constant we have

〈~V , ~V 〉 = K2|P |2 (α+ β) > 0⇒ α+ β > 0 . (7.125)

Conversely, we show that if these sign conditions are satisfied then 〈~V , ~V 〉 ≥ 0
for all vectors. Using Cauchy’s inequality,(∑

i

x2
i

)(∑
i

y2
i

)
≥
(∑

i

‖xiyi‖
)2

, (7.126)

where ‖.‖ denotes the modulus, we have(∑
A

PA
)(∑

B

(
V B
)2

PB

)
≥
(∑
A

∥∥V A∥∥)2

≥
(∑
A

V A
)2

. (7.127)

Therefore,

〈~V , ~V 〉 = α|V |2 + |P |β
∑
A

(
V A
)2

PA
≥ |V |2(α+ β) ≥ 0 , (7.128)

with equality if and only if all V A = 0.
We have just proved that for invariance under Markov embeddings it is

necessary that the metrics be of the form (7.123). It remains to prove the
converse, that this condition is sufficient. This is much easier. Indeed,

〈Q∗ ~EA, Q∗ ~EB〉n = qiAq
j
B〈ēi, ēj〉n

=
∑
ij

qiAq
j
B

[
α(|p|) + |p|β(|p|)δij

pi

]
. (7.129)

But as noted earlier, Markov mappings pi = qiAP
A are such that

∑
i q
i
A = 1 and

they preserve normalization |P | = |p|, therefore

〈Q∗ ~EA, Q∗ ~EB〉n = α(|P |) + |P |β(|P |)
∑
i

qiAq
i
B

pi
. (7.130)

Furthermore, since qiA = 0 unless i ∈ A,

∑
i

qiAq
i
B

pi
= δAB

∑
i

qiA
PA

=
δAB
PA

. (7.131)

which finally leads to

〈Q∗ ~EA, Q∗ ~EB〉n = α(|P |) + |P |β(|P |)δAB
PA

= 〈ēA, ēB〉M (7.132)

which concludes the proof.
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7.6 The metric for some common distributions

Multinomial distributions

The statistical manifold of multinomials,

PN (n|θ) =
N !

n1! . . . nm!
θn1

1 . . . θnmm , (7.133)

where

n = (n1 . . . nm) with
m∑
i=1

ni = N and
m∑
i=1

θi = 1 , (7.134)

is the simplex Sm−1. The metric is given by eq.(7.65),

gij =
∑
n
PN

∂ logPN
∂θi

∂ logPN
∂θj

where 1 ≤ i, j ≤ m− 1 . (7.135)

The result is

gij =
〈

(
ni
θi
− nm
θm

)(
nj
θj
− nm
θm

)
〉
, (7.136)

which, on computing the various correlations, gives

gij =
N

θi
δij +

N

θm
where 1 ≤ i, j ≤ m− 1 . (7.137)

A somewhat simpler expression can be obtained by extending the range of the
indices to include i, j = m. This is done as follows. The distance d` between
neighboring distributions is

d`2 =
m−1∑
i,j=1

(
N

θi
δij +

N

θm
)dθidθj . (7.138)

Using
m∑
i=1

θi = 1 =⇒
m∑
i=1

dθi = 0 . (7.139)

the second sum can be written as

N

θm

m−1∑
i,j=1

dθi
m−1∑
i,j=1

dθj =
N

θm
(dθm)2 . (7.140)

Therefore,

d`2 =
m∑

i,j=1

gijdθidθj with gij =
N

θi
δij . (7.141)

Remark: As we saw in the previous section, eq.(7.95), the information metric
is defined up to an overall multiplicative factor. This arbitrariness amounts to a
choice of units. We see here that the distance d` between N -trial multinomials
contains a factor

√
N . It is a matter of convention whether we decide to include
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such factors or not — that is, whether we want to adopt the same length scale
when discussing two different statistical manifolds such as S(N)

m−1 and S(N ′)
m−1.

A uniform distribution over the simplex Sm−1 is one which assigns equal
probabilities to equal volumes,

P (θ)dm−1θ ∝ g1/2dm−1θ with g =
Nm−1

θ1θ2 . . . θm
(7.142)

In the particular case of binomial distributions m = 2 with θ1 = θ and
θ2 = 1− θ the results above become

g = g11 =
N

θ(1− θ)
(7.143)

so that the uniform distribution over θ (with 0 < θ < 1) is

P (θ)dθ ∝ d` = [
N

θ(1− θ)
]1/2dθ . (7.144)

Canonical distributions

Let z denote the microstates of a system (e.g., points in phase space) and let
m(z) be the underlying measure (e.g., a uniform density on phase space). The
space of macrostates is a statistical manifold: each macrostate is a canonical
distribution (see sections 4.9 and 5.4) obtained by maximizing entropy S[p,m]
subject to n constraints 〈fa〉 = F a for a = 1 . . . n, plus normalization,

p(z|F ) =
1

Z(λ)
m(z)e−λaf

a(z) where Z(λ) =
∫
dz m(z)e−λaf

a(z) . (7.145)

The set of numbers F = (F 1 . . . Fn) determines one point p(z|F ) on the statis-
tical manifold so we can use the F a as coordinates.

First, here are some useful facts about canonical distributions. The Lagrange
multipliers λa are implicitly determined by

〈fa〉 = F a = −∂ logZ
∂λa

, (7.146)

and it is straightforward to show that a further derivative with respect to λb
yields the covariance matrix. Indeed,

−∂F
a

∂λb
=

∂

∂λb
(

1
Z

∂Z

∂λa
) = − 1

Z2

∂Z

∂λa

∂Z

∂λb
+

1
Z

∂2Z

∂λa∂λb
(7.147)

= −F aF b + 〈faf b〉 . (7.148)

Therefore

Cab
def= 〈(fa − F a)(f b − F b)〉 = −∂F

a

∂λb
. (7.149)



196 Information Geometry

Furthermore, using the chain rule

δca =
∂λa
∂λc

=
∂λa
∂F b

∂F b

∂λc
, (7.150)

we see that the matrix

Cab = − ∂λa
∂F b

(7.151)

is the inverse of the covariance matrix,

CabC
bc = δca .

The information metric is

gab =
∫
dz p(z|F )

∂ log p(z|F )
∂F a

∂ log p(z|F )
∂F b

=
∂λc
∂F a

∂λd
∂F b

∫
dz p

∂ log p
∂λc

∂ log p
∂λd

. (7.152)

Using eqs.(7.145) and (7.146),

∂ log p(z|F )
∂λc

= F c − f c(z) (7.153)

therefore,

gab = CcaCdbC
cd =⇒ gab = Cab , (7.154)

so that the metric tensor gab is the inverse of the covariance matrix Cab.
Instead of F a we could use the Lagrange multipliers λa themselves as coor-

dinates. Then the information metric is the covariance matrix,

gab =
∫
dz p(z|λ)

∂ log p(z|λ)
∂λa

∂ log p(z|λ)
∂λb

= Cab . (7.155)

The distance d` between neighboring distributions can then be written in either
of two equivalent forms,

d`2 = gabdF
adF b = gabdλadλb . (7.156)

The uniform distribution over the space of macrostates assigns equal prob-
abilities to equal volumes,

P (F )dnF ∝ C−1/2dnF or P ′(λ)dnλ ∝ C1/2dnλ , (7.157)

where C = detCab.
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Gaussian distributions

Gaussian distributions are a special case of canonical distributions — they max-
imize entropy subject to constraints on mean values and correlations. Consider
Gaussian distributions in D dimensions,

p(x|µ,C) =
c1/2

(2π)D/2
exp

[
−1

2
Cij(xi − µi)(xj − µj)

]
, (7.158)

where 1 ≤ i ≤ D, Cij is the inverse of the correlation matrix, and c = detCij .
The mean values µi are D parameters µi, while the symmetric Cij matrix is
an additional 1

2D(D + 1) parameters. Thus the dimension of the statistical
manifold is D + 1

2D(D + 1).
Calculating the information distance between p(x|µ,C) and p(x|µ+ dµ,C +

dC) is a matter of keeping track of all the indices involved. Skipping all details,
the result is

d`2 = gijdµ
idµj + gijk dCijdµ

k + gij kldCijdCkl , (7.159)

where

gij = Cij , gijk = 0 , and gij kl =
1
4

(CikCjl + CilCjk) , (7.160)

where Cik is the correlation matrix, that is, CikCkj = δij . Therefore,

d`2 = Cijdx
idxj +

1
2
CikCjldCijdCkl . (7.161)

To conclude we consider a couple of special cases. For Gaussians that differ
only in their means the information distance between p(x|µ,C) and p(x|µ +
dµ,C) is obtained setting dCij = 0, that is,

d`2 = Cijdx
idxj , (7.162)

which is an instance of eq.(7.154).
Finally, for spherically symmetric Gaussians,

p(x|µ, σ) =
1

(2πσ2)D/2
exp

[
− 1

2σ2
δij(xi − µi)(xj − µj)

]
. (7.163)

The covariance matrix and its inverse are both diagonal and proportional to the
unit matrix,

Cij =
1
σ2
δij , Cij = σ2δij , and c = σ−2D . (7.164)

Using

dCij = d
1
σ2
δij = −2δij

σ3
dσ (7.165)
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in eq.(7.161), the induced information metric is

d`2 =
1
σ2
δijdµ

idµj +
1
2
σ4δikδjl

2δij
σ3

dσ
2δkl
σ3

dσ (7.166)

which, using
δikδjlδijδkl = δkj δ

j
k = δkk = D , (7.167)

simplifies to

d`2 =
δij
σ2
dµidµj +

2D
σ2

(dσ)2 . (7.168)



Chapter 8

Entropy IV: Entropic
Inference

There is one last issue that must be addressed before one can claim that the
design of the method of entropic inference is more or less complete. Higher
entropy represents higher preference but there is nothing in the previous argu-
ments to tell us by how much. Suppose the maximum of the entropy function is
not particularly sharp, are we really confident that distributions with entropy
close to the maximum are totally ruled out? We want a quantitative measure
of the extent to which distributions with lower entropy are ruled out. Or, to
phrase this question differently: We can rank probability distributions p rela-
tive to a prior q according to the relative entropy S[p, q] but any monotonic
function of the relative entropy will accomplish the same goal. Does twice the
entropy represent twice the preference or four times as much? Can we quantify
‘preference’? The discussion below follows [Caticha 2000].

8.1 Deviations from maximum entropy

The problem is to update from a prior q(x) given information specified by cer-
tain constraints. The constraints specify a family of candidate distributions
pθ(x) = p(x|θ) which can be conveniently labelled with a finite number of pa-
rameters θi, i = 1 . . . n. Thus, the parameters θ are coordinates on the statis-
tical manifold specified by the constraints. The distributions in this manifold
are ranked according to their entropy S[pθ, q] = S(θ) and the chosen posterior
is the distribution p(x|θ0) that maximizes the entropy S(θ).

The question we now address concerns the extent to which p(x|θ0) should
be preferred over other distributions with lower entropy or, to put it differently:
To what extent is it rational to believe that the selected value ought to be the
entropy maximum θ0 rather than any other value θ? This is a question about
the probability p(θ) of various values of θ.

The original problem which led us to design the maximum entropy method
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was to assign a probability to x; we now see that the full problem is to assign
probabilities to both x and θ. We are concerned not just with p(x) but rather
with the joint distribution pJ(x, θ); the universe of discourse has been expanded
from X (the space of xs) to the product space X×Θ (Θ is the space of parameters
θ).

To determine the joint distribution pJ(x, θ) we make use of essentially the
only method at our disposal — the ME method itself — but this requires that
we address the standard two preliminary questions: first, what is the prior
distribution, what do we know about x and θ before we receive information
about the constraints? And second, what is this new information that constrains
the allowed pJ(x, θ)?

This first question is the more subtle one: when we know absolutely nothing
about the θs we know neither their physical meaning nor whether there is any
relation to the xs. A joint prior that reflects this lack of correlations is a product,
qJ(x, θ) = q(x)µ(θ). We will assume that the prior over x is known — it is the
same prior we had used when we updated from q(x) to p(x|θ0). But we are
not totally ignorant about the θs: we know that they label points on some as
yet unspecified statistical manifold Θ. Then there exists a natural measure of
distance in the space Θ. It is given by the information metric gij introduced
in the previous chapter and the corresponding volume elements are given by
g1/2(θ)dnθ, where g(θ) is the determinant of the metric. The uniform prior
for θ, which assigns equal probabilities to equal volumes, is proportional to
g1/2(θ) and therefore we choose µ(θ) = g1/2(θ). Therefore, the joint prior is
qJ(x, θ) = q(x)g1/2(θ).

Next we tackle the second question: what are the constraints on the allowed
joint distributions pJ(x, θ)? Consider the space of all joint distributions. To
each choice of the functional form of p(x|θ) (for example, whether we talk about
Gaussians, Boltzmann-Gibbs distributions, or something else) there corresponds
a different subspace defined by distributions of the form pJ(x, θ) = p(θ)p(x|θ).
The crucial constraint is that which specifies the subspace by specifying the
particular functional form of p(x|θ). This defines the meaning to the θs and
also fixes the prior g1/2(θ) on the relevant subspace.

To select the preferred joint distribution P (x, θ) we maximize the joint en-
tropy S[pJ , qJ ] over all distributions of the form pJ(x, θ) = p(θ)p(x|θ) by varying
with respect to p(θ) with p(x|θ) fixed. It is convenient to write the entropy as

S[pJ , qJ ] = −
∫
dx dθ p(θ)p(x|θ) log

p(θ)p(x|θ)
g1/2(θ)q(x)

= S[p, g1/2] +
∫
dθ p(θ)S(θ), (8.1)

where

S[p, g1/2] = −
∫

dθ p(θ) log
p(θ)
g1/2(θ)

(8.2)

and

S(θ) = −
∫

dx p(x|θ) log
p(x|θ)
q(x)

. (8.3)
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The notation shows that S[p, g1/2] is a functional of p(θ) while S(θ) is a function
of θ (it is also a functional of p(x|θ)). Maximizing (8.1) with respect to variations
δp(θ) such that

∫
dθ p(θ) = 1, yields

0 =
∫

dθ

(
− log

p(θ)
g1/2(θ)

+ S(θ) + log ζ
)
δp(θ) , (8.4)

where the required Lagrange multiplier has been written as 1− log ζ. Therefore
the probability that the value of θ should lie within the small volume g1/2(θ)dnθ
is

P (θ)dnθ =
1
ζ
eS(θ)g1/2(θ)dnθ with ζ =

∫
dnθ g1/2(θ) eS(θ). (8.5)

Equation (8.5) is the result we seek. It tells us that, as expected, the preferred
value of θ is the value θ0 that maximizes the entropy S(θ), eq.(8.3), because
this maximizes the scalar probability density expS(θ). But it also tells us the
degree to which values of θ away from the maximum are ruled out.
Remark: The density expS(θ) is a scalar function and the presence of the
Jacobian factor g1/2(θ) makes Eq.(8.5) manifestly invariant under changes of
the coordinates θi in the space Θ.

8.2 The ME method

Back in section 6.2.4 we summarized the method of maximum entropy as follows:

The ME method: We want to update from a prior distribution q to a poste-
rior distribution when there is new information in the form of constraints
C that specify a family {p} of allowed posteriors. The posterior is selected
through a ranking scheme that recognizes the value of prior information
and the privileged role of independence. Within the family {p} the pre-
ferred posterior P is that which maximizes the relative entropy S[p, q]
subject to the available constraints. No interpretation for S[p, q] is given
and none is needed.

The discussion of the previous section allows us to refine our understanding of
the method. ME is not an all-or-nothing recommendation to pick the single
distribution that maximizes entropy and reject all others. The ME method is
more nuanced: in principle all distributions within the constraint manifold ought
to be included in the analysis; they contribute in proportion to the exponential
of their entropy and this turns out to be significant in situations where the
entropy maximum is not particularly sharp.

Going back to the original problem of updating from the prior q(x) given
information that specifies the manifold {p(x|θ)}, the preferred update within
the family {p(x|θ)} is p(x|θ0), but to the extent that other values of θ are not
totally ruled out, a better update is obtained marginalizing the joint posterior
PJ(x, θ) = P (θ)p(x|θ) over θ,

P (x) =
∫
dnθ P (θ)p(x|θ) =

∫
dnθ g1/2(θ)

eS(θ)

ζ
p(x|θ) . (8.6)
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In situations where the entropy maximum at θ0 is very sharp we recover the old
result,

P (x) ≈ p(x|θ0) . (8.7)

When the entropy maximum is not very sharp eq.(8.6) is the more honest up-
date.

The discussion in section 8.1 is itself an application of the same old ME
method discussed in section 6.2.4, not on the original space X , but on the
enlarged product space X × Θ. Thus, adopting the improved posterior (8.6)
does not reflect a renunciation of the old ME method — only a refinement. To
the summary description of the ME method above we can add the single line:

The ME method can be deployed to assess its own limitations and to take
the appropriate corrective measures.

Remark: Physical applications of the extended ME method are ubiquitous.
For macroscopic systems the preference for the distribution that maximizes
S(θ) can be overwhelming but for small systems such fluctuations about the
maximum are common. Thus, violations of the second law of thermodynamics
can be seen everywhere — provided we know where to look. Indeed, as we shall
see in the next section, eq.(8.5) agrees with Einstein’s theory of thermodynamic
fluctuations and extends it beyond the regime of small fluctuations. Another
important application, to be developed in chapter 9, is quantum mechanics —
the ultimate theory of small systems.

We conclude this section by pointing out that there are a couple of interesting
points of analogy between the pair of {maximum likelihood, Bayesian} methods
and the corresponding pair of {MaxEnt, ME} methods. The first point is that
maximizing the likelihood function L(θ|x) def= p(x|θ) selects a single preferred
value of θ but no measure is given of the extent to which other values of θ
are ruled out. The method of maximum likelihood does not provide us with a
distribution for θ – the likelihood function L(θ|x) is not a probability distribution
for θ. Similarly, maximizing entropy as prescribed by the MaxEnt method yields
a single preferred value of the label θ but MaxEnt fails to address the question
of the extent to which other values of θ are ruled out. The second point of
analogy is that neither the maximum likelihood nor the MaxEnt methods are
capable of handling information contained in prior distributions, while both
Bayesian and ME methods can. The latter analogy is to be expected since
neither the maximum likelihood nor the MaxEnt methods were designed for
updating probabilities.

8.3 An application to fluctuations

The starting point for the standard formulation of the theory of fluctuations in
thermodynamic systems (see [Landau 1977, Callen 1985]) is Einstein’s inversion
of Boltzmann’s formula S = k logW to obtain the probability of a fluctuation
in the form W ∼ expS/k. A careful justification, however, reveals a number of



8.3 An application to fluctuations 203

approximations which, for most purposes, are legitimate and work very well. A
re-examination of fluctuation theory from the point of view of ME is, however,
valuable. Our general conclusion is that the ME point of view allows exact
formulations; in fact, it is clear that deviations from the canonical predictions
can be expected, although in general they will be negligible. Other advantages of
the ME approach include the explicit covariance under changes of coordinates,
the absence of restrictions to the vicinity of equilibrium or to large systems, and
the conceptual ease with which one deals with fluctuations of both the extensive
as well as their conjugate intensive variables. [Caticha 2000]

This last point is an important one: within the canonical formalism (section
5.4) the extensive variables such as energy are uncertain while the intensive ones
such as the temperature or the Lagrange multiplier β are fixed parameters, they
do not fluctuate. There are, however, several contexts in which it makes sense
to talk about fluctuations of the conjugate variables. Below we discuss the
standard scenario of an open system that can exchange say, energy, with its
environment.

Consider the usual setting of a thermodynamical system with microstates
labelled by z. Let m(z)dz be the number of microstates within the range dz.
According to the postulate of “equal a priori probabilities” we choose a uniform
prior distribution proportional to the density of states m(z). The canonical
ME distribution obtained by maximizing S[p,m] subject to constraints on the
expected values

〈
fk
〉

= F k of relevant variables fk(z), is

p(z|F ) =
1

Z(λ)
m(z) e−λkf

k(z) with Z(λ) =
∫
dz m(z) e−λkf

k(z) , (8.8)

and the corresponding entropy is

S(F ) = logZ(λ) + λkF
k . (8.9)

Fluctuations of the variables fk(z) or of any other function of the microstate
z are usually computed in terms of the various moments of p(z|F ). Within this
context all expected values such as the constraints

〈
fk
〉

= F k and the entropy
S(F ) itself are fixed; they do not fluctuate. The corresponding conjugate vari-
ables, the Lagrange multipliers λk = ∂S/∂F k, eq.(4.87), do not fluctuate either.

The standard way to make sense of λ fluctuations is to couple the system of
interest to a second system, a bath, and allow exchanges of the quantities fk. All
quantities referring to the bath will be denoted by primes: the microstates are
z′, the density of states is m′(z′), and the variables are f ′k(z′), etc. Even though
the overall expected value

〈
fk + f ′k

〉
= F kT of the combined system plus bath is

fixed, the individual expected values
〈
fk
〉

= F k and
〈
f ′k
〉

= F ′k = F kT −F k are
allowed to fluctuate. The ME distribution p0(z, z′) that best reflects the prior
information contained in m(z) and m′(z′) updated by information on the total
F kT is

p0(z, z′) =
1
Z0

m(z)m′(z′) e−λ0α(fk(z)+f ′k(z′)). (8.10)
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But distributions of lower entropy are not totally ruled out; to explore the
possibility that the quantities F kT are distributed between the two systems in a
less than optimal way we consider the joint distributions pJ(z, z′, F ) constrained
to the form

pJ(z, z′, F ) = p(F )p(z|F )p(z′|FT − F ), (8.11)

where p(z|F ) is the canonical distribution in eq.(8.8), its entropy is eq.(8.9) and
analogous expressions hold for the primed quantities.

We are now ready to write down the probability that the value of F fluctuates
into a small volume g1/2(F )dF . From eq.(8.5) we have

P (F )dF =
1
ζ
eST (F )g1/2(F )dF, (8.12)

where ζ is a normalization constant and the entropy ST (F ) of the system plus
the bath is

ST (F ) = S(F ) + S′(FT − F ). (8.13)

The formalism simplifies considerably when the bath is large enough that ex-
changes of F do not affect it, and λ′ remains fixed at λ0. Then

S′(FT − F ) = logZ ′(λ0) + λ0k

(
F kT − F k

)
= const−λ0kF

k. (8.14)

It remains to calculate the determinant g(F ) of the information metric given
by eq.(7.69),

gij = −∂
2ST (Ḟ , F )
∂Ḟ i∂Ḟ j

= − ∂2

∂Ḟ i∂Ḟ j

[
S(Ḟ , F ) + S′(FT − Ḟ , FT − F )

]
(8.15)

where the dot indicates that the derivatives act on the first argument. The first
term on the right is

∂2S(Ḟ , F )
∂Ḟ i∂Ḟ j

= − ∂2

∂Ḟ i∂Ḟ j

∫
dz p(z|Ḟ ) log

p(z|Ḟ )
m(z)

m(z)
p(z|F )

=
∂2S(F )
∂F i∂F j

+
∫

dz
∂2p(z|F )
∂F i∂F j

log
p(z|F )
m(z)

. (8.16)

To calculate the integral on the right use eq.(8.8) written in the form

log
p(z|F )
m(z)

= − logZ(λ)− λkfk(z) , (8.17)

so that the integral vanishes,

− logZ(λ)
∂2

∂F i∂F j

∫
dz p(z|F ) − λk

∂2

∂F i∂F j

∫
dz p(z|F )fk(z) = 0 . (8.18)

Similarly,

∂2

∂Ḟ i∂Ḟ j
S′(FT − Ḟ , FT − F ) =

∂2S′(FT − F )
∂F i∂F j

(8.19)

+
∫

dz′
∂2p(z′|FT − F )

∂F i∂F j
log

p(z′|FT − F )
m′(z′)
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and here, using eq.(8.14), both terms vanish. Therefore

gij = − ∂
2S(F )

∂F i∂F j
. (8.20)

We conclude that the probability that the value of F fluctuates into a small
volume g1/2(F )dF becomes

p(F )dF =
1
ζ
eS(F )−λ0kF

k

g1/2(F )dF . (8.21)

This equation is exact.
An important difference with the usual theory stems from the presence of

the Jacobian factor g1/2(F ). This is required by coordinate invariance and can
lead to small deviations from the canonical predictions. The quantities 〈λk〉 and〈
F k
〉

may be close but will not in general coincide with the quantities λ0k and F k0
at the point where the scalar probability density attains its maximum. For most
thermodynamic systems however the maximum is very sharp. In its vicinity the
Jacobian can be considered constant, and one obtains the usual results [Landau
1977], namely, that the probability distribution for the fluctuations is given by
the exponential of a Legendre transform of the entropy.

The remaining difficulties are purely computational and of the kind that
can in general be tackled systematically using the method of steepest descent
to evaluate the appropriate generating function. Since we are not interested
in variables referring to the bath we can integrate Eq.(8.11) over z′, and use
the distribution P (z, F ) = p(F )p(z|F ) to compute various moments. As an
example, the correlation between δλi = λi − 〈λi〉 and δf j = f j −

〈
f j
〉

or
δF j = F j −

〈
F j
〉

is〈
δλiδf

j
〉

=
〈
δλiδF

j
〉

= −∂ 〈λi〉
∂λ0j

+ (λ0i − 〈λi〉)
(
F j0 −

〈
F j
〉)
. (8.22)

When the differences λ0i−〈λi〉 or F j0 −
〈
F j
〉

are negligible one obtains the usual
expression, 〈

δλiδf
j
〉
≈ −δji . (8.23)

8.4 Avoiding pitfalls – II

Over the years a number of objections and paradoxes have been raised against
the method of maximum entropy. Some were discussed in chapter 4. Here we
discuss some objections of the type discussed in [Shimony 1985] and [Seidenfeld
1986]; see also [van Fraasen 1981 and 1986].1 I believe some of these objections
were quite legitimate at the time they were raised. They uncovered conceptual
limitations with the old MaxEnt as it was understood at the time. I also believe
that in the intervening decades our understanding of entropic inference has
evolved to the point that all these concerns can now be addressed satisfactorily.

1Other objections raised by these authors, such as the compatibility of Bayesian and en-
tropic methods, have been addressed elsewhere in these lectures.
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8.4.1 The three-sided die

To set the stage for the issues involved consider a three-sided die. The die
has three faces labeled by the number of spots i = 1, 2, 3 with probabilities
{θ1, θ2, θ3} = θ. The space of distributions is the simplex S2 with

∑
iθi = 1. A

fair die is one for which θ = θC = (1
3 ,

1
3 ,

1
3 ) which lies at the very center of the

simplex. The expected number of spots for a fair die is 〈i〉 = 2. Having 〈i〉 = 2
is no guarantee that the die is fair but if 〈i〉 6= 2 the die is necessarily biased.

Next we consider three cases characterized by different states of information.
First we have a situation of complete ignorance. See Fig.8-1(a). Nothing is
known about the die; we do not know that it is fair but on the other hand there
is nothing that induces us to favor one face over another. On the basis of this
minimal information we can use MaxEnt: maximize

S(θ) = −
∑
iθi log θi (8.24)

subject to
∑
iθi = 1. The maximum entropy distribution is θME = θC .

The second case involves more information: we are told that r = 〈i〉 = 2.
This constraint is shown in Fig.8-1(b) as a vertical dashed line that includes
distributions θ other than θC . Therefore r = 2 does not imply that the die is
fair. However, maximizing the entropy S(θ) subject to

∑
iθi = 1 and 〈i〉 = 2

leads us to assign θ′ME = θC .
Finally, the third case involves even more information: we are told that the

die is fair. Maximizing S(θ) subject to the constraint θ = θC yields, of course,
θ′′ME = θC . This is shown in Fig.8-1(c).

The fact that MaxEnt assigns the same probability to the three cases sug-
gests that the three situations are epistemically identical — which they obviously
are not — and thereby casts doubt on the validity of entropic methods in gen-
eral. Indeed, failing to see a distinction where there actually is one is a prime
source of paradoxes.

A more refined analysis, however, shows that — despite the fact that MaxEnt
assigns the same θME = θC in all three cases — the fluctuations about θC are
different. Indeed, the fact that the maximum of the entropy S(θ) at θC is not
particularly sharp indicates that a full-blown ME analysis is called for. For
case (a) of complete ignorance, the probability that θ lies in any small region
d2θ = dθ1dθ2 of the simplex is given by eq.(8.5),

Pa(θ)dθ1dθ2 ∝ eS(θ)g1/2(θ)dθ1dθ2 with g(θ) =
1

θ1θ2θ3
. (8.25)

The maximum of Pa(θ) is indeed at the center θC but the distribution is broad
and extends over the whole simplex.

The ME distribution for case (b) is formally similar to case (a),

Pb(θ2)dθ2 ∝ eS(θ)g1/2(θ2)dθ2 with g(θ2) =
1

θ2(1− θ2)
. (8.26)

The maximum of Pb(θ2) is also at the center θC but the distribution is confined
to the vertical line defined by θ1 = θ3 = (1−θ2)/2 in Fig.8.1(b); the probability
over the rest of the simplex is strictly zero.
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2θ

1θ3θ

2θ

1θ3θ

2θ

1θ3θ

(a) least info (b) more info (c) most info

2=〉〈i a fair die

Cθ

CME θθ =

Cθ

CME θθ =′ CME θθ =′′

Cθ

Figure 8.1: Three different states of information concerning a three-sided die.
(a) Absolute ignorance: the distribution assigned by MaxEnt is θC = ( 1

3 ,
1
3 ,

1
3 ).

(b) We know that r = 〈i〉 = 2: the MaxEnt distribution is also θC . (c) The die
is known to be fair: we know that θ = θC . Despite the fact that MaxEnt assigns
the same θ = θC in all three cases the fluctuations about θC are different.

Finally, in case (c) the distribution is concentrated at the single central point
θC ,

Pc(θ) = δ(θ − θC) , (8.27)

and there is absolutely no room for fluctuations.

To summarize: complete ignorance about i = 1, 2, 3 with full knowledge of
θ = θC = ( 1

3 ,
1
3 ,

1
3 ) is not the same as complete ignorance about both i = 1, 2, 3

and θ = {θ1, θ2, θ3}. An assessment of ‘complete ignorance’ can be perfectly
legitimate but to avoid confusion we must be very specific about what it is that
we are being ignorant about.
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8.4.2 Understanding ignorance

Ignorance, like the vacuum, is not a trivial concept.2 Further opportunities for
confusion arise when we consider constraints 〈i〉 = r with r 6= 2. In Fig.8-2
the constraint 〈i〉 = r = 1 is shown as a vertical dashed line. Maximizing S(θ)
subject to 〈i〉 = 1 and normalization leads to the point at the intersection where
the r = 1 line crosses the dotted line. The dotted curve is the set of MaxEnt
distributions θME(r) as r spans the range from 1 to 3.

3

1
2 =θ

2θ

3θ 1θ

Cθ

2=r

1=r

θ

Figure 8.2: The MaxEnt solution for the constraint 〈i〉 = r for different values
of r leads to the dotted line.If r is unknown averaging over r should lead to the
distribution at the point θ marked by θ̄.

It is tempting (but ill advised) to pursue the following line of thought: We
have a die but we do not know much about it. We do know, however, that the
quantity 〈i〉 must have some value, call it r, about which we are ignorant too.
Now, the most ignorant distribution given r is the MaxEnt distribution θME(r).
But r is itself unknown so a more honest θ assignment is an average over r,

θ̄ =
∫
dr p(r)θME(r) , (8.28)

2The title for this section is borrowed from Rodriguez’s paper on the two-envelope paradox
[Rodriguez 1988]. Other papers of his on the general subject of ignorance and geometry (see
the bibliography) are highly recommended for the wealth of insights they contain.
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where p(r) reflects our uncertainty about r. It may, for example, make sense to
pick a uniform distribution over r but the precise choice is not important for our
purposes. The point is that since the MaxEnt dotted curve is concave the point
θ̄ necessarily lies below θC so that θ̄2 < 1/3. And we have a paradox: we started
admitting complete ignorance and through a process that claims to express full
ignorance at every step we reach the conclusion that the die is biased against
i = 2. Where is the mistake?

The first clue is symmetry: We started with a situation that treats the
outcomes i = 1, 2, 3 symmetrically and end up with a distribution that is biased
against i = 2. The symmetry must have been broken somewhere and it is clear
that this happened at the moment the constraint on 〈i〉 = r was imposed —
this is shown as vertical lines on the simplex. Had we chosen to express our
ignorance not in terms of the unknown value of 〈i〉 = r but in terms of some
other function 〈f(i)〉 = s then we could have easily broken the symmetry in
some other direction. For example, let f(i) be a cyclic permutation of i,

f(1) = 2, f(2) = 3, and f(3) = 1 , (8.29)

then repeating the analysis above would lead us to conclude that θ̄3 < 1/3,
which represents a die biased against i = 3. Thus, the question becomes: What
leads to choose a constraint on 〈i〉 rather than a constraint on 〈f〉 when we are
equally ignorant about both?

The discussion in section 4.10 is relevant here. There we identified four
epistemically different situations:

(A) The ideal case: We know that 〈f〉 = F and we know that it captures all
the information that happens to be relevant to the problem at hand.

(B) The important case: We know that 〈f〉 captures all the information that
happens to be relevant to the problem at hand but its actual numerical
value F is not known.

(C) The predictive case: There is nothing special about the function f
except that we happen to know its expected value, 〈f〉 = F . In particular,
we do not know whether information about 〈f〉 is complete or whether it
is at all relevant to the problem at hand.

(D) The extreme ignorance case: We know neither that 〈f〉 captures rele-
vant information nor its numerical value F . There is nothing that singles
out one function f over any other.

The paradox with the three-sided die arises because two epistemically different
situations, case B and case D have been confused. On one hand, the unknown
die is meant to reflect a situation of complete ignorance, case D. We do not know
whether it is the constraint 〈i〉 or any other function 〈f〉 that captures relevant
information; and their numerical values are also unknown. There is nothing to
single out 〈i〉 or 〈f〉 and therefore the correct inference consists of maximizing
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S imposing the only constraint we actually know, namely, normalization. The
result is as it should be — a uniform distribution (θME = θC).

On the other hand, the argument that led to the assignment of θ̄ in eq.(8.28)
turns out to be actually correct when applied to an epistemic situation of type
B. Imposing the constraint 〈i〉 = r when r is unknown and then averaging over
r represents a situation in which we know something. We have some knowledge
that singles out 〈i〉 — and not any other 〈f〉 — as the function that captures
information that is relevant to the die. There is some ignorance here — we do
not know r — but this is not extreme ignorance. We can summarize as follows:
knowing that the die is biased against i = 2 but not knowing by how much is
not the same as not knowing anything.

A different instance of the same paradox is discussed in [Shimony 1985]. A
physical system can be in any of n microstates labeled i = 1 . . . n. When we
know absolutely nothing about the system maximizing entropy subject to the
single constraint of normalization leads to a uniform probability distribution,
pu(i) = 1/n. A different (misleading) way to express complete ignorance is to
argue that the expected energy 〈ε〉 must have some value E about which we are
ignorant. Maximizing entropy subject to both 〈ε〉 = E and normalization leads
to the usual Boltzmann distributions,

p(i|β) =
e−βεi

Z(β)
where Z(β) =

∑
i

e−βεi . (8.30)

Since the inverse temperature β = β(E) is itself unknown we must average over
β,

pt(i) =
∫
dβ p(β)p(i|β) . (8.31)

To the extent that both distributions reflect complete ignorance we must have

pu(i) = pt(i) ((wrong))

which can only happen provided

p(β) = δ(β) or β = 0 . (8.32)

Indeed, setting the Lagrange multiplier β = 0 in p(i|β) amounts to maximizing
entropy without imposing the energy constraint and this leads to the uniform
distribution pu(i). But now we have a paradox: The first way of expressing com-
plete ignorance about the system implies we are ignorant about its temperature.
In fact, we do not even know that it has a temperature at all, much less that it
has a single uniform temperature. But we also have a second way of expressing
ignorance and if impose that the two agree we are led to conclude that β has
the precise value β = 0; we have concluded that the system is infinitely hot —
ignorance is hell.

The paradox is dissolved once we realize that, just as with the die problem,
we have confused two epistemically different situations — types D and B above:
Knowing nothing about a system is not the same as merely not knowing its
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temperature — while knowing full well that it is in thermal equilibrium and
that it actually has a temperature.

It may be worthwhile to rephrase this important point in different words. If
I is the space of microstates and β is some unknown arbitrary quantity in some
space B the rules of probability theory allow us to write

p(i) =
∫
dβ p(i, β) where p(i, β) = p(β)p(i|β) . (8.33)

Paradoxes will easily arise if we fail to distinguish a situation of complete igno-
rance from a situation where the conditional probability p(i|β) — which is what
gives meaning to the parameter β — is known. Or, to put it in yet another way:
complete ignorance over the space I is not the same as complete ignorance over
the full space I × B.





Chapter 9

Entropic Dynamics: Time
and Quantum Theory

Law without Law: “The only thing harder to understand than a law of sta-
tistical origin would be a law that is not of statistical origin, for then there
would be no way for it — or its progenitor principles — to come into
being.”

Two tests: “No test of these views looks like being someday doable, nor more
interesting and more instructive, than a derivation of the structure of
quantum theory... No prediction lends itself to a more critical test than
this, that every law of physics, pushed to the extreme, will be found statis-
tical and approximate, not mathematically perfect and precise.”

J. A. Wheeler1

Quantum mechanics involves probabilities in a fundamental way and, there-
fore, it is a theory of inference. But this has not always been clear. The con-
troversy revolves around the interpretation of the quantum state — the wave
function. Does it represent the actual real state of the system — its ontic state
— or does it represent a state of knowledge about the system — an epistemic
state? The problem has been succinctly stated by Jaynes: “Our present QM
formalism is a peculiar mixture describing in part realities in Nature, in part
incomplete human information about Nature — all scrambled up by Heisenberg
and Bohr into an omelette that nobody has seen how to unscramble.” [Jaynes
1990]

The ontic interpretations have been the most common. From the very be-
ginning, Schrödinger’s original waves were meant to be real material waves —
although formulating the theory in configuration space immediately introduced
problems. Then the “orthodox” interpretation (sometimes but not always called

1[Wheeler Zurek 1983, p. 203 and 210]
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the Copenhagen interpretation) gradually took over. As crystallized in the stan-
dard textbooks (including the early classics by Dirac and von Neumann) it re-
gards the quantum state as a complete objective specification of the properties
of the system — a concept that is totally divorced from the state of belief of
a rational agent. The conceptual problems that plagued the orthodox inter-
pretation motivated the creation of alternatives such as the de Broglie-Bohm
pilot wave theory and Everett’s many worlds interpretation. In both the wave
function represents a real state of affairs. On the other side, the epistemic inter-
pretation has had a growing number of advocates starting, most prominently,
with Einstein and Heisenberg [Heisenberg 1958].2

Faced with this controversy, Jaynes also understood where to start looking
for a solution: “We suggest that the proper tool for incorporating human infor-
mation into science is simply probability theory — not the currently taught ‘ran-
dom variable’ kind, but the original ‘logical inference’ kind of James Bernoulli
and Laplace” which he explains “is often called Bayesian inference” and is “sup-
plemented by the notion of information entropy”. Bohr, Heisenberg, Einstein
and other founders of quantum theory might have agreed. They were keenly
aware of the epistemological and pragmatic elements in quantum mechanics (see
e.g., [Stapp 1972]) but they wrote at a time when the language and the tools
of quantitative epistemology — Bayesian and entropic methods — had not yet
been sufficiently developed.

But interpreting quantum theory is not merely a matter of postulating the
mathematical formalism and then appending an interpretation to it. For the
epistemic view of quantum states to be satisfactory it is not sufficient to state
that wave functions are tools for codifying our beliefs. It is also necessary to
show that the particular ways in which quantum states are calculated and ma-
nipulated are in complete agreement with the highly constrained ways in which
probabilities are to be manipulated, computed, and updated. Let us be more
explicit: it is not sufficient to accept that |ψ|2 represents a state of knowledge;
we must also provide an epistemic interpretation for the phase of the wave func-
tion. Furthermore, we must show that changes or updates of the epistemic
ψ — which include both unitary time evolution according to the Schrödinger
equation and the projection postulate during measurement — are nothing but
instances of entropic updating (including Bayes rule as a special case). There
is no room for alternative “quantum” probabilities obeying alternative forms of
Bayesian inference.

Our goal is to derive quantum theory (including its classical mechanics limit)
as an example of entropic inference. In essence, we want to do for quantum
mechanics what Jaynes did for statistical mechanics.

The wave function will be explicitly epistemic — which means neither fully
objective nor fully subjective. In earlier chapters we argued against a sharp
subjective/objective dichotomy. The point is that probabilities will unavoid-
ably retain a subjective character but they are useful only to the extent that

2For more recent advocates of the epistemic interpretation see [Ballentine 1970, 1998; Caves
et al 2007; Harrigan Spekkens 2010; Friedrich 2011] and references therein. For criticism of
the epistemic view see e.g. [Zeh 2002; Ferrero et al 2004; Marchildon 2004]
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the subjectivity is controlled, tempered by some objectivity. The injection of
objectivity occurs through updating: posteriors are more useful than priors. We
update to enhance objectivity — otherwise, why bother? The wave function in-
herits this dual subjective/objective character. In other words, being epistemic
does not preclude some measure of objectivity. Wave functions capture infor-
mation that, although incomplete and perhaps uncompletable, is undeniably
relevant.

A central feature of the entropic dynamics (ED) model developed below is
the privileged role we assign to position over and above all other observables.
Strictly, position is the only observable. This is one important difference from
other approaches that also emphasize notions of information.3 ED shows for-
mal similarities with another position-based model — the stochastic mechanics
developed by Nelson [Nelson 1966, 1967, 1985]4 — but there are important con-
ceptual differences. Stochastic mechanics operates at the ontological level; its
goal is a realistic interpretation of quantum theory as arising from a deeper,
possibly non-local, but essentially classical “reality”. In Nelson’s own words:
“... what stochastic mechanics is all about: it is an attempt to build a naively
realistic picture of physical phenomena, an objective representation of physi-
cal processes without reference to any observer” [Nelson 1986]. In contrast, in
the ED model there is no underlying classical dynamics that rules over a sub-
quantum world. ED operates almost completely at the epistemological level:

The laws of quantum mechanics are not laws of nature; they are rules for
processing relevant information about nature.

An important feature is that ED is also a model for time. Indeed, the rules
of Bayesian and entropic inference are silent on the matter of time; they are
completely atemporal. This means that the process of developing a dynamics
of change driven by entropy will require constructing a notion of time. Such an
“entropic” time is a book-keeping device designed to keep track of the accumu-
lation of change. It deserves to be called ‘time’ because it includes (a) something
one might identify as “instants”; (b) a sense in which these instants can be “or-
dered”; and (c) a convenient concept of “duration” measuring the separation
between instants. The welcome new feature is that entropic time is intrinsically
directional; an arrow of time is generated automatically. As we shall see, for the
pragmatic purpose of predicting the empirically observable correlations among
particles nothing more “physical” than entropic time is needed.

In this chapter we introduce the ED model for time and quantum theory
following [Caticha 2010]. Except for side comments comparing ED to other ap-
proaches to quantum theory, the treatment will be (hopefully) self-contained.5

3For a very incomplete list where more references can be found see e.g., [Wootters 1981;
Caticha 1998, 2006; Brukner Zeilinger 2002; Fuchs 2002; Spekkens 2007; Goyal et al 2010;
Hardy 2011].

4See also [Guerra 1981, Guerra Morato 1983] and references therein.
5While I do not assume that the reader has had an extensive prior education in quantum

mechanics I doubt very much that readers who are totally innocent in these matters will have
made it this far into the book.
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In the next chapter we discuss the quantum measurement problem and the in-
troduction of observables other than position [Johnson Caticha 2011], including
the definition of momentum and the corresponding uncertainty relations [Nawaz
Caticha 2011].

But before we proceed with our subject I must emphasize that the struggle
to overcome the conceptual difficulties with quantum theory has engendered a
literature that is too vast to even consider reviewing here. Excellent sources for
the earlier work are found in [Jammer 1966, 1974; Wheeler Zurek 1983]; for more
recent work see, e.g. [Jaegger 2009]. Even within the more restricted subject
of developing quantum theory without appealing to the notion of a “quantum”
probability there exist many proposals. Some share with Nelson’s approach the
foundation of an underlying classical dynamics with an additional stochastic
element. The sub-quantum dynamics is variously described by a classical ac-
tion principle, or a Liouville equation, or even Newton’s law. The additional
stochastic element has been introduced in a variety of ways:6 through an extra
momentum fluctuation [Hall Reginatto 2002]; a hidden non-equilibrium ther-
modynamics [Groessing 2008, 2009]; Brownian fluctuations caused by energy
exchanges with the surrounding vacuum [Fritsche Haug 2009]; coarse graining
an underlying dynamics that is reparametrization-invariant and ergodic [Elze
2002, 2003]; tracing out certain inaccessible degrees of freedom [Smolin 2006;
Wetterich 2010]; through explicit dissipation [’t Hooft 1988]; and also as the
statistical mechanics of a particular class of matrix models [Adler 2004]. In con-
trast, the ED described here does not assume any underlying mechanics whether
classical, deterministic, or stochastic. Both quantum dynamics and its classical
limit are derived as examples of entropic inference.

9.1 The statistical model

Just as in any other problem of entropic inference we must first identify the
microstates that are the subject of our inference; we must also identify prior
probabilities; and finally, we must identify the constraints that represent the
information that is relevant to our problem.

Consider particles living in flat three-dimensional space. The particles have
definite positions x.7 For a single particle the configuration space X is Euclidean
with metric

γab =
δab
σ2

. (9.1)

(The reason for the scale factor σ2 will become clear once we generalize to N
particles below and in section 9.7.) Our first assumption is that

6This list is not meant to be exhaustive; it merely provides an entry point to the literature.
More recent work by these authors and related work can be found at arxiv.org.

7In this work entropic dynamics is developed as a model for the quantum mechanics of par-
ticles. The same framework can be deployed to construct models for the quantum mechanics
of fields, in which case it is the fields that are “real” and have well defined albeit unknown
values.
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In addition to the particles there exist some extra variables y that live in
a space Y and are subject to an uncertainty that depends on the location x
of the particles and is described by some unspecified probability distribution
p(y|x).

The number and nature of the extra variables y ∈ Y and the origin of their
uncertainty need not be specified. The assumption that there exist other vari-
ables out there in the world does not appear excessive or unnatural. It is a
strength of this model that our conclusions hold irrespective of any detailed
assumptions about the y variables.8 As we shall see it is the entropy of the
distributions p(y|x) that plays a significant role in defining the dynamics of x;
the finer details of p(y|x) turn out to be irrelevant.

For a single particle the statistical manifold M of distributions p(y|x) is
three-dimensional: for each x there is a corresponding p(y|x). Each distribution
p(y|x) ∈ M can be conveniently labeled by its corresponding x so that the
label x denotes both a regular point in the configuration space X and also its
corresponding “point” in the statistical manifold M. For later reference, the
entropy S(x) of p(y|x) relative to an underlying measure q(y) of the space Y is9

S(x) = −
∫
dy p(y|x) log

p(y|x)
q(y)

. (9.2)

This entropy S(x) is a natural scalar field on both the configuration space X
and the statistical manifold M.

The peculiar features of quantum mechanics such as non-local correlations
and entanglement will arise naturally provided the theory for N particles is for-
mulated on the 3N -dimensional configuration space XN . Accordingly, to com-
plete the specification of the model we need to describe XN and its corresponding
statistical manifoldMN . The generalization is straightforward. For N particles
the y variable distributions are p(y|x) where now the position x ∈ XN is given
by xA and the index A now takes 3N values. More explicitly x = (xa1 , xa2 . . .)
where a1 = 1, 2, 3 denotes the first particle, a2 = 4, 5, 6 denotes the second
particle, and so on. The 3N -dimensional configuration space XN remains flat
but it is not, in general, isotropic. For example, for N = 2 particles the metric,
written in block matrix form, is

γAB =
[
δa1b1/σ

2
1 0

0 δa2b2/σ
2
2

]
. (9.3)

We shall later see that this choice of an anisotropic configuration space leads to
a theory of particles with different masses. For particles that are identical the
appropriate configuration space is isotropic with σ1 = σ2 = . . . = σ.

To summarize, the first basic assumption is that there exist particles which
have definite albeit unknown positions x and there existence of some extra

8The y variables will be referred to as extra variables or just y variables. In section 9.10
we shall argue that they are not hidden variables.

9This is a multidimensional integral over all y variables; for simplicity we write dy instead
of dny.
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variables y subject to an x-dependent uncertainty described by some unspecified
distributions p(y|x). The statistical manifold MN and the entropy field S(x)
are convenient inference tools introduced to explore the implications of this
assumption.

9.2 Entropic dynamics

The second basic assumption is that

Small changes from one state to another are possible and do, in fact,
happen. Large changes are assumed to result from the accumulation of
many small changes.

We do not explain why changes happen but, given the information that they
occur, our problem is to venture a guess about what to expect. Consider a single
particle (the generalization to several particles is immediate and will be carried
out in section 9.7) that moves away from an initial position x to an unknown
final position x′. All we know about x′ is that it is near x. What can we say
about x′? Since x and x′ represent probability distributions we see that this is
precisely the kind of problem the method of maximum entropy (ME) has been
designed to solve, namely, to update from a prior distribution to a posterior
distribution selected from within a specified set. As in all ME problems success
hinges on appropriate choices of the entropy, prior distribution, and constraints.

Since neither the new x′ nor the new variables y′ are known what we want
is the joint distribution P (x′, y′|x) and the relevant space is X × Y. To find it
maximize the appropriate (relative) entropy,

S[P,Q] = −
∫
dx′dy′ P (x′, y′|x) log

P (x′, y′|x)
Q(x′, y′|x)

. (9.4)

The relevant information is introduced through the prior Q(x′, y′|x) and the
constraints that specify the family of acceptable posteriors P (x′, y′|x).

The prior

We select a prior that represents a state of extreme ignorance: the relation
between x′ and y′ is not known; knowledge of x′ tells us nothing about y′ and vice
versa. Such ignorance is represented by a product, Q(x′, y′|x) = Q(x′|x)Q(y′|x).
Furthermore we take the distributionsQ(y′|x)dy′ andQ(x′|x)d3x′ to be uniform,
that is, proportional to the respective volume elements which are respectively
given by dvx = γ1/2d3x [where γ = det γab, see eq.(9.1)] and by dvy = q(y)dy
where the measure q(y) need not be specified further. Therefore, up to an
irrelevant proportionality constant, the joint prior is

Q(x′, y′|x) = γ1/2q(y′) . (9.5)
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The constraints

Next we specify the constraints. Write the posterior as

P (x′, y′|x) = P (x′|x)P (y′|x′, x) (9.6)

and consider the two factors separately. First we require that x′ and y′ be related
to each other in a very specific way, namely that P (y′|x′, x) = p(y′|x′) ∈ M —
the uncertainty in y′ depends only on x′, and not on the previous position x.
Therefore, our first constraint is that the joint posterior be of the form

P (x′, y′|x) = P (x′|x)p(y′|x′) . (9.7)

The second constraint concerns the factor P (x′|x) and represents the fact that
actual physical changes do not happen discontinuously: we require that x′ be
an infinitesimally short distance away from x. Let x′a = xa + ∆xa. We require
that the expectation 〈

∆`2(x′, x)
〉

=
〈
γab∆xa∆xb

〉
= ∆¯̀2 (9.8)

be some small but for now unspecified numerical value ∆¯̀2 which could in
principle depend on x. (This is just as in the statistical mechanics of equilibrium,
section 4.10, where a constraint on the expected energy 〈ε〉 is recognized as
codifying relevant information but its numerical value, 〈ε〉 = E, is not known.)

Entropy maximization

Having specified the prior and the constraints the ME method takes over. Sub-
stituting the prior (9.5) and the constraint (9.7) into the joint entropy (9.4)
gives

S[P,Q] = −
∫
dx′ P (x′|x) log

P (x′|x)
γ1/2

+
∫
dx′ P (x′|x)S(x′) , (9.9)

where S(x) is given in eq.(9.2). Next we vary P (x′|x) to maximize S[P,Q]
subject to (9.8) and normalization. The result is

P (x′|x) =
1

ζ(x, α)
eS(x′)− 1

2α(x)∆`2(x′,x) , (9.10)

where
ζ(x, α) =

∫
dx′ eS(x′)− 1

2α(x)∆`2(x′,x) , (9.11)

and the Lagrange multiplier α(x) is determined from the constraint eq.(9.8),

∂

∂α
log ζ(x, α) = −1

2
∆¯̀2 . (9.12)

The distribution (9.10) is not merely a local maximum or a stationary point,
it yields the absolute maximum of the relative entropy S[P,Q] subject to the
constraints (9.7) and (9.8). The proof follows the standard argument originally
due to Gibbs (see section 4.9).
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Analysis

The probability of a step from x to x′, eq.(9.10), represents a compromise be-
tween three conflicting tendencies. One, which can be traced to the uniform
prior Q(x′|x) = γ1/2 and is represented by the first integral in (9.9), is to make
P (x′|x) spread as uniformly as possible. Another, induced by the second inte-
gral in (9.9), contributes the entropy term in the exponent of P (x′|x) and favors
a single giant step to the distribution p(y′|x′) that maximizes the entropy S(x′).
And last, the constraint on

〈
∆`2

〉
leads to the ∆`2(x′, x) term in the exponent

of P (x′|x) and favors values of x′ that are close to x. Large α means short
steps. The compromise in eq.(9.10) leads to short steps in essentially random
directions with a small anisotropic bias along the entropy gradient.

Next we seek a more useful expression for P (x′|x) for large α by expanding
the exponent about its maximum. Let x′a = xa + ∆xa. The exponent is
maximum at x′ = x̄ such that

∂

∂x′a

[
S(x′)− α

2
γab∆xa∆xb

]
x̄

= 0 or ∂aS = αγab ∆x̄b , (9.13)

where ∂a = ∂/∂xa. Therefore,

∆x̄a = x̄a − xa =
1
α
γab∂bS(x) . (9.14)

Then the exponent in (9.10) becomes

S(x′)− α

2
γab∆xa∆xb = S(x) + ∂aS∆xa +

1
2
∂a∂bS∆xa∆xb − α

2
γab∆xa∆xb

= S(x) + αγab ∆x̄b∆xa − α

2
γab∆xa∆xb (9.15)

where the term ∂a∂bS∆xa∆xb can be dropped because for large α it is negligible
relative to the other terms. Therefore,

S(x′)−α
2
γab∆xa∆xb = S(x)−α

2
γab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)
+
α

2
γab∆x̄a∆x̄b .

(9.16)
Thus, for large α the transition probability, eq.(9.10), becomes a Gaussian dis-
tribution,

P (x′|x) ≈ 1
Z(x)

exp
[
−α(x)

2σ2
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
. (9.17)

The first and third terms on the right of eq.(9.16) are independent of x′ and
they have been absorbed into a new normalization Z(x). Thus, the displacement
∆xa can be expressed as an expected drift plus a fluctuation,

∆xa = ∆x̄a + ∆wa , (9.18)

where

〈∆xa〉 = ∆x̄a =
σ2

α(x)
δab∂bS(x) , (9.19)
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〈∆wa〉 = 0 and
〈
∆wa∆wb

〉
=

σ2

α(x)
δab . (9.20)

The particle tends to drift along the entropy gradient. Note that as α→∞ the
steps get correspondingly smaller but the fluctuations become dominant: the
drift is ∆x̄ ∼ O(α−1) while the fluctuations are much larger ∆w ∼ O(α−1/2).
This implies that as α → ∞ the trajectory is continuous but not differentiable
— just as in Brownian motion.

We can now return to the unfinished business of choosing ∆¯̀2 in eq.(9.8)
which is equivalent to choosing the multiplier α(x). We invoke a symmetry
argument. We just saw that in the limit of infinitesimally short steps the relevant
dynamics is dominated by the fluctuations ∆w. In order that the dynamics
reflect the translational symmetry of the configuration space X we choose α(x)
so that the fluctuations

〈
∆wa∆wb

〉
in eq.(9.20) be independent of x. Therefore

α(x) = constant.

9.3 Entropic time

Our goal is to derive laws of physics as an application of inference methods but
the latter make no reference to time so additional assumptions are needed. The
foundation to any notion of time is dynamics. We introduce time as a convenient
book-keeping device to keep track of the accumulation of small changes.

In this section we show how a dynamics driven by entropy naturally leads to
an “entropic” notion of time. Our task here is to develop a model that includes
(a) something one might identify as an “instant”, (b) a sense in which these
instants can be “ordered”, (c) a convenient concept of “duration” measuring the
separation between instants. A welcome bonus is that the model incorporates
an intrinsic directionality — an evolution from past instants towards future
instants. Thus, an arrow of time does not have to be externally imposed but
is generated automatically. This set of concepts constitutes what we will call
“entropic time”.

Important questions such as the relation between entropic time, in which
instants are ordered through the sequence of inference steps, and an externally
imposed structure of a presumably “physical” time will be discussed later (sec-
tion 9.8) after the dynamics has been more fully developed.

9.3.1 Time as a sequence of instants

In entropic dynamics change is given, at least for infinitesimally short steps,
by the transition probability P (x′|x) in eq.(9.17). For finite steps the relevant
piece of information is that large changes occur only as the result of a continuous
succession of very many small changes.

Consider the nth step. In general we will be uncertain about both its initial
and the final positions, x and x′. This means we must deal with the joint
probability P (x′, x). Using P (x′, x) = P (x′|x)P (x) and integrating over x, we
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get
P (x′) =

∫
dxP (x′|x)P (x) . (9.21)

It is important to emphasize that this equation is a direct consequence of the
laws of probability — no assumptions of a physical nature have been made. How-
ever, when we consider the transition probability from x to x′, given by P (x′|x),
it is implicitly assumed that the three initial coordinates x = (x1, x2, x3) occur
all at one instant and similarly that the three final coordinates x′ = (x′1, x′2, x′3)
also occur all at another instant. Thus, if P (x) happens to be the probability
of different values of x at an “initial” instant of entropic time t, then it is
tempting to interpret P (x′) as the probability of values of x′ at a “later” in-
stant of entropic time t′ = t + ∆t. Accordingly, we write P (x) = ρ(x, t) and
P (x′) = ρ(x′, t′) so that

ρ(x′, t′) =
∫
dxP (x′|x)ρ(x, t) . (9.22)

Nothing in the laws of probability that led to eq.(9.21) forces this interpretation
on us — this is an independent assumption about what constitutes time in our
model. We use eq.(9.22) to define what we mean by an instant:

An instant is defined by a probability distribution ρ(x). If the distribu-
tion ρ(x, t) refers to a certain instant t, then the distribution ρ(x′, t′) in
eq.(9.22) defines what we mean by the “next” instant, t′ = t+ ∆t.

Thus, eq.(9.22) allows entropic time to be constructed, step by step, as a suc-
cession of instants.

We can phrase this idea somewhat differently. Once we have decided what
is the information that is relevant for predicting future behavior we imagine all
that information codified into a single instant and we use this to define what
we mean by the “present” instant:

Given the present the future is independent of the past.

Remark: An equation such as (9.22) is commonly employed to define Marko-
vian behavior in which case it is known as the Chapman-Kolmogorov equation.
Markovian processes are such that specifying the state of the system at time t
is sufficient to fully determine its state after time t — no additional information
about times before t is needed. We make no Markovian assumptions. We are
concerned with a different problem. We do not use (9.22) to define Markovian
processes; we use it to define time.

9.4 Duration: a convenient time scale

Having introduced the notion of successive instants we now have to specify the
interval ∆t between them. Successive instants are connected through the tran-
sition probability P (x′|x). Specifying the interval of time ∆t between successive
instants amounts to tuning the steps or, equivalently, the multiplier α(x, t). To



9.4 Duration: a convenient time scale 223

model a time that, like Newtonian time, flows “equably” everywhere, that is,
at the same rate at all places and times we define ∆t as being independent of
x, and such that every ∆t is as long as the previous one. Inspection of the ac-
tual dynamics as given in eq.(9.17-9.20) shows that this is achieved if we choose
α(x, t) so that

α(x, t) =
τ

∆t
= constant , (9.23)

where τ is a constant introduced so that ∆t has units of time. As already
anticipated in the previous section, it is the translational symmetry of the con-
figuration space X expressed as the “equable” flow of time that leads us to
impose uniformity on the expected step sizes ∆¯̀ and the corresponding mul-
tipliers α. This completes the implementation of entropic time. In the end,
however, the only justification for any definition of duration is that it simplifies
the description of motion, and indeed, the transition probability in eq.(9.17)
becomes

P (x′|x) ≈ 1
Z(x)

exp
[
− τ

2σ2∆t
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
, (9.24)

which we recognize as a standard Wiener process. A displacement ∆x = x′ − x
is given by

∆xa = ba(x)∆t+ ∆wa , (9.25)

where the drift velocity ba(x) and the fluctuation ∆wa are

〈∆xa〉 = ba∆t with ba(x) =
σ2

τ
δab∂bS(x) , (9.26)

〈∆wa〉 = 0 and
〈
∆wa∆wb

〉
=
σ2

τ
∆t δab . (9.27)

The constant σ2/2τ plays the role of the diffusion constant in Brownian motion.
The formal similarity to Nelson’s stochastic mechanics [Nelson 1966] is evident.
An important difference concerns the expression of the drift velocity as the
gradient of a scalar function: unlike stochastic mechanics, here eq.(9.26) has
been derived rather than postulated, and S(x) is not merely an uninterpreted
auxiliary scalar function—it turns out to be the entropy of the y variables.

9.4.1 The directionality of entropic time

Time constructed according to eq.(9.22) is remarkable in yet another respect:
the inference implied by P (x′|x) in eq.(9.17) incorporates an intrinsic direction-
ality in entropic time: there is an absolute sense in which ρ(x, t) is prior and
ρ(x′, t′) is posterior.

Suppose we wanted to find a time-reversed evolution. We would write

ρ(x, t) =
∫
dx′ P (x|x′)ρ(x′, t′) . (9.28)
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This is perfectly legitimate but the transition probability P (x|x′) cannot be
obtained from eq.(9.17) by merely exchanging x and x′. Indeed, according to
the rules of probability theory P (x|x′) is related to eq.(9.17) by Bayes’ theorem,

P (x|x′) =
P (x)
P (x′)

P (x′|x) . (9.29)

In other words, one of the two transition probabilities, either P (x|x′) or P (x′|x),
but not both, can be given by the maximum entropy distribution eq.(9.17). The
other is related to it by Bayes’ theorem. I hesitate to say that this is what
breaks the time-reversal symmetry because the symmetry was never there in
the first place. There is no symmetry between prior and posterior; there is no
symmetry between the inferential past and the inferential future.

An interesting consequence of the time asymmetry is that the mean velocities
towards the future and from the past do not coincide. Let us be more specific.
Equation (9.26) gives the mean velocity to the future or future drift,

ba(x) = lim
∆t→0+

〈xa(t+ ∆t)〉x(t) − xa(t)

∆t

= lim
∆t→0+

1
∆t
∫
dx′ P (x′|x)∆xa , (9.30)

where x = x(t), x′ = x(t+ ∆t), and ∆xa = x′a− xa. Note that the expectation
in (9.30) is conditional on the earlier position x = x(t). One can also define a
mean velocity from the past or past drift,

ba∗(x) = lim
∆t→0+

xa(t)− 〈xa(t−∆t)〉x(t)

∆t
(9.31)

where the expectation is conditional on the later position x = x(t). Shifting the
time by ∆t, ba∗ can be equivalently written as

ba∗(x
′) = lim

∆t→0+

xa(t+ ∆t)− 〈xa(t)〉x(t+∆t)

∆t

= lim
∆t→0+

1
∆t
∫
dxP (x|x′)∆xa , (9.32)

with the same definition of ∆xa as in eq.(9.30).
The two mean velocities, to the future ba, and from the past ba∗, do not

coincide. The connection between them is well known [Nelson 1966, 1985],

ba∗(x, t) = ba(x)− σ2

τ
∂a log ρ(x, t) , (9.33)

where10 ∂a = δab∂b and ρ(x, t) = P (x). What might not be widely appreciated
is that eq.(9.33) is a straightforward consequence of Bayes’ theorem, eq. (9.29).

10From now on we will raise and lower indices with the Euclidean metric δab.
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(For a related idea see [Jaynes 1989].) To derive eq.(9.33) expand P (x′) about
x in (9.29) to get

P (x|x′) =
[
1− ∂ log ρ(x, t)

∂xb
∆xb + . . .

]
P (x′|x) . (9.34)

Multiply ba∗(x
′) in eq.(9.32) by a smooth test function f(x′) and integrate,

∫
dx′ ba∗(x

′)f(x′) =
1

∆t
∫
dx′
∫
dxP (x|x′)∆xaf(x′) . (9.35)

(The limit ∆t→ 0+ is understood.) On the right hand side expand f(x′) about
x and use (9.34),

1
∆t
∫
dx′
∫
dxP (x′|x)[∆xaf(x)−∆xa∆xb

∂ log ρ(x, t)
∂xb

f(x) + ∆xa∆xc
∂f

∂xc
+ . . .] .

(9.36)
Next interchange the orders of integration and take ∆t→ 0+ using eq.(9.27),

〈∆xa∆xb〉 = 〈∆wa∆wb〉 =
σ2

τ
∆t δab . (9.37)

On integration by parts the third term of (9.36) vanishes and we get

∫
dx ba∗(x)f(x) =

∫
dx

[
ba(x)− σ2

τ
δab∂b log ρ(x, t)

]
f(x) , (9.38)

Since f(x) is arbitrary we get (9.33).
The puzzle of the arrow of time has a long history (see e.g. [Price 1996;

Zeh 2001]). The standard question is how can an arrow of time be derived
from underlying laws of nature that are symmetric? Entropic dynamics offers
a new perspective because it does not assume any underlying laws of nature —
whether they be symmetric or not — and its goal is not to explain the asymme-
try between past and future. The asymmetry is the inevitable consequence of
entropic inference. From the point of view of entropic dynamics the challenge
does not consist in explaining the arrow of time, but rather in explaining how
it comes about that despite the arrow of time some laws of physics turn out
to be reversible. Indeed, even when the derived laws of physics — in our case,
the Schrödinger equation — turns out to be fully time-reversible, entropic time
itself only flows forward.

9.5 Accumulating changes

Time has been introduced as a useful device to keep track of the accumulation
of small changes. The technique to do this is well known from diffusion theory
[Chandrasekhar 1943]. Small changes given by (9.25-9.27) accumulate according
to the Fokker-Planck equation (FP) which we now proceed to derive.
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9.5.1 Derivation of the Fokker-Planck equation

The result of building up a finite change from an initial time t0 up to time t
leads to the density

ρ(x, t) =
∫
dx0 P (x, t|x0, t0)ρ(x0, t0) , (9.39)

where the finite-time transition probability, P (x, t|x0, t0), is constructed by it-
erating the infinitesimal changes described in eq.(9.22),

P (x, t+ ∆t|x0, t0) =
∫
dz P (x, t+ ∆t|z, t)P (z, t|x0, t0) . (9.40)

For small times ∆t the distribution P (x, t+ ∆t|z, t), given in eq. (9.24), is very
sharply peaked at x = z. In fact, as ∆t→ 0 we have

P (x, t+ ∆t|z, t)→ δ(x− z) . (9.41)

Such singular behavior cannot be handled directly by Taylor expanding in z
about the point x. Instead one follows an indirect procedure. Multiply by a
smooth test function f(x) and integrate over x,∫

dxP (x, t+ ∆t|x0, t0)f(x) =
∫
dx
∫
dz P (x, t+ ∆t|z, t)P (z, t|x0, t0)f(x)

=
∫
dz
[∫
dxP (x, t+ ∆t|z, t)f(x)

]
P (z, t|x0, t0) .

(9.42)

The test function f(x) is assumed sufficiently smooth precisely so that it can
be expanded about z. Then as ∆t → 0 the integral in the brackets, including
all terms that contribute to order ∆t, is

[· · · ] =
∫
dxP (x, t+ ∆t|z, t)

(
f(z) +

∂f

∂za
(xa − za)+

+
1
2

∂2f

∂za∂zb
(xa − za)(xb − zb) + . . .

)
= f(z) + ∆t ba(z)

∂f

∂za
+

1
2

∆t
σ2

τ
δab

∂2f

∂za∂zb
+ . . . (9.43)

where we used eqs.(9.25-9.27),

lim
∆t→0+

1
∆t
∫
dxP (x, t+ ∆t|z, t)(xa − za) = ba(z) ,

lim
∆t→0+

1
∆t
∫
dxP (x, t+ ∆t|z, t)(xa − za)(xb − zb) =

σ2

τ
δab .

(9.44)

Substituting (9.43) into the right hand side of (9.42),

∫
dz

[
f(z) + ∆t ba(z)

∂f

∂za
+

1
2

∆t
σ2

τ
δab

∂2f

∂za∂zb

]
P (z, t|x0, t0) , (9.45)
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dividing by ∆t, and integrating by parts, (9.42) becomes∫
dx

1
∆t

[P (x, t+ ∆t|x0, t0)− P (x, t|x0, t0)] f(x) =∫
dx

[
− ∂

∂xa
(ba(x)P (x, t|x0, t0)) +

σ2

2τ
∇2P (x, t|x0, t0)

]
f(x) , (9.46)

where ∇2 = δab∂2/∂xa∂xb. Finally we let ∆t → 0 and since f(x) is arbitrary
we get the Fokker-Planck equation for the finite-time transition probability,

∂

∂t
P (x, t|x0, t0) = − ∂

∂xa
(ba(x)P (x, t|x0, t0)) +

σ2

2τ
∇2P (x, t|x0, t0) . (9.47)

The corresponding evolution equation for the density ρ(x, t), which is what
we will henceforth call the Fokker-Planck equation (FP), is obtained differenti-
ating eq.(9.39) with respect to t,

∂ρ(x, t)
∂t

=
∫
dx0

∂P (x, t|x0, t0)
∂t

ρ(x0, t0) . (9.48)

Using eqs.(9.47) and (9.39),

∂ρ(x, t)
∂t

=
∫
dx0

[
− ∂

∂xa
(baP (x, t|x0, t0)) +

σ2

2τ
∇2P (x, t|x0, t0)

]
ρ(x0, t0) ,

(9.49)
leads to the FP equation,

∂tρ = −∂a (baρ) +
σ2

2τ
∇2ρ , (9.50)

where ∂a = ∂/∂xa and ∇2 = δab∂2/∂xa∂xb.

9.5.2 The current and osmotic velocities

The FP equation can be rewritten as a continuity equation,

∂tρ = −∂a (vaρ) , (9.51)

where the velocity of the probability flow or current velocity is

va = ba − σ2

2τ
δab

∂aρ

ρ
. (9.52)

It is convenient to introduce the osmotic velocity

ua
def= −σ

2

τ
∂a log ρ1/2 , (9.53)

so that
va = ba + ua. (9.54)
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The interpretation is straightforward: The drift ba represents the tendency
of the probability ρ to flow up the entropy gradient while ua represents the
tendency to flow down the density gradient. The situation is analogous to
Brownian motion where the drift velocity is the response to the gradient of an
external potential, while ua is a response to the gradient of concentration or
chemical potential—the so-called osmotic force.11 The osmotic contribution to
the probability flow is the actual diffusion current,

ρua = −σ
2

2τ
∂aρ , (9.55)

which can be recognized as Fick’s law, with a diffusion coefficient given by
σ2/2τ .

Since both the future drift ba and the osmotic velocity ua are gradients, it
follows that the current velocity is a gradient too. For later reference, from
(9.26) and (9.53),

va =
σ2

τ
∂aφ , (9.56)

where
φ(x, t) = S(x)− log ρ1/2(x, t). (9.57)

With these results entropic dynamics reaches a certain level of completion:
We figured out what small changes to expect — they are given by P (x′|x) —
and time was introduced to keep track of how these small changes accumulate;
the net result is diffusion according to the FP equation (9.50).

9.6 Non-dissipative diffusion

But quantum mechanics is not just diffusion. The description so far has led us
to the density ρ(x, t) as the important dynamical object but to construct a wave
function, Ψ = ρ1/2eiφ, we need a second degree of freedom, the phase φ. The
problem is that as long as the geometry of the statistical manifold M is rigidly
fixed there is no logical room for additional degrees of freedom. Note that the
function φ introduced in eqs.(9.56) and (9.57) does not represent an independent
degree of freedom. The natural solution is to remove this constraint. We can
take S(x, t) to be the new independent degree of freedom but eq.(9.56) suggests
that a more convenient and yet equivalent choice is

φ(x, t) = S(x, t)− log ρ1/2(x, t) . (9.58)

Thus the dynamics will consist of the coupled evolution of ρ(x, t) and φ(x, t).

11The definition of osmotic velocity adopted in [Nelson 1966] and other authors differs from
ours by a sign. Nelson takes the osmotic velocity to be the velocity imparted by an external
force that is needed to balance the osmotic force (due to concentration gradients) in order to
attain equilibrium. For us the osmotic velocity is the velocity imparted by the osmotic force
itself.
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To specify the dynamics of the manifold M we follow [Nelson 1979] and
impose that the dynamics be non-dissipative, that is, we require the conservation
of a certain functional E[ρ, S] to be specified below that we will proceed to call
the “energy”. Thus, we make the following assumption:

The statistical manifold M participates in the dynamics: the particles
react back on the y variables so that their entropy S(x, t) becomes a time-
dependent field. The dynamics between ρ(x, t) and S(x, t) is such that
there is a conserved energy, E[ρ, S] = constant.

At first sight it might appear that imposing that some energy E[ρ, S] be con-
served is natural because it agrees with our classical preconceptions of what
physics ought to be like. But classical intuitions are not a good guide here. In
the more sophisticated approaches to physics energy is taken to be whatever
happens to be conserved as a result of invariance under translations in time.
But our dynamics has hardly been defined yet; what, then, is “energy” and why
should it be conserved in the first place? Furthermore, if we go back to eq.(9.25)
we see that it is the kind of equation (a Langevin equation) that characterizes a
Brownian motion in the limit of infinite friction. Thus, the explanation of quan-
tum theory in terms of a sub-quantum classical mechanics would require that
particles be subjected to infinite friction and suffer zero dissipation at the same
time. Such a strange sub-quantum mechanics could hardly be called ‘classical’.

Remark: In the 19th century the effort to model the wave properties of light
led Fresnel and other researchers to postulate an underlying medium, the ether.
In order to acccount for the purely transverse nature of light polarization the
ether had to have very unusual and contradictory properties. It had to be si-
multaneously infinitely rigid to prevent any longitudinal polarization and also
infinitely tenuous to allow the free motion of material bodies. Maxwell’s con-
tribution was to produce a model of light that focused attention elsewhere —
light is just a peculiar configuration of electromagnetic fields. By ignoring the
ether Maxwell demonstrated that it was effectively superfluous, which eventu-
ally led to its being altogether discarded by Einstein. The situation with a
sub-quantum stochastic mechanics is somewhat analogous: it is assumed that
quantum fluctuations are caused by some physical sub-quantum agent, either
Nelson’s background field [Nelson 1985] or Smolin’s hidden variables [Smolin
2006]. Whatever this unusual agent might be it must simultaneously allow for
both infinite friction and zero dissipation. On the other hand, entropic dynam-
ics, being a purely epistemic model, is silent on the matter of whether there is
some physical agent causing the particles to fluctuate. What fluctuates in ED
are not necessarily the particles themselves — for all we know, they might —
but our beliefs about where the particles are most likely to be found.
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9.6.1 Manifold dynamics

The energy functional E[ρ, S] is chosen to be the expectation of a local “energy”
function ε(x, t), that is,

E[ρ, S] =
∫
dx ρ(x, t) ε(x, t) , (9.59)

where ε(x, t) depends on ρ(x, t) and S(x, t) and their derivatives. This is more
conveniently expressed in terms of φ(x, t),

ε(x, t) = ε(ρ, ∂ρ, φ, ∂φ;x) . (9.60)

The specific form of ε is chosen to be invariant under time reversal [Smolin
2006]. Under time reversal t→ −t we have

ba → −ba∗ , va → −va , ua → ua . (9.61)

If we require that the velocities enter in rotationally invariant terms, then for
low velocities we need only include velocity terms in v2 and u2, therefore

ε(ρ, ∂ρ, φ, ∂φ;x) = Aγabv
avb +Bγabu

aub + V (x) , (9.62)

where A and B are constants, γab is given by (9.1), and V (x) represents an
external potential. If ε has units of energy then A/σ2 and B/σ2 have units of
mass. Let us define new constants

m =
2A
σ2

and µ =
2B
σ2

, (9.63)

which we will call the “current mass” and the “osmotic mass”. Then

ε =
1
2
mv2 +

1
2
µu2 + V (x) . (9.64)

It is further convenient to combine the constant τ , which sets the units of time,
with A into yet a new constant η,

η =
2A
τ

so that
σ2

τ
=

η

m
. (9.65)

η relates the units of mass or energy with those of time. Then the current and
osmotic velocities, eqs.(9.56) and (9.53) are

mva = η ∂aφ and mua = −η∂a log ρ1/2 , (9.66)

and the energy (9.62) becomes

ε =
η2

2m
(∂aφ)2 +

µη2

8m2
(∂a log ρ)2 + V . (9.67)

Remark: This energy is unusual in several respects. First and foremost, note
that unlike classical mechanics the energy ε is not a property of the particle.
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It explicitly involves ρ and S and thus ε is rather an epistemic concept; it is
property of our state of knowledge. This is a topic to which we will return at
some length in the next chapter: in the ED model the particles are understood
to have actual positions but other quantities such as energy or momentum are
not attributes of the particles themselves; they are epistemic constructs. Second,
as seen in both eqs.(9.64) and (9.67) beyond the analogues of classical kinetic
and potential energies the energy ε contains an extra term, the osmotic or
“quantum” potential.

When the potential is static, V̇ = 0, energy is conserved, Ė = 0. Otherwise
we impose that energy increase at the rate

Ė =
∫
dx ρV̇ . (9.68)

Next take the time derivative of (9.67)

dE

dt
=
∫
d3x

[
∂(ρε)
∂ρ

ρ̇+
∂(ρε)
∂(∂aρ)

∂aρ̇+ ρ
∂ε

∂φ
φ̇+ ρ

∂(ε)
∂(∂aφ)

∂aφ̇

]
. (9.69)

Use
∂ε

∂φ
= 0 and

∂(ε)
∂(∂aφ)

= ηva, (9.70)

and integrate by parts to get,

dE

dt
=
∫
d3x

(
∂(ρε)
∂ρ

− ∂a
∂(ρε)
∂(∂aρ)

+ ηφ̇

)
ρ̇ . (9.71)

Now, any instant t can be taken as the initial instant for evolution into the
future. We impose that the energy E be conserved for any arbitrary choice of
initial conditions, namely ρ(x, t) and φ(x, t), which implies an arbitrary choice
of ρ̇. Therefore,

ηφ̇+
∂(ρε)
∂ρ

− ∂a
∂(ρε)
∂(∂aρ)

= 0 . (9.72)

Substituting eq.(9.67) for ε we get,

φ̇+ ε− µη2

4m2

∇2ρ

ρ
= 0 , (9.73)

or,

ηφ̇+
η2

2m
(∂aφ)2 + V − µη2

2m2

∇2ρ1/2

ρ1/2
= 0 . (9.74)

While the continuity equation, eq.(9.51) with (9.56), is

ρ̇ = −∂a (ρva) = − η

m
∂a (ρ∂aφ) = − η

m

(
∂aρ∂aφ+ ρ∇2φ

)
, (9.75)

Equations (9.74) and (9.75) are the coupled dynamical equations we seek. They
describe entropic diffusion and energy conservation. The evolution of φ(x, t),
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eq.(9.74), is determined by ρ(x, t); and the evolution of ρ(x, t), eq.(9.75), is
guided by φ(x, t). The evolving geometry of the manifold M enters through
φ(x, t).

Incidentally, taking the expectation of eq.(9.73) and integrating by parts and
discarding surface terms at infinity leads to a particularly elegant expression for
the energy,

E =
∫
d3x ρε = −

∫
d3x ρφ̇ . (9.76)

9.6.2 Classical limits

Before proceeding further we note that writing SHJ = ηφ in equations (9.66)
and (9.74) and taking the limit η → 0 with SHJ , m, and µ fixed leads to

mva = ∂aSHJ and ua = 0 , (9.77)

and to
ṠHJ +

1
2m

(∂aSHJ)2 + V = 0 , (9.78)

which is identical with the Hamilton-Jacobi equation — this is the equation
of motion in the Hamilton-Jacobi formulation of classical mechanics (see e.g.
[Landau Lifshitz 1993]). The particle’s energy and momentum are given by

E = −∂SHJ
∂t

and pa =
∂SHJ
∂xa

, (9.79)

which suggests that the constant m be interpreted as the inertial mass. Fur-
thermore, eq.(9.26) and (9.54) with ua = 0 tell us that SHJ → ηS so that,

Up to a proportionality constant the Hamilton-Jacobi function SHJ(x, t)
is the entropy S(x, t) of the y variables.

Thus, the classical particle is expected to move along the entropy gradient.
Furthermore, eq.(9.27),

〈∆wa〉 = 0 and
〈
∆wa∆wb

〉
=

η

m
∆t δab → 0 , (9.80)

says that the fluctuations about the expected trajectory vanish. We conclude
that

In the limit η → 0 entropic dynamics reproduces classical mechanics with
classical trajectories following the gradient of the entropy S(x, t) of the y
variables.

A similar classical limit can also be attained for fixed η provided the mass
m is sufficiently large. In ED this effect can be already seen at the level of
the short step transition probability, eq.(9.24). A more realistic example (see
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[Johnson 2011]) involves a macrocopic body composed of N particles of masses
mn, n = 1 . . . N . Using eq.(9.65) the short step transition for N particles is

P (x′|x) =
1
ZN

exp
[
−

N∑
n=1

mn

2η∆t
δij
(
∆xin −∆x̄in

)
(∆xjn −∆x̄jn)

]
, (9.81)

where i, j = 1, 2, 3. We are interested in the motion of the center of mass,

Xi =
1
M

N∑
n=1

mnx
i where M = Nm̄ =

N∑
n=1

mn . (9.82)

The probability that the center of mass goes from X to X ′ = X + ∆X is

P (X ′|X) =
∫
d3Nx′ P (x′|x)δ

(
∆X − 1

M

∑
n
mn∆xi

)
. (9.83)

This integral is a straighforward instance of the central limit theorem (see section
2.8.2). The result is

P (X ′|X) ∝ exp
[
− M

2η∆t
δij
(
∆Xi −∆X̄i

) (
∆Xj −∆X̄j

)]
, (9.84)

where, using eq.(9.26), the expected step ∆X̄i is

∆X̄i =
1
M

N∑
n=1

mn∆x̄i =
η∆t
Nm̄

N∑
n=1

∂S

∂xin
. (9.85)

The actual displacement is

∆Xi = ∆X̄i + ∆W i , (9.86)

with fluctuations ∆W i such that〈
∆W i∆W j

〉
=

η

Nm̄
∆t δij . (9.87)

Therefore whereas the expected drift ∆X̄i is of order N0 (because the N terms
in the sum offset the 1/N) the fluctuations are of order N−1/2. For large N the
fluctuations become negligible and the body follows the the smooth trajectory
predicted by classical mechanics. Indeed, set ηS = SHJ and eq.(9.85) becomes

M
dX̄i

dt
=

N∑
n=1

∂SHJ
∂xin

=
∂SHJ
∂Xi

. (9.88)

The limit µ → 0 for fixed η, SHJ , and m is also interesting. This situation
is also ruled by the classical Hamilton-Jacobi equation (9.78), but the osmotic
velocity does not vanish,

mva = ∂aSHJ and mua = η∂a log ρ1/2 . (9.89)

The expected trajectory also lies along a classical path but now, however, it
does not coincide with the entropy gradient. More important perhaps is the
fact that the fluctuations ∆wa about the classical trajectory do not vanish.
The limit µ → 0 is a different “classical” limit whether it corresponds to an
actual physical situation remains to be seen. We will briefly return to this topic
it in the next chapter.
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9.6.3 The Schrödinger equation

Next we show that, with one very interesting twist, the dynamical equations
(9.75) and (9.74) turn out to be equivalent to the Schrödinger equation. We can
always combine the functions ρ and φ into a complex function

Ψ = ρ1/2 exp(iφ) . (9.90)

Computing its time derivative,

Ψ̇ =
(
ρ̇

2ρ
+ iφ̇

)
Ψ , (9.91)

and using eqs. (9.75) and (9.74) leads (after some considerable but straightfor-
ward algebra) to

iηΨ̇ = − η2

2m
∇2Ψ + VΨ +

η2

2m

(
1− µ

m

) ∇2(ΨΨ∗)1/2

(ΨΨ∗)1/2
Ψ . (9.92)

This reproduces the Schrödinger equation,

i~
∂Ψ
∂t

= − ~2

2m
∇2Ψ + VΨ , (9.93)

provided the current and osmotic masses are equal, m = µ, and η is identified
with Planck’s constant, η = ~.

But why should the osmotic mass be precisely equal to the inertial mass?
Why can’t we say that entropic dynamics predicts a non-linear generalization
of quantum theory? This question is so central to quantum theory that we
devote the next section to it. But before that we note that the non-linearity is
undesirable both for experimental and theoretical reasons. On one hand, various
types of non-linearities have been ruled out experimentally to an extreme degree
through precision experiments on the Lamb shift [Smolin 1986a] and even more
so in hyperfine transitions [Bollinger 1989]. On the other hand, from the theory
side it is the fact that time evolution preserves linear superpositions that leads to
the superposition principle and makes Hilbert spaces useful. In addition, there
is a consistency argument that links the linearity of the Hilbert space and the
linearity of time evolution [Caticha 1998]. Retaining one and not the other leads
to inconsistently assigned amplitudes showing that the very concept of quantum
amplitudes is a reflection of linearity. And, as if that were not enough, it has
also been shown that in the presence of non-linear terms entangled particles
could be used to achieve superluminal communication [Gisin 1990]. Therefore
it is extremely probable that the identity of inertial and osmotic mass is exact.

There is another mystery in quantum theory — the central role played by
complex numbers — that turns out to be related to these issues. The dynamical
equations (9.75) and (9.74) contain no complex numbers. It is true that they
contain two degrees of freedom ρ and φ and that these two quantities can be
combined into a single complex number Ψ = ρ1/2eiφ but this is a triviality,
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not a mystery: the dynamical equations can always be reformulated into an
equation for Ψ and its conjugate Ψ∗. The statement that complex numbers
play a fundamental role in quantum theory is the non-trivial assertion that the
equation of evolution contains only Ψ and not Ψ and its conjugate Ψ∗. In the
entropic approach both the linear time evolution and the special role of complex
numbers are linked through the equality m = µ.

9.7 A quantum equivalence principle

The generalization to N particles is straightforward. As indicated at the end
of section 9.1, the configuration space has 3N dimensions and the system is
represented by a point x = xA = (xa1 , xa2 . . .). The corresponding Fokker-
Planck equation [see eqs.(9.3), (9.51) and (9.56)] is

∂tρ = −1
τ
γAB∂A(ρ∂Bφ) = −

N∑
n=1

∂an (ρvann ) (9.94)

where φ(x, t) is given by eq.(9.58). The current and osmotic velocities are

vann =
σ2
n

τ
∂anφ and µann = −σ

2
n

τ
∂an log ρ1/2 , (9.95)

and the conserved energy is

E =
∫
d3Nx ρ(x, t)

(
AγABv

AvB +BγABu
AuB + V (x)

)
. (9.96)

Introducing the inertial (or current) and osmotic masses,

mn =
2A
σ2
n

and µn =
2B
σ2
n

, (9.97)

and the constant η = 2A/τ , eqs.(9.94) and (9.96) become

∂tρ = −
∑
n

η

mn
∂an (ρ∂anφ) , (9.98)

E[ρ, S] =
∫
d3Nx ρ

(∑
n

[
η2

2mn
(∂anφ)2 +

µnη
2

8m2
n

(∂an log ρ)2] + V (x)
)
. (9.99)

Imposing, as before, that Ė −
∫
ρV̇ = 0 for arbitrary choices of ρ̇ leads to the

modified Hamilton-Jacobi equation,

ηφ̇+
∑
n

[
η2

2mn
(∂anφ)2 − µnη

2

2m2
n

∇2
nρ

1/2

ρ1/2
] + V = 0 . (9.100)

Finally, the two eqs.(9.98) and (9.100) can be combined into a single equation
for the complex wave function, Ψ = ρ1/2eiφ,

iηΨ̇ =
∑
n

−η2

2mn
[∇2

n −
(

1− µn
mn

)
∇2
n(ΨΨ∗)1/2

(ΨΨ∗)1/2
]Ψ + VΨ . (9.101)
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Eq.(9.97) shows that the ratio of osmotic to inertial mass turns out to be
a universal constant, the same for all particles: µn/mn = B/A. This can
be traced to a choice of energy, eq.(9.96), that reflects the translational and
rotational symmetries of the configuration space. But why should µn = mn

exactly? To see this we go back to eq.(9.99). We can always change units and
rescale η and τ by some constant κ into η = κη′, τ = τ ′/κ. If we also rescale φ
into φ = φ′/κ, then eqs.(9.98) and (9.99) become

∂tρ = −
∑
n

η′

mn
∂an (ρ∂anφ′) , (9.102)

E[ρ, S] =
∫
d3Nx ρ

(∑
n

[
η′2

2mn
(∂anφ

′)2 +
µnκ

2η′2

8m2
n

(∂an log ρ)2] + V

)
. (9.103)

Following the same steps that led to eq.(9.101), we can introduce a different
wave function Ψ′ = ρ1/2 exp(iφ′) which satisfies

iη′Ψ̇′ =
∑
n

−η′2

2mn
[∇2

n −
(

1− µnκ
2

mn

)
∇2
n(Ψ′Ψ′∗)1/2

(Ψ′Ψ′∗)1/2
]Ψ′ + VΨ′ . (9.104)

Since the mere rescaling by κ can have no physical implications the different
“regraduated” theories are all equivalent and it is only natural to use the sim-
plest one: we choose κ = (A/B)1/2 so that µnκ2 = mn and we can rescale the
old µn to a new osmotic mass µ′n = µnκ

2 = mn.
The net result is that the non-linear terms drop out. Dropping the prime on

Ψ′ and identifying the rescaled value η′ with Planck’s constant ~, leads to the
linear Schrödinger equation,

i~Ψ̇ =
∑
n

−~2

2mn
∇2
nΨ + VΨ . (9.105)

We conclude that for any positive value of the original coefficients µn it is
always possible to regraduate η, φ and µn to a physically equivalent but more
convenient description where the Schrödinger equation is linear and complex
numbers attain a special significance. From this entropic perspective the linear
superposition principle and the complex Hilbert spaces are important because
they are convenient, but not because they are fundamental — a theme that was
also explored in [Caticha 1998].

These considerations remind us of Einstein’s original argument for the equiv-
alence principle: He proposed the complete physical equivalence of a gravita-
tional field with the corresponding acceleration of the reference frame because
this offers a natural explanation of the equality of inertial and gravitational
masses and opens the door to an explanation of gravity in purely geometrical
terms.

Similarly, in the quantum case we propose the complete equivalence of quan-
tum and statistical fluctuations because this offers a natural explanation of the
Schrödinger equation — its linearity, its unitarity, the role of complex numbers,
the equality of inertial and osmotic masses. Furthermore, it opens the door to
an explanation of quantum theory as an example of statistical inference.
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9.8 Entropic time vs. physical time

Now that the dynamics has been more fully developed we should revisit the
question of time. Entropic time has turned out to be useful in ordering the
inferential sequence of small changes but it is not at all clear that this order
has anything to do with the order relative to a presumably more fundamental
“physical” time. If so, why does entropic time deserve to be called ‘time’ at all?

The answer is that the systems we are typically concerned with include, in
addition to the particles of interest, also another system that one might call the
“clock”. The goal is to make inferences about correlations among the particles
themselves and with the various states of the clock. Whether the inferred se-
quence of states of the particle-clock composite agrees with the order in “phys-
ical” time or not turns out to be quite irrelevant. It is only the correlations
among the particles and the clock that are observable and not their “absolute”
order.

This is an idea that demands a more explicit discussion. Here we show how
it gives rise to the notion of simultaneity that turned out to be central to our
definition of an instant in section 9.3.1.

Consider a single particle. From the probability of a single step, eq.(9.10) or
(9.17), we can calculate the probability of any given sequence of (short) steps
{x, x1, . . . , xn, . . .}. Since the path is an ordered sequence of events when two
events lie on the same path it is meaningful to assert that one is earlier (in the
entropic time sense) than the other: xn is earlier than xn+1. The actual path,
however, is uncertain: how do we compare possible events along different paths?
We need a criterion that will allow us to decide whether an event x′ reached
along one path is earlier or later than another event x′′ reached along a different
path. This is where the clock comes in. The role of the clock can be played,
for example, by a sufficiently massive particle. This guarantees that the clock
follows a deterministic classical trajectory xC = x̄C(t) given by eqs.(9.78) and
(9.80) and that it remains largely unaffected by the motion of the particle.

The idea is that when we compute the probability that, say, after n steps the
particle is found at the point xn we implicitly assume that its three coordinates
x1
n, x2

n, and x3
n are attained simultaneously. This is part of our definition of

an instant. We adopt the same definition for composite systems. In particular,
for the particle-clock system, xAn = (xan, x

α
Cn), the coordinates of the particle xan

(a = 1, 2, 3) are taken to be simultaneous with the remaining coordinates that
describe the clock xαCn (α = 4, 5, . . .). Thus, when we say that at the nth step
the particle is at xan while the clock is at xαCn it is implicit that these positions
are attained at the same time.

By “the time is t” we will just mean that “the clock is in its state xC =
x̄C(t).” We say that the possible event that the particle reached x′ along one
path is simultaneous with another possible event x′′ reached along a different
path when both are simultaneous with the same state x̄C(t) of the clock: then
we say that x′ and x′′ happen “at the same time t.” This justifies using the
distribution ρ(x, t) as the definition of an instant of time.

In the end the justification for the assumptions underlying entropic dynamics
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lies in experiment. The ordering scheme provided by entropic time allows one to
predict correlations. Since these predictions, which are given by the Schrödinger
equation, turn out to be empirically successful one concludes that nothing deeper
or more “physical” than entropic time is needed. A similar claim has been
made by J. Barbour in his relational approach to time in the context of classical
dynamics [Barbour 1994].

9.9 Dynamics in an external electromagnetic field

Entropic dynamics is derived from the minimal assumptions that the y variables
are intrinsically uncertain and that motion consists of a succession of short
steps. These two pieces of information are taken into account through the
two constraints (9.7) and (9.8). Special circumstances may however require
additional constraints.

9.9.1 An additional constraint

Consider a single particle placed in an external field the action of which is to
constrain the expected component of displacements along a certain direction
represented by the unit covector na(x). This effect is represented by the con-
straint

〈∆xana(x)〉 = C(x) , (9.106)

where the spatial dependence of C(x) reflects the non-uniform intensity of the
external field. It is convenient to define the magnitude of the external field in
terms of the effect it induces. Thus we introduce the external field

Aa(x) ∝ na(x)
C(x)

(9.107)

and the constraint is
〈∆xaAa(x)〉 = C , (9.108)

where C is some constant that reflects the strength of the coupling to Aa.

9.9.2 Entropic dynamics

The transition probability P (x′|x) is that which maximizes the entropy S[P,Q]
in (9.9) subject to the old constraints plus the new constraint (9.108). The
result is

P (x′|x) =
1

ζ(x, α, β)
eS(x′)− 1

2α∆`2(x′,x)−β∆xaAa(x) , (9.109)

where
ζ(x, α, β) =

∫
dx′ eS(x′)− 1

2α∆`2(x′,x)−β∆xaAa(x) , (9.110)

and the Lagrange multiplier β is determined from the constraint eq.(9.108),

∂

∂β
log ζ(x, α, β) = −C . (9.111)
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From here on the argument follows closely the previous sections. For large
α the transition probability (9.109) can be written as

P (x′|x) ∝ exp
[
− m

2~∆t
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
, (9.112)

where we used (9.23), (9.65), and units have been regraduated to set η = ~.
Therefore, the displacement ∆xa can be expressed in terms of a expected drift
plus a fluctuation, ∆xa = ∆x̄a + ∆wa, where

〈∆xa〉 = ∆x̄a = ba∆t where ba =
~
m
δab[∂bS − βAb] , (9.113)

〈∆wa〉 = 0 and
〈
∆wa∆wb

〉
=

~
m

∆t δab . (9.114)

Once again, for short steps the dynamics is dominated by the fluctuations. The
only difference is the replacement of ∂S by the gauge invariant combination
∂S − βA. Small changes accumulate according to the FP equation (9.51) but
now the current velocity is no longer given by eq.(9.56) but rather by

va =
~
m

( ∂aφ− βAa) , (9.115)

and the FP equation is

ρ̇ = −∂a (ρva) = − ~
m
∂a[ρ(∂aφ− βAa)] , (9.116)

φ is still given by (9.58) and the osmotic velocity (9.53) remains unchanged.
The energy functional is the same as (9.62), but now v is given by eq.(9.115),

E =
∫
dx ρ

(
~2

2m
(∂aφ− βAa)2 +

~2

8m
(∂a log ρ)2 + V

)
, (9.117)

where we set µ = m and η = ~.
It is simplest to start with static external potentials, V̇ = 0 and Ȧ = 0,

so that the energy is conserved, Ė = 0. Just as before after taking the time
derivative, integrating by parts, and imposing that Ė = 0 for arbitrary choices
of ρ̇, we get

~φ̇+
~2

2m
(∂aφ− βAa)2 + V − ~2

2m
∇2ρ1/2

ρ1/2
= 0 . (9.118)

Equations (9.116) and (9.118) are the coupled equations for ρ and φ that describe
entropic dynamics in the external potential Aa.

Setting SHJ = ηφ and taking the classical limit ~→ 0 leads to the classical
Hamilton-Jacobi equation in an external electromagnetic field showing that the
Lagrange multiplier β plays the role of electric charge. More precisely,

β =
e

~c
, (9.119)

where e is the electric charge and c is the speed of light. Thus,
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In entropic dynamics electric charge is a Lagrange multiplier that regu-
lates the response to the external electromagnetic potential Aa.

(If desired we can further separate V into electric and non-electric components,
V = eA0 + V ′, but this is not needed for our present purposes.)

As before, the Schrödinger equation results from combining the functions ρ
and φ into the wave function, Ψ = ρ1/2 exp(iφ). Computing the time derivative
Ψ̇ using eqs.(9.116) and (9.118) leads to the Schrödinger equation,

i~
∂Ψ
∂t

=
~2

2m
(i∂a −

e

~c
Aa)2Ψ + VΨ , (9.120)

The derivation above assumed that energy is conserved, Ė = 0, which is true
when the external potentials are static, V̇ = 0 and Ȧ = 0, but this limitation is
easily lifted. For time-dependent potentials the relevant energy condition must
take into account the work done by external sources: we require that the energy
increase at the appropriate rate,

Ė =
∫
dx ρ(V̇ +

e

c
ρvaȦa) . (9.121)

The net result is that equations (9.118) and (9.120) remain valid for time-
dependent external potentials.

9.9.3 Gauge invariance

We have seen that in entropic dynamics the phase of the wave function receives
a statistical interpretation, φ = S − log ρ1/2. On the other hand, without any
physical consequences, the phase can be shifted by an arbitrary amount,

φ(x, t)→ φ′(x, t) = φ(x, t) + βχ(x, t) , (9.122)

provided the potential is transformed appropriately, Aa → A′a = Aa+∂aχ. This
raises several questions.

First, how is the statistical interpretation of φ affected by the possibility of
gauge transformations? The straightforward answer is that φ reflects a combi-
nation of several effects — the y variables (through their entropy S), the osmotic
effect of diffusion (through the density ρ), and the choice of potential (through
the function χ) — but these separate contributions are not necessarily easy to
disentangle. Indeed, eq.(9.113) for the drift velocity shows that the dynamics
depends on S and on A only through the combination ∂S − βA. Therefore we
can envision two situations that are informationally inequivalent: one agent as-
signs an entropy S and imposes a constraint 〈∆xaAa〉 = C, while another agent
assigns a different entropy S′ and imposes a different constraint 〈∆xaA′a〉 = C.
Remarkably both reach exactly the same physical predictions provided the en-
tropies and potentials are related by S′ = S+βχ and A′ = A+∂χ where χ(x, t)
is some arbitrary function. Thus local phase invariance can be interpreted as
local entropy invariance.
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There is another set of questions that were first raised by T. Wallstrom in
the context of stochastic mechanics [Wallstrom 1989, 1994]. They are concerned
with the single- or multi-valuedness of phases and wave functions. Wallstrom
noted that when stochastic mechanics is formulated à la Nelson [Nelson 1966]
the current velocity ~v is postulated to be the gradient of some locally defined
function φ. Now, being a local gradient does not imply that ~v will also be a global
gradient and therefore both the phases φ and their corresponding wave functions
Ψ will, in general, be multi-valued — which is unsatisfactory. A possible way
out is to formulate stochastic mechanics in terms of an action principle as in
[Guerra Morato 1983]. Then the current velocity is indeed a global gradient
and both phases and wave functions are single-valued. But this is a problem
too: single-valued phases can be too restrictive and exclude physically relevant
states. For example, the usual way to describe states with non-zero angular
momentum is to use multi-valued phases (the azimuthal angle) while requiring
that the corresponding wave functions remain single-valued. The conclusion
is that stochastic mechanics does not lead to the same set of solutions as the
Schrödinger equation; it either produces too many [Nelson 1966] or too few
[Guerra Morato 1983].

Similar objections can be raised in entropic dynamics. What is most inter-
esting — and this appears to have been forgotten — is that in the early days
of quantum mechanics the founders faced exactly the same kind of question:
Why should wave functions be single-valued? The answer we favor is essentially
the same offered by Pauli in the context of standard quantum mechanics [Pauli
1939]. He suggested that the criterion for admissibility for wave functions is
that they must form a basis for a representation of the transformation group
(for example, the rotation group) that happens to be pertinent to the problem
at hand. Pauli’s criterion is extremely natural from the perspective of a theory
of inference: in any physical situation symmetries constitute the most common
and most obviously relevant pieces of information.

Let us be explicit. In entropic dynamics the entropy S(x, t) and the probabil-
ity density ρ(x, t) are single-valued functions. Therefore, a natural choice is that
the phase, φ = S−log ρ1/2, be single-valued too. A situation with non-vanishing
angular momentum can be handled by imposing an additional constraint. For
example, one can use a single-valued phase and an appropriately chosen vec-
tor potential — which might perhaps be a pure gauge, Aa = −∂aχ, where χ
might possibly be multivalued. Alternatively, we can gauge the potential away
to A′a = 0 and use a multi-valued phase, φ′ = S− log ρ1/2 +βχ. Which of these
two equivalent options is to be preferred depends on whether the goal is clarity
of interpretation or simpler mathematics. As for the appropriate choice of po-
tential, Aa = −∂aχ, we adopt Pauli’s criterion: the admissible wave functions
— that is, the various functions (ρ, S, χ) that appear in the formalism — must
form a basis for a representation of the pertinent symmetry group.
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9.10 Is ED a hidden-variable model?

As we have seen a considerable part of quantum theory — perhaps all of it —
can be derived using entropic methods provided we introduce these mysterious
extra variables y. Should we think of entropic dynamics as a hidden-variable
model?

There is a trivial sense in which the y variables are “hidden”: they are not
directly observable.12 But being unobservable is not sufficient to qualify as a
hidden variable. The original motivation behind attempts to construct hidden
variable models was to explain or at least ameliorate certain aspects of quantum
mechanics that clash with our classical preconceptions. For example,
(1) Indeterminism: Is ultimate reality random? Do the gods play dice?
(2) Non-classical mechanics: The secret wish is that a sub-quantum world
will eventually be discovered where nature obeys essentially classical laws.
(3) Non-classical probabilities: It is often argued, for example, that classical
probability fails in the double slit experiment.
(4) Non-locality: Realistic interpretations of the wave function often lead to
the paradoxes as in wave function collapse and EPR correlations.

But the y variables address none of these problems. In the standard view
quantum theory is considered an extension of classical mechanics — indeed, the
subject is called quantum mechanics — and therefore deviations from causal-
ity demand an explanation. In the entropic view, on the other hand, quantum
theory is not mechanics; it is inference — entropic inference is a framework
designed to handle insufficient information. From the entropic perspective inde-
terminism requires no explanation. Uncertainty and probabilities are the norm;
it is certainty and determinism that demand explanations.

In ED there is no underlying classical dynamics — as we saw both quantum
and classical mechanics are derived. The peculiar non-classical effects asso-
ciated with the wave-particle duality arise not so much from the y variables
themselves but rather from the specific non-dissipative diffusion which leads to
a Schrödinger equation. The important breakthrough here was Nelson’s realiza-
tion that diffusion phenomena could be much richer than previously expected
— it can account for wave and interference effects.

It is the whole entropic framework — and not just the y variables — that is
incompatible with the notion of quantum probabilities. From this perspective
it makes as little sense to distinguish quantum from classical probabilities as it
is would be to talk about economic or medical probabilities.

Finally, non-locality is not explained; it is rather accepted as the relevant
information that is necessary for predictions and this information is incorporated
from the start in much the same way that Schrödinger originally did it: by
formulating the theory in configuration space.

Thus, in none of the problems above do the y variables play the role that
hidden variables were meant to play. But the term ‘hidden variable’ has by now

12The y variables are not observable at the current stage of development of the theory. It
may very well happen that once we learn where to look we will find that they have been
staring us in the face all along.
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also acquired a very technical meaning (see e.g. [Harrigan Spekkens 2010]) and
we can ask whether the y variables are hidden in this more technical sense. The
answer, as we argue below, is still no.

Quantum mechanics, in its usual formulation, stipulates rules (the Born rule
and its variations involving density operators) that allow us to calculate the
probability p(k|µ, π) that a system prepared according to a procedure π will yield
an outcome k when subjected to a measurement of type µ. In hidden-variable
models it is assumed that the measurement process reveals pre-existing prop-
erties of the system. A complete specification of all those properties amounts
to specifying the actual “true” state of the system, which we will call the ontic
state and will denote by λ. For example, in classical mechanics the ontic state
λ is a point in phase space. In a hidden variable model λ may include some
variables that can be observed and others that remain hidden.

It is possible that a precisely defined preparation procedure π is not sufficient
to uniquely determine the ontic state λ — perhaps π is noisy. In such cases an
agent will describe its uncertainty about λ through a distribution p(λ|π). It
is also possible that the ontic state λ might not uniquely determine the out-
come of a measurement µ but only its probability, p(k|λ, µ). A straightforward
application of the rules of probability theory implies that

p(k|µ, π) =
∫
dλp(k, λ|µ, π)

=
∫
dλp(k|λ, µ, π)p(λ|µ, π) . (9.123)

The basic assumptions in a hidden-variable model are two. The first is that the
actual outcome of a measurement depends on the measurement µ that is being
performed and on the actual state λ of the system and that, once we are given
λ, the outcome does not depend on the previous preparation π: p(k|λ, µ, π) =
p(k|λ, µ). Thus, λ represents everything that we need to know for the purpose
of future predictions. This is the ontological assumption: Conditional on λ the
future k is independent of the past π. The second assumption is that distribution
of λ depends on the past preparation π and not on what might later be or not
be measured: p(λ|µ, π) = p(λ|π). Such variables λ would be non-contextual —
their distribution is independent of the particular context of measurement µ.
Then

p(k|µ, π) =
∫
dλp(k|λ, µ)p(λ|π) . (9.124)

In summary: In order for a model of QM to be a hidden-variable model it must
prescribe (1) how to calculate the distribution of ontic states p(λ|π) for every
preparation π; (2) it must prescribe the probability of the outcomes k once the
ontic state is given, p(k|λ, µ); and finally (3) the probability of the measurement
outcomes p(k|µ, π) must agree with the prediction of quantum mechanics (the
Born rule).
Examples: The “orthodox” interpretation is that the wave function ψ it-
self provides a complete description of reality. This is the absolute-ψ or the
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complete-ψ model. Here λ = ψ and ψ is something objective and “real” (by
which we do not mean that it is any kind of material or even ethereal substance).
There are no hidden variables except perhaps for the wave function itself — ψ
is not directly observable, but it can be inferred from multiple measurements.
Another example is the de Broglie-Bohm pilot wave theory. Here the ontic state
is given by the particle positions x and by the pilot wave ψ that guides them,
λ = (x, ψ); the wave function ψ is the hidden variable. Of course, all these
models have problems of their own that remain largely unsolved.

Now we can see once again that ED is not a hidden-variable model. We claim
that ED is in fact a model for quantum mechanics: the probabilities p(k|µ, π)
of outcomes k do indeed coincide with the predictions of quantum mechanics.
(Earlier in this chapter we saw that this is true for position measurements,
|ψ(x)|2 = ρ(x); in the next chapter the result will be generalized for quantities
other than position.) In ED the ontic state consists of the positions x of the
particles and the values of the y variables, λ = (x, y). But entropic dynamics
provides no prescription to calculate the distribution of the ontic state p(λ|π) =
p(x, y|π). Indeed, we can write

p(x, y|π) = p(x|π)p(y|x, π) = ρ(x|π)p(y|x) . (9.125)

The distribution ρ(x|π) following a preparation π can be calculated using |ψ(x)|2 =
ρ(x) but p(y|x) remains always unknown — what we can calculate is the entropy
S(x) of the y variables and not their actual distribution, p(y|x). Furthermore,
unlike a true hidden-variable model where if we only knew the ontic state we
would know the distribution of experimental outcomes, ED provides no such
prescription. What we need to know is the pair ρ(x) and S(x) and not the pair
(x, y). In fact actual knowledge of intermediate values of (x, y) would lead to
results in disagreement with QM. This is quite analogous to the disruption in
the interference effects in a double-slit experiment when one knows which slit
the particle goes through. Therefore the y variables are not hidden variables.

We conclude with a brief remark on the formal similarity between ED and
both Nelson’s stochastic mechanics [Nelson 1985] and the de Broglie-Bohm pilot
wave theory [Bohm HiIley 1993, Holland 1993]. Setting ~φ = SHJ all these three
theories are described by the same continuity equation, eq.(9.75),

ρ̇ = −∂a (ρva) where va = − 1
m
∂aSHJ , (9.126)

and a quantum Hamilton-Jacobi equation,

ṠHJ +
1

2m
(∂aSHJ)2 + V + VQ = 0 where VQ = − ~2

2m
∇2ρ1/2

ρ1/2
, (9.127)

which is the classical Hamilton-Jacobi equation supplemented by a “quantum’
potential. Since this is the only term that contains ~ it is tempting to say that
it is the quantum potential that is responsible for quantum behavior.

The fact that these theories share such close formal similarity is not at
all surprising: If they are to reproduce the same Schrödinger equation it is
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inevitable that at some point they have to start agreeing somewhere. The
similarity, however, ends there.

Both Nelson’s and Bohm’s mechanics are meant to reflect “reality” and this
raises the standard for what constitutes a satisfactory explanation. In stochastic
mechanics particles follow Brownian trajectories. Their irregular motion is due
to some underlying and as yet unidentified background random field. A critical
difficulty is to construct a believable classical model that reproduces the non-
local correlations induced by the quantum potential. Another difficulty is the
requirement that the current velocity is the gradient of a scalar field. This
assumption is introduced in a totally ad hoc manner and it turns out, by the
way, that is not even universally true — as seen in eq.(9.115) it fails in the
presence of electromagnetic fields.

In Bohmian mechanics the particles are supposed to follow smooth causal
trajectories along the gradient of the phase. This is explained by accepting
that the wave function is an objectively real entity that can actually push the
particles around — it is not clear however why the particles do not react back.

Purely epistemic theories, however, carry a much lighter explanatory burden.
One is not required to explain what it is that pushes the particles around;
it is merely sufficient to admit ignorance and accept that the particles could
go anywhere subject to a few very natural constraints — motion has to be
continuous; there exists other stuff in the world (represented by the y variables)
which eventually explains that the current velocity is the gradient of a scalar
field; and the statistical manifold M does not have to remain frozen.13 In ED
the probability density ρ through its gradient — the osmotic “force” — has no
causal power over the motion of the particles. Its role is purely epistemic: what
it does influence is our beliefs about where the particles are most likely to be
found.

9.11 Summary and Conclusions

Our goal has been to derive quantum theory as an example of entropic inference.
The challenge is to develop a framework that clarifies the conceptual difficulties
that have plagued quantum theory since its inception while still reproducing its
undeniable experimental successes. This means that to the extent that what has
been derived is quantum mechanics and not some other theory we should not
expect predictions that deviate from those of the standard quantum theory —
at least not in the non-relativistic regime discussed in this work. On the other
hand, the motivation behind this whole program lies in the conviction that it is
the clarification and removal of conceptual difficulties that will eventually allow
us to extend physics to other realms — gravity, cosmology — where the status
of quantum theory is more questionable.

13The particular form of the energy functional begs, admittedly, for a more satisfactory
justification. We suspect, however, that a proper justification will require us to dig deeper —
at the very least, relativity should be included in the picture.
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The framework of entropic inference is of general applicability. Its applica-
tion to any particular problem requires assumptions that specify the intended
subject matter and those pieces of information that are considered relevant.
The main assumptions can be summarized as follows:

(a) The goal is to predict the positions x of some point particles. Since
the information available is limited we can at best obtain a probability
distribution ρ(x) in the configuration space X . We assume that X is flat,
and that it is isotropic or anisotropic depending on whether the particles
are identical or not.

(b) We assume that the world includes other things in addition to the parti-
cles: these extra things are described by the y variables that can influence
and in their turn can be influenced by the particles. The uncertainty in
the values of y is described by distributions p(y|x) in a statistical manifold
M. The theory is robust in the sense that its predictions are insensitive
to most details about the y variables.

(c) We assume that large changes result from the accumulation of many
successive short steps. The transition probability for a short step P (x′|x)
is found using the method of maximum entropy. This requires assump-
tions about the prior (which we take to be uniform) and constraints
(that changes happen continuously and that after each short step the
new p(y′|x′) remains within the same statistical manifoldM). The result
is that the dynamics of the particles is driven by the entropy S(x) of the
extra variables.

(d) A notion of time is introduced in order to keep track of the accumulation
of small changes. This requires assumptions about what constitutes an
instant and about how time is constructed as a succession of such instants.
The choice of interval between instants is a matter of convenience — we
choose a notion of duration that reflects the translational symmetry of the
configuration space. The result is that the distribution ρ evolves according
to a Fokker-Planck equation.

(e) We assume that the particles react back and affect the entropy S(x)
of the extra variables in such a way that there is a conserved “energy”
E[ρ, S] = const. The specifics of this interaction are described through
the functional form of E[ρ, S].

(f) Electromagnetic interactions are described by including an additional
constraint on the expected displacement along a certain field Aa(x).

No further assumptions are made. The statistical model is specified by sev-
eral parameters, {σ2

n, τ, A,B, βn}. The anisotropy of configuration space for
non-identical particles is parametrized by σ2

n with n = 1 . . . N ; τ defines units
of time; A and B parametrize the relative strengths of the current and osmotic
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terms in the energy functional; and, finally, βn are Lagrange multipliers associ-
ated to the constraints for motion in electromagnetic fields. These parameters
can be suitably regraduated and combined with each other into the familiar set
which includes the masses and charges of the particles and Planck’s constant.

We conclude with a summary of our conclusions.

On epistemology vs. ontology: Quantum theory has been derived as an ex-
ample of entropic dynamics. What we have is a model. Within this model
the positions of the particles and the values of the y variables are meant
to be real. Our “limited information about reality” is represented in the
probabilities as they are updated to reflect the physically relevant con-
straints. The wave function ψ is fully epistemic — which means neither
fully subjective nor fully objective.

Quantum non-locality: Entropic dynamics may appear classical because no
“quantum” probabilities were introduced. But this is deceptive. Probabil-
ities, in this approach, are neither classical nor quantum; they are merely
tools for inference. Phenomena that would normally be considered non-
classical, such as non-local correlations, emerge naturally from constraints
in configuration space which include the osmotic or quantum potential
terms in the energy functional.

On interpretation: Ever since Born the magnitude of the wave function |Ψ|2
has received a statistical interpretation. Within the entropic dynamics
approach the phase of the wave function is also recognized as a feature
of purely statistical origin. When electromagnetic interactions are intro-
duced the gauge invariance is interpreted as an invariance under local
entropy transformations.

On dynamical laws: The principles of entropic inference form the backbone
of this approach to dynamics. The requirement that an energy be con-
served is an important piece of information (i.e., a constraint) which will
probably receive its full justification once a completely relativistic version
of entropic dynamics is developed.

On time: The derivation of laws of physics as examples of inference requires
an account of the concept of time. Entropic time is modelled as an or-
dered sequence of instants with the natural measure of duration chosen to
simplify the description of motion. We argued that whether the entropic
order agrees with an objective order in an external physical time turns out
to be an empirically inaccessible question, and in this sense, the notion of
a physical time is not needed. Most interestingly, the entropic model of
time explains the arrow of time.

Equivalence principle: The derivation of the Schrödinger equation from en-
tropic inference led to an interesting analogy with general relativity. The
statistical manifoldM is not a fixed background but actively participates
in the dynamics.





Chapter 10

Topics in Quantum Theory

In the Entropic Dynamics (ED) framework quantum theory is derived as an
application of the method of maximum entropy. In this chapter the immedi-
ate goal is to demonstrate that the entropic approach to quantum theory can
prove its worth through the clarification and removal of conceptual difficulties.
We will tackle three topics that are central to quantum theory: the quantum
measurement problem, the introduction and interpretation of observables other
than position, including momentum, and the corresponding uncertainty rela-
tions. The presentation follows closely the work presented in [Johnson Caticha
2011; Nawaz Caticha 2011]. More details can be found in [Johnson 2011; Nawaz
2012].

10.1 The quantum measurement problem

Quantum mechanics introduced several new elements into physical theory. One
is indeterminism, another is the superposition principle embodied in both the
linearity of the Hilbert space and the linearity of the Schrödinger equation. The
founders faced the double challenge of locating the source of indeterminism and
of explaining why straightforward consequences of the superposition principle
are not observed in the macroscopic world. The quantum measurement problem
embodies most of these questions.1 One is the problem of macroscopic entan-
glement; another is the problem of definite outcomes. How does a measurement
yield a definite outcome or how do events ever get to happen? Are the values
of observables created during the act of measurement?

To illustrate the nature of the problem consider the following idealization,
due to von Neumann, of the process of measurement.2 A generic state |Ψ〉 of a
quantum system S can be represented in a basis {|sn〉} that spans the Hilbert

1A clear formulation of the problem is [Wigner 1963]; see also [Ballentine 1998]. Modern
reviews with references to the literature appear in [Schlosshauer 2004] and [Jaeger 2009].

2This brief reminder is definitely too brief for those who do not already have some famil-
iarity with quantum mechanics. See [Ballentine 1998].
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space HS . The system interacts with an apparatus A that is meant to measure
a particular observable. According to von Neumann the apparatus A is also a
quantum system and its states can be represented in a basis {|an〉} that spans
the Hilbert space HA. In order to be a good measuring device the states |an〉
are assumed to represent states of A that are macroscopically distinguishable
so they can play the role of the positions of a “pointer”.3

The measurement consists of allowing systems S and A to interact. Their
joint time evolution, which is described by the appropriate Schrödinger equation,
can be represented by a unitary evolution operator ÛA. The apparatus A is
designed so that when system S is, for example, in state |sn〉 and the apparatus
is in its initial “ready to measure” reference state |aref〉 then their joint evolution
makes the reference state |aref〉 evolve to the appropriate pointer position |an〉,

ÛA|sn〉|aref〉 = |sn〉|an〉 . (10.1)

Since the apparatus A is macroscopic we can read |an〉 and we therefore infer
that the original state of S was |sn〉. Plenty of generalizations are possible —
for example, it is not necessary that the final state of S coincide with the initial
state |sn〉 — but this toy model is already sufficient for our purposes.

The problem arises when the system S is in a generic superposition state,

|Ψ〉 =
∑
n
cn|sn〉 . (10.2)

Then, since the evolution operator ÛA is a linear operator the coupling to the
measuring device A leads to the state

ÛA|Ψ〉|aref〉 = ÛA
∑
n
cnÛA|sn〉|aref〉 =

∑
n
cn|sn〉|an〉 , (10.3)

which is a linear superposition of macroscopically distinct quantum states: the
pointer can’t make up its mind about which direction to point. Note that this
is not saying that the pointer fluctuates as if there was some noise present. It
is not that the pointer jumps from one position to another: according to the
orthodox interpretation of quantum mechanics the pointer is both in none and
in all positions at the same time. Nobody has ever seen such a monstrosity.
The pointer has not recorded a definite outcome. Since superpositions evolve
to superpositions a linear quantum evolution will never allow definite outcomes
to occur.
Remark: The fact that linear time evolution would lead to such grotesque
states4 was noticed by both Schrödinger and Einstein very early in the history
of quantum mechanics. It is one of the main reasons why Einstein advocated
an epistemic or statistical interpretation of quantum theory instead of an on-
tic interpretation such as the orthodox or Copenhagen interpretations. In the

3The center of mass of an N -particle body can, for sufficiently large N , play the role of the
pointer variable. (See section 9.6.2.)

4The term ‘grotesque’ to denote such macroscopic superpositions strikes me as particularly
apt. It was suggested by L. Schulman.
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famous example of Schrödinger’s cat the microscopic system S is a radioactive
atom and the macroscopic apparatus A is a cat. The time evolution is arranged
so that as long as the atom remains undecayed (state |sU 〉) the cat remains alive
(state |aalive〉), but if the atom decays (state |sD〉) the cat dies (state |adead〉).
The normal time evolution of an atom will lead to situations where the atom is
in a superposition of decayed and not decayed. Therefore,

|sU 〉|aalive〉 −→ (cU |sU 〉+ cD|sD〉)|aalive〉 −→ cU |sU 〉|aalive〉+ cD|sD〉|adead〉 ,
(10.4)

which describes a grotesque state — the cat is “undead”.
An early “solution” due to von Neumann [Ballentine 1998] was to postulate a

dual mode of wave function evolution. Quantum systems would normally follow
a continuous and deterministic evolution according to the Schrödinger equation
except during the process of measurement process when the wave function would
suffer a discontinuous and stochastic jump into one of the states in the super-
position in eq.(10.3). It is in the latter process — the wave function collapse
or projection postulate — where probabilities are introduced. (For an excellent
criticism of the projection postulate see [Ballentine 1990].)

Other proposed solutions involve denying that collapse ever occurs which
has led to the many worlds, the many minds, and the modal interpretations.
These issues and others (such as the preferred basis problem) can nowadays
be tackled within the decoherence program [Zurek 2003; Schlosshauer 2004]
but with one strong caveat. Decoherence works but only at the observational
level — it saves the appearances. In this view quantum mechanics is merely
empirically adequate and it fails to provide an objective picture of reality. In
ontic interpretations of quantum theory this is not acceptable.

Our goal here is to revisit the problem of measurement from the fresh per-
spective of Entropic Dynamics (ED) which introduces some new elements of its
own. The general attitude is pragmatic: physical theories are mere models for
inference. They do not attempt to mirror reality and, therefore, all we want
is that they be empirically adequate, that is, good “for all practical purposes”.
This is not just the best one can do; since ultimate reality is inaccessible, it is
the best that one can ever hope to do. Therefore in the entropic framework
the program of decoherence is completely unobjectionable. But this is not the
direction that we will pursue here.

Once one accepts quantum theory as a theory of inference the dichotomy
between two distinct modes of wave function evolution is erased. As we shall
see below the continuous unitary evolution and discontinuous collapse corre-
spond to two modes of processing information, namely the entropic updating in
infinitesimal steps (discussed in the previous chapter) and Bayesian updating in
discrete finite steps. Indeed, as shown in section 6.6 these two updating rules
are not qualitatively different; they are special cases within a broader scheme
of entropic inference.

The other element that is significant for our present purpose is that in en-
tropic dynamics particles have only one attribute — position. Particles have
neither momentum nor energy. Unlike the standard interpretation of quantum
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mechanics, in ED the positions of particles have definite values and just as
in classical physics these values are not created by the act of measurement.5

Therefore the problem of definite outcomes does not arise. Below we will in-
troduce other so-called “observables” but only as a convenient way to describe
more complex position measurements. As we shall see these observables will
turn out to be attributes not of the particles but of the probability distributions
and their values are effectively created by the act of measurement. This opens
the opportunity of interpreting all other “observables” in purely informational
terms.

In the standard approach to quantum theory it is postulated that observables
are represented by self-adjoint operators acting on a suitable Hilbert space. In
fact, it is often asserted that all self-adjoint operators are in principle observ-
able. In the entropic framework Hilbert spaces are no longer fundamental which
means that self-adjoint operators lose their fundamental status too — they are
only useful to the extent that they aid in the analysis of complex position mea-
surements. And there is more: along with Hilbert spaces and most operators,
Bohr’s doctrine of complementarity must also be abandoned. The point is that
once momentum is not a description of reality it is no longer clear in what sense
the pair position/momentum could possibly be said to complement each other.

10.2 Observables other than position

In practice the measurement of position can be technically challenging because it
requires the amplification of microscopic details to a macroscopically observable
scale. However, no intrinsically quantum effects need be involved: the position of
a particle has a definite, albeit unknown, value x and its probability distribution
is, by construction, given by the Born rule, ρ(x) = |Ψ(x)|2. We can therefore
assume that suitable position detectors are available. This is not in any way
different from the way information in the form of data is handled in any other
Bayesian inference problem. The goal there is to make an inference on the
basis of given data; the issue of how the data was collected or itself inferred is
not under discussion. If we want we can, of course, address the issue of where
the data came from but this is a separate inference problem that requires an
independent analysis. In the next section we offer some additional remarks of
the amplification problem from a Bayesian perspective.

Our main concern here is with observables other than position: how they are
defined and how they are measured.6 For notational convenience we initially
consider the case of a particle that lives on a lattice; the measurement of position
leads to a discrete set of possible outcomes. The probabilities of the previously

5In this work ED has been developed as a model for the quantum mechanics of particles.
The same framework can be deployed to construct models for the quantum mechanics of fields,
in which case it is the fields that are “real” and have well defined (but possibly unknown)
values.

6See [Caticha 2000; Johnson 2011; Johnson Caticha 2011].
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continuous positions

ρ(x) dx = |〈x|Ψ〉|2 dx become pi = |〈xi|Ψ〉|2 . (10.5)

If the state is

|Ψ〉 =
∑
i

ci|xi〉 then pi = |〈xi|Ψ〉|2 = |ci|2 . (10.6)

Since position is the only objectively real quantity there is no reason to define
other observables except that they may turn out to be convenient when consid-
ering more complex experiments in which the particle is subjected to additional
interactions, say magnetic fields or diffraction gratings, before it reaches the
position detectors. Suppose the interactions within the complex measurement
device A are described by the Schrödinger eq.(9.93), that is, by a particular
unitary evolution ÛA. The particle will be detected with certainty at position
|xi〉 provided it was initially in a state |si〉 such that

ÛA|si〉 = |xi〉 . (10.7)

Since the set {|xi〉} is orthonormal and complete, the corresponding set {|si〉}
is also orthonormal and complete,

〈si|sj〉 = δij and
∑
i|si〉〈si| = Î . (10.8)

Now consider the effect of this complex detector A on some generic initial state
vector |Ψ〉 which can always be expanded as

|Ψ〉 =
∑
ici|si〉 , (10.9)

where ci = 〈si|Ψ〉 are complex coefficients. The state |Ψ〉 will evolve according
to ÛA so that as it approaches the position detectors the new state is

ÛA|Ψ〉 =
∑
iciÛA|si〉 =

∑
ici|xi〉 . (10.10)

which, invoking the Born rule for position measurements, implies that the prob-
ability of finding the particle at the position xi is

pi = |ci|2 . (10.11)

Thus, the probability that the particle in state ÛA|Ψ〉 is found at position xi is
|ci|2.

But we can describe the same outcome from a point of view in which the inner
workings of the complex detector are not emphasized; the complex detector is
a black box. The particle is detected in state |xi〉 as if it had earlier been in
the state |si〉. We adopt a new language and say, perhaps inappropriately, that
the particle has effectively been “detected” in the state |si〉, and therefore, the
probability that the particle in state |Ψ〉 is “detected” in state |si〉 is |ci|2 =
|〈si|Ψ〉|2 — which reproduces Born’s rule for a generic measurement device.
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The shift in language is not particularly fundamental — it is merely a matter of
convenience but we can pursue it further and assert that this complex detector
“measures” all operators of the form Â =

∑
iλi|si〉〈si| where the eigenvalues λi

are arbitrary scalars.
Remark: Note that when we say we have detected the particle at xi as if it
had earlier been in state |si〉 we are absolutely not implying that the particle
was in the particular state |si〉 — this is just a figure of speech. The actual
state is |Ψ〉 — and this is not the actual physical state of the particle; it is an
epistemic state represented by probabilities and entropies.
Remark: Note that it is not necessary that the eigenvalues of the operator Â
be real — they could be complex numbers. What is necessary is that its eigen-
vectors |si〉 be orthogonal. This means that the Hermitian and anti-Hermitian
parts of Â will be simultaneously diagonalizable. Thus, while Â does not have
to be Hermitian (Â = Â†) it must certainly be normal, that Â must commute
with its Hermitian adjoint Â, that is, ÂÂ† = Â†Â.

Note also that if a sentence such as “a particle has momentum ~p ” is used
only as a linguistic shortcut that conveys information about the wave function
before the particle enters the complex detector then, strictly speaking, there
is no such thing as the momentum of the particle: the momentum is not an
attribute of the particle but rather it is a statistical attribute of the probability
distribution ρ(x) and entropy S(x), a point that is more fully explored later in
this chapter.

The generalization to the continuous configuration space is straightforward.
For simplicity we consider a discrete one-dimensional lattice and take the limit as
the lattice spacing ∆x = xi+1−xi → 0. If we call s the eigenvalue corresponding
to |s〉, that is Â|s〉 = s|s〉, then the corresponding limit is ∆si = si+1 − si → 0.
The discrete completeness relation, eq. (10.8),

∑
i∆si

|si〉
(∆si)1/2

〈si|
(∆si)1/2

= Î becomes
∫
ds |s〉〈s| = Î , (10.12)

where we defined
|si〉

(∆si)1/2
→ |s〉 . (10.13)

We again consider a measurement device that evolves eigenstates |s〉 of the
operator Â into unique position eigenstates |x〉, ÛA|s〉 = |x〉. The mapping from
x to s can be represented by an appropriately smooth function s = g(x). In the
limit ∆x→ 0, the orthogonality of position states is expressed by a Dirac delta
distribution,

〈xi|
∆x1/2

|xj〉
∆x1/2

=
δij
∆x

→ 〈x|x′〉 = δ(x− x′) . (10.14)

An arbitrary wave function can be expanded as

|Ψ〉 =
∑
i∆si

|si〉
∆s1/2

i

〈si|Ψ〉
∆s1/2

i

or |Ψ〉 =
∫
ds |s〉 〈s|Ψ〉 . (10.15)
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The unitary evolution ÛA of the wave function leads to

ÛA|Ψ〉 =
∑
iÛA|si〉〈si|Ψ〉 =

∑
i|xi〉〈si|Ψ〉

=
∑
i∆x

|xi〉
∆x1/2

〈si|Ψ〉
∆s1/2

i

(
∆si
∆x

)1/2

→
∫
dx |x〉 〈s|Ψ〉| ds

dx
|1/2, (10.16)

so that

pi = |〈xi|ÛA|Ψ〉|2 = |〈si|Ψ〉|2 → ρ(x)dx = |〈s|Ψ〉|2| ds
dx
| dx = ρA(s)ds .

(10.17)

Thus, “the probability that the particle in state ÛA|Ψ〉 is found within the range
dx is ρ(x)dx ” can be rephrased as “the probability that the particle in state
|Ψ〉 is found within the range ds is ρA(s)ds ” where

ρA(s)ds = |〈s|Ψ〉|2 ds , (10.18)

which is the continuum version of the Born rule for the observable Â.
In the standard interpretation of quantum mechanics Born’s rule is a postu-

late; within ED it is the natural consequence of unitary time evolution and the
hypothesis that all measurements are ultimately position measurements. This
raises the question of whether our scheme is sufficiently general to encompass
all measurements of interest. While there is no general answer that will address
all cases — who can, after all, even list all the measurements that future physi-
cists might perform? — we can, nevertheless, ask whether our scheme includes
a sufficiently large class of interesting measurements. How, for example, does
one measure those observables for which there is no unitary transformation that
maps its eigenstates to position eigenstates? Every case demands its own spe-
cific analysis. For example, how does one measure the energy of a free particle?
Earlier we pointed out that a particular measurement device characterized by
eigenvectors {|s〉} measures all operators of the form Â =

∫
ds λ(s)|s〉 〈s|. There-

fore the same device that measures the momentum p̂ of a particle (e.g., using a
magnetic field or a diffraction grating followed by a position detector such as a
photographic plate or a photoelectric cell) can also be used to infer the energy
Ĥ = p̂2/2m of a free particle.

Here is a trickier example: It is not so easy to place a probe inside the atom,
so how does one measure the energy of an electron that is bound to an atom?
We take a hint from the way such experiments are typically done in practice:
What is measured is the energy of photons (which, being free particles, is not
problematic) emitted in transitions between the bound states. The energy of
the bound particle is never measured directly; it is inferred. The whole process
is a special case of the standard scheme in which the system of interest and
the pointer variable of an apparatus become correlated in such a way that
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observation of the pointer allows one to infer a quantity of interest. For example,
in a Stern-Gerlach experiment the particle’s position is the pointer variable
which allows one to infer its spin.

The difficulty with the standard von Neumann interpretation is that it is
not clear at what stage the pointer variable “collapses” and attains a definite
value. This is precisely the difficulty of principle that is resolved in the entropic
approach: the pointer variable is a position variable too and therefore always
has a definite value.

10.3 Amplification

The technical problem of amplifying microscopic details so they can become
macroscopically observable is usually handled with a detection device set up in
an initial unstable equilibrium. The particle of interest activates the amplifying
system by inducing a cascade reaction that leaves the amplifier in a definite
macroscopic final state described by some pointer variable a.

A state |si〉 of the system S evolves to a position xi and the goal of the ampli-
fication process is to infer the value xi from the observed value aj of the pointer
variable. The design of the device is deemed successful when xi and aj are suit-
ably correlated and this information is conveyed through a likelihood function
P (aj |xi). An ideal amplification device would be described by P (aj |xi) = δji.
Then the value xi can be inferred following a standard application of Bayes rule,

P (xi|aj) = P (xi)
P (aj |xi)
P (aj)

. (10.19)

The point of these considerations is to emphasize that there is nothing in-
trinsically quantum mechanical about the amplification process. The issue is
one of appropriate selection of the information (in this case aj) that happens to
be relevant to a certain inference (in this case xi). A successful inference is, of
course, a matter of clever design: a skilled experimentalist will design the device
so that no spurious correlations — whether quantum or otherwise — nor any
other kind of interfering noise will stand in the way of inferring xi.

10.4 But isn’t the measuring device a quantum
system too?

von Neumann famously drew a boundary line between the quantum and the
classical. One side of the boundary is governed by quantum mechanics with
a superposition principle and a unitary and linear time evolution given by the
Schrödinger equation. The other side is governed by classical physics, possibly
by classical statistical mechanics — it is the instability of the macroscopic device
that introduces the stochastic element. Our treatment of the amplifying system
appears to be drawing a von Neumann boundary too; and in a sense, it is.
However, the boundary drawn here is not between a classical reality on one side
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and a quantum reality on the other — it is between the microscopic particle with
a definite but unknown position and an amplifying system skillfully designed so
its pointer has a definite position at all times while the remaining microscopic
degrees of freedom turn out to be of no interest. In fact, the dividing line can be
drawn anywhere: the amplifier itself can be treated as a fully quantum system
too and, as we argue below, this makes absolutely no difference. (See [Johnson
2011].)

The state of the apparatus can be expressed in the position basis {|i〉|µ〉}
where |i〉 represents the pointer position and |µ〉 represents the positions of all
the other microscopic degrees of freedom. (It is possible to make the model more
realistic and consider pointer variables with positions defined over a range of
values instead of a sharply defined |i〉, but this simple model is already sufficient
to illustrate our point.)

The initial full state of the apparatus A in its reference position and ready
to take the next measurement is described by

|aref〉 =
∑
µ
Cµ |r〉|µ〉 (10.20)

where the state |r〉 represents the reference position of the pointer. (We write
the superposition as a discrete sum merely to simplify the notation.) The prob-
abilities |Cµ|2 are, of course, normalized,∑

µ
|Cµ|2 = 1 . (10.21)

Coupling this apparatus A in a particular state |r〉|µ〉 to the system S in the
state |si〉 leads to some final state

ÛA|si〉|r〉|µ〉 =
∑
jν

C
(iµ)
jν |xj〉|i〉|ν〉 , (10.22)

where the particle and the apparatus are correlated in some very complicated
way. Note that the apparatus has been cleverly designed so that the macro-
scopically observable position of the pointer |i〉 allows us to infer that the initial
state of the system S was the state |si〉. Since ÛA is unitary the probabilities
remain normalized, ∑

jν

|C(iµ)
jν |

2 = 1 . (10.23)

When the system S is in a generic superposition |Ψ〉 =
∑
ici|si〉 and the appa-

ratus is in the superposition |aref〉 their coupling leads to the state

ÛA|Ψ〉|aref〉 = ÛA
∑
i

ci |si〉
∑
µ
Cµ|r〉|µ〉

=
∑
iµ

ciCµ ÛA|si〉|r〉|µ〉

=
∑
iµ

ciCµ
∑
jν

C
(iµ)
jν |xj〉|i〉|ν〉

=
∑
iµjν

ciCµ C
(iµ)
jν |xj〉|i〉|ν〉 (10.24)
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The states on the right hand side are all position eigenstates, therefore the
probability that the pointer variable is at position i while the other (microscopic
and therefore unobservable) degrees of freedom take values xj (for the particle)
and ν (for the apparatus) is

P (xj , i, ν) = |
∑
µ
ciCµ C

(iµ)
jν |

2 (10.25)

= |ci|2 |
∑
µ
Cµ C

(iµ)
jν |

2 . (10.26)

Since ÛA is unitary these probabilities are normalized so that∑
jiν

P (xj , i, ν) =
∑
i

|ci|2
∑
jν

|
∑
µ
Cµ C

(iµ)
jν |

2 = 1 , (10.27)

which, using ∑
i

|ci|2 = 1 , (10.28)

implies that ∑
jν

|
∑
µ
Cµ C

(iµ)
jν |

2 = 1 . (10.29)

But we are only interested in the probability of i. Therefore, marginalizing over
xj and ν,

P (i) =
∑
jν

P (xj , i, ν) (10.30)

= |ci|2
∑
jν

|
∑
µ
Cµ C

(iµ)
jν |

2 , (10.31)

which, using eq.(10.29), gives

P (i) = |ci|2 . (10.32)

This coincides with the previous result, eq.(10.11) and concludes our proof: If
we want we can treat the apparatus A in full quantum detail, but since the
microscopic degrees of freedom are not relevant they make no difference.

Let us emphasize the main point once again: in entropic dynamics mea-
surements yield definite outcomes because positions, whether macroscopic or
otherwise, always have definite values.

10.5 Momentum in Entropic Dynamics

When quantum mechanics was invented a central problem was to identify the
concept that would in the appropriate limit correspond to the classical momen-
tum. We face an analogous (but easier) problem: our goal is to identify what
concept may reasonably be called momentum within the entropic framework.
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Since the particle follows a Brownian non-differentiable trajectory it is clear
that the classical momentum md~x/dt tangent to the trajectory cannot be de-
fined. Nevertheless, four different notions of momentum can be usefully intro-
duced.

First, there is the usual notion of momentum, already familiar from the
standard quantum formalism, which is represented as a differential operator:
The quantum momentum is the generator of infinitesimal translations,

~pq = −i~~∇ . (10.33)

The other obvious momentum candidates correspond to each of the various
velocities available to us:
The drift momentum is associated to the velocity with which probability
flows due to the entropy gradient,

~pd = m~b = ~~∇S , (10.34)

where ~b is the drift velocity given in eq.(9.26) and (9.65).
The osmotic momentum is associated to the velocity with which probability
flows due to diffusion,

~po = m~u = −~~∇ log ρ1/2 . (10.35)

(See eq.(9.53) or (9.66).)
The current momentum is associated to the velocity of total probability flow,

~pc = m~v = ~~∇φ where φ = S − log ρ1/2 . (10.36)

(See eqs.(9.54) and (9.56).)
What are these mathematical objects? Why should we care about them? Should
any of them be called ‘momentum’?

Perhaps most important feature of all three of these notions of momentum is
that they are expressed in terms of probability ρ and entropy S. This makes it
explicit that they are not attributes associated to the particles but rather they are
statistical concepts associated to the state of incomplete knowledge of the rational
agent engaged in doing inference. This is precisely in the spirit of the previous
sections where we argued that the only actual observables are the positions of
the particles, that all measurements are ultimately position measurements.

Notice also that the three momenta ~pd(~x), ~po(~x), and ~pc(~x) are local func-
tions of ~x and this makes them conceptually very different from the differential
operator ~pq. The usual language adopted in quantum mechanics is that in a
generic state Ψ(~x) the momentum does not have a definite value. It is only in
the eigenstates of ~pq,

~pq e
i~k·~r = ~~k ei~k·~r (10.37)

that the momentum has a definite value, namely, the eigenvalue ~~k. Even here
note that the definite value ~~k is not localized: it is associated to the wave
function ei

~k·~r as a whole and not to any specific location ~x.
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In summary, these momenta are neither the classical md~x/dt nor the quan-
tum momentum, −i~~∇. To explore their differences and similarities we find
relations among these four momenta and the corresponding uncertainty rela-
tions. The results below show a close formal similarity to analogous relations
derived in the context of Nelson’s stochastic mechanics.7

10.5.1 Expected values

The three momenta are not independent. They are related by eq.(9.54)

va = ba + ua =⇒ ~pc = ~pd + ~po . (10.38)

The first important theorem is rather trivial: the expectation of the osmotic
momentum vanishes. Indeed, using (10.35) and the fact that ρ vanishes at
infinity,

〈pao〉 = −~
∫
d3x ρ ∂a log ρ1/2 = −~

2
∫
d3x ∂aρ = 0 . (10.39)

The immediate consequence is that 〈pac 〉 = 〈pad〉.
To study the connection to the quantum mechanical momentum we calculate

〈paq 〉 =
∫
d3xΨ∗

~
i
∂a Ψ . (10.40)

Using Ψ = ρ1/2eiφ, (10.39) and (10.36) one gets

〈paq 〉 = −i~
∫
d3xρ

(
∂a log ρ1/2 + i∂aS − i∂a log ρ1/2

)
= ~ 〈∂aS〉 = 〈pac 〉. (10.41)

Therefore
〈~pq〉 = 〈~pc〉 = 〈~pd〉 , (10.42)

the expectations of quantum momentum, current momentum and drift momen-
tum coincide.

10.5.2 Uncertainty relations

We start by recalling a couple of definitions and an inequality. The variance of
a quantity A is

varA = 〈(A− 〈A〉)2〉 =
〈
A2
〉
− 〈A〉2 , (10.43)

and its covariance with B is

cov (A,B) = 〈(A− 〈A〉) (B − 〈B〉)〉 = 〈AB〉 − 〈A〉 〈B〉 . (10.44)

The general form of uncertainty relation to be used bellow follows from the
Schwarz inequality,

〈a2〉〈b2〉 ≥ |〈ab〉|2 (10.45)
7See [Nelson 1985; de Falco et al 1982; De Martino et al 1984; Golin 1985, 1986] and also

the Hall-Reginatto “exact uncertainty” formalism [Hall Reginatto 2002].
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or, 〈
(A− 〈A〉)2

〉〈
(B − 〈B〉)2

〉
≥ |〈(A− 〈A〉) (B − 〈B〉)〉|2 , (10.46)

so that,
(varA) (varB) ≥ cov2 (A,B) . (10.47)

Next we apply these notions to the various momenta. In the context of stochastic
mechanics an analogous calculation was given in [de Falco et al 1982; Golin
1985].

Uncertainty relation for osmotic momentum

For simplicity we consider the one-dimensional case. The generalization to many
dimensions is immediate. Eq. (10.47) gives

(varx) (var po) ≥ cov2 (x, po) . (10.48)

Using (10.35) and (10.39) we have

cov (x, po) = 〈xpo〉 − 〈x〉〈po〉 = −~
∫
dx ρx∂ log ρ1/2 =

~
2
. (10.49)

Therefore,

(varx) (var po) ≥ (
~
2

)2 or ∆x∆po ≥
~
2
, (10.50)

which resembles the Heisenberg uncertainty relation.

Uncertainty relation for drift momentum

The uncertainty relation is

(varx) (var pd) ≥ cov2 (x, pd) . (10.51)

Using (10.36) and (10.44) we have

cov (x, pd) = ~
∫
dx ρx∂S − (

∫
dx ρx)(~

∫
dx ρ∂S) . (10.52)

The integrands involve two functions ρ and ∂S that can be chosen independently.
In particular, we can choose as narrow a probability distribution ρ as we like.
For example, the choice ρ→ δ (x− x0) leads to cov (x, pd)→ 0. Therefore, the
uncertainty relation for drift momentum is

(varx) (var pd) ≥ 0 or ∆x∆pd ≥ 0 . (10.53)
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The Schrödinger and the Heisenberg Uncertainty Relations

Next we derive the uncertainty relation for the quantum momentum, pq. In the
standard derivation, which applies to non-commuting operators such as x and
pq, the inequality (10.47) is replaced by

(varx) (var pq) ≥ cov2 (x, pq) +
1
4
|〈[x, pq]〉|2 , (10.54)

which, using [x, pq] = i~ leads to

(varx) (var pq) ≥ cov2 (x, pq) + (
~
2

)2 . (10.55)

This uncertainty relation was originally proposed in [Schrödinger 1930]. The
better known uncertainty relation due to Heisenberg is somewhat weaker: since
cov2 (x, pq) ≥ 0 it follows that

(varx) (var pq) ≥ (
~
2

)2 or ∆x∆pq ≥
~
2
. (10.56)

Our goal is to see how these results arise within the entropic approach and
to explore whether any further insights are to be found. Using Ψ = ρ1/2eiφ,
(10.35) and (10.36) we have,

〈p2
q〉 =

∫
dxΨ∗(

~
i
∂)2 Ψ = 〈p2

c〉+ 〈p2
o〉 . (10.57)

Together with 〈p0〉 = 0 and 〈pq〉 = 〈pc〉 (see eqs.(10.39) and (10.42)) this leads
to

var pq = 〈p2
q〉 − 〈pq〉2 = var pc + var po , (10.58)

so that
(varx) (var pq) = (varx) (var pc) + (varx) (var po) . (10.59)

Using the uncertainty relation for the current momentum,

(varx) (var pc) ≥ cov2 (x, pc) , (10.60)

(to which we will return below) and the uncertainty relation for the osmotic
momentum, eq.(10.50), gives

(varx) (var pq) ≥ cov2 (x, pc) + (
~
2

)2 . (10.61)

Next, a straightforward calculation gives

cov (x, pq) =
1
2
〈xpq + pqx〉 − 〈x〉〈pq〉 = cov (x, pc) . (10.62)

Substituting into (10.61) shows that ED reproduces Schrödinger uncertainty
relation (10.55) and therefore also Heisenberg’s (10.56) — as desired. But, as
we shall see below, we can get a bit more insight from the uncertainty relation
written in the form (10.59).



10.5 Momentum in Entropic Dynamics 263

Uncertainty relation for the current momentum

Finally, we turn to the uncertainty relation for the current momentum. The
challenge is to place a bound on the right hand side of eq.(10.60). We use
the fact that certain quantum states are known to exist such the Heisenberg
inequality, eq.(10.56), is saturated: ∆x∆pq = ~/2. In other words, there exist
minimum uncertainty states. For example, the ground state of a harmonic
oscillator or, more generally the so-called coherent states (see e.g. [Ballentine
1998]) are minimum uncertainty states. Together with eq.(10.55) and eq.(10.62)
this implies

cov2 (x, pq) = cov2 (x, pc) ≥ 0 . (10.63)

Which leads to the uncertainty relation for the current momentum,

(varx) (var pc) ≥ 0 or ∆x∆pc ≥ 0 . (10.64)

10.5.3 Discussion

To learn more about these momenta it is useful to recall the classical limit
defined by ~→ 0 with SHJ = ~φ, m, and µ fixed. According to eq.(9.77),

~pd = ~pc = ~∇SHJ and ~po = m~u = 0 , (10.65)

where SHJ satisfies the classical Hamilton-Jacobi equation, eq.(9.78). Further-
more, according to eq.(9.80) the fluctuations about the expected trajectory van-
ish.

Let us collect all our results in one place:
Expected values:

〈pq〉 = 〈pc〉 = 〈pd〉 , 〈po〉 = 0 (10.66)

Uncertainty relations:

∆x∆pq ≥
~
2
, ∆x∆po ≥

~
2

(10.67)

∆x∆pc ≥ 0 , ∆x∆pd ≥ 0 (10.68)

Classical limit:
pd = pc = ∇SHJ and po = 0 , (10.69)

We find that both the current or the drift momentum can reasonably be
called ‘momentum’ because their expected values agree with that of the quantum
momentum operator, eq.(10.42), and in the classical limit they coincide with the
classical momentum, eq.(10.65).

The derivation of the uncertainty relations within the entropic framework
yields, of course, the standard result ∆x∆pq = ~/2, but it also leads to a new
insight. As we can see from eq.(10.59),

(varx) (var pq) = (varx) (var pc) + (varx) (var po) , (10.70)
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together with eqs.(10.64) and (10.50),

(varx) (var pc) ≥ 0 and (varx) (var po) ≥ (
~
2

)2 , (10.71)

the non-trivial contribution to the Heisenberg uncertainty relation arises from
the osmotic momentum.8 In other words,

The Heisenberg uncertainty relation is a diffusion effect — it can be traced
back to the original constraint

〈
γab∆xa∆xb

〉
= ∆¯̀2, eq.(9.8), which al-

lowed the particle to move in any direction but only in short steps and led
to the non-differentiability of the Brownian paths.

10.5.4 An aside: the hybrid µ = 0 theory

Non-dissipative ED is defined by the Fokker-Planck equation (9.75) and the
quantum Hamilton-Jacobi eq.(9.74). Here we focus on the special case with
µ = 0. Setting ~ = η and SHJ = ~φ in eq.(9.74) gives

ṠHJ +
1

2m
(~∇SHJ)2 + V = 0 , (10.72)

which is the classical Hamilton-Jacobi equation. One might be tempted to
dismiss this model as a classical stochastic dynamics but this is wrong. The
limit µ → 0 with ~ and m fixed is very peculiar. The expected trajectory lies
along a classical path but the osmotic momentum does not vanish,

~pc = m~v = ~∇SHJ and ~po = m~u = ~~∇ log ρ1/2 , (10.73)

and, since ~/m need not be small, the fluctuations,〈
∆wa∆wb

〉
=

~
m

∆t δab , (10.74)

about the expected trajectory do not vanish either. In fact, they are as strong
as regular quantum fluctuations.

All the considerations about momentum described in the previous section
apply to the µ = 0 case. In particular, just as in quantum theory, it makes sense
to introduce the generator of translations as a momentum operator, ~pq = −i~~∇.
This implies that the µ = 0 model obeys uncertainty relations identical to
quantum theory,

∆x∆po ≥
~
2

and ∆x∆pq ≥
~
2
. (10.75)

And yet, this is not quantum theory: the corresponding Schrödinger equation,
obtained by setting µ = 0 in eq.(9.92), leads to

i~Ψ̇ = − ~2

2m
∇2Ψ + VΨ +

~2

2m
∇2(ΨΨ∗)1/2

(ΨΨ∗)1/2
Ψ , (10.76)

8This result was first noted in [de Falco et al 1982] in the context of stochastic mechanics.
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which is nonlinear. Therefore there is no superposition principle and the whole
Hilbert space framework is not useful here.

We conclude that the µ = 0 model is a hybrid theory, neither fully classical
nor fully quantum. It appears classical in that it resembles Brownian motion
and obeys the classical Hamilton-Jacobi equation — but no classical theory
could possibly exhibit both infinite friction and no dissipation. On the other
hand, it seems a quantum theory in that it applies to the usual regime where ~
is not negligible and it obeys the usual uncertainty principles. The µ = 0 model
clearly deserves further study.

10.6 Conclusions

The solution of the problem of measurement within the entropic dynamics
framework hinges on two points: first, entropic quantum dynamics is a the-
ory of inference not a law of nature. This erases the dichotomy of dual modes
of evolution — continuous unitary evolution versus discrete wave function col-
lapse. The two modes of evolution turn out to correspond to two modes of
updating — continuous entropic and discrete Bayesian — which, within the
entropic inference framework, are unified into a single updating rule.

The second point is the privileged role of position — particles (and also
pointer variables) have definite positions and therefore their values are not cre-
ated but merely ascertained during the act of measurement. Other “observ-
ables” are introduced as a matter of linguistic convenience to describe more
complex experiments. These observables turn out to be attributes of the proba-
bility distributions and not of the particles; their “values” are indeed “created”
during the act of measurement.

Entropic dynamics as a general framework for physics is still in its infancy.
Many are the topics that remain to be explored, and some of them can be de-
veloped along lines suggested by stochastic mechanics. For example, for the
stochastic mechanics of spin see [Dankel 1970; Faris 1982; Nelson 1985; Wall-
strom 1990]; for quantum theory on curved manifolds see [Dohrn Guerra 1978,
Nelson 1985], and for the quantum theory of fields see [Guerra 1981, Nelson
1986] and references therein. The corresponding ED approaches to spin and
to quantum theory on curved spaces are both developed in [Nawaz 2012]. The
entropic dynamics approach to quantum scalar fields is developed in [Caticha
2012] and at this point there seems to be no impediment to its generalization
to other types of fields.

The overall conclusion is that quantum mechanics is not different from other
inference theories. So it appears that Wheeler’s conjecture “...that every law
of physics, pushed to the extreme, will be found statistical and approximate, not
mathematically perfect and precise” might be right.
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[Rodriguez 2002] C. C. Rodŕıguez: “Entropic Priors for Discrete Probabilis-
tic Networks and for Mixtures of Gaussian Models”, Bayesian Inference
and Maximum Entropy Methods in Science and Engineering, ed. by R. L.
Fry, AIP Conf. Proc. 617, 410 (2002) (arXiv.org/abs/physics/0201016).
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