BentoML Example: Fast AI Pet Image classification

BentoML makes moving trained ML models to production easy:

  • Package models trained with any ML framework and reproduce them for model serving in production
  • Deploy anywhere for online API serving or offline batch serving
  • High-Performance API model server with adaptive micro-batching support
  • Central hub for managing models and deployment process via Web UI and APIs
  • Modular and flexible design making it adaptable to your infrastrcuture

BentoML is a framework for serving, managing, and deploying machine learning models. It is aiming to bridge the gap between Data Science and DevOps, and enable teams to deliver prediction services in a fast, repeatable, and scalable way.

Before reading this example project, be sure to check out the Getting started guide to learn about the basic concepts in BentoML.

This example notebook is based on Fast AI v1 course v3 lesson one, training an image classifier with Fast AI that detect the different breed of cat and dog.

Make sure to use GPU runtime when running this notebook in Google Colab, you can set it in top menu: Runtime > Change Runtime Type > Hardware accelerator.

Impression

In [1]:
%reload_ext autoreload
%autoreload 2
%matplotlib inline
In [ ]:
!pip install -q bentoml 'fastai<=1.0.61'
In [2]:
from fastai.vision import *
from fastai.metrics import error_rate

Prepare Training Data

In [3]:
path = untar_data(URLs.PETS)
path_anno = path/'annotations'
path_img = path/'images'
In [4]:
fnames = get_image_files(path_img)
fnames[:5]
Out[4]:
[PosixPath('/Users/bozhaoyu/.fastai/data/oxford-iiit-pet/images/Egyptian_Mau_167.jpg'),
 PosixPath('/Users/bozhaoyu/.fastai/data/oxford-iiit-pet/images/pug_52.jpg'),
 PosixPath('/Users/bozhaoyu/.fastai/data/oxford-iiit-pet/images/basset_hound_112.jpg'),
 PosixPath('/Users/bozhaoyu/.fastai/data/oxford-iiit-pet/images/Siamese_193.jpg'),
 PosixPath('/Users/bozhaoyu/.fastai/data/oxford-iiit-pet/images/shiba_inu_122.jpg')]
In [5]:
#bs = 64
bs = 16   # uncomment this line if you run out of memory even after clicking Kernel->Restart

np.random.seed(2)
pat = r'/([^/]+)_\d+.jpg$'

data = ImageDataBunch.from_name_re(
    path_img,
    fnames,
    pat,
    num_workers=0,
    ds_tfms=get_transforms(),
    size=224,
    bs=bs
).normalize(imagenet_stats)
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
In [6]:
data.show_batch(rows=3, figsize=(7,6))

Training: resnet34

Now we will start training the model. For demo purpose, we will only train for 1 epoch (1 cycle through all the data).

In [7]:
learn = cnn_learner(data, models.resnet34, metrics=error_rate)

learn.model
Out[7]:
Sequential(
  (0): Sequential(
    (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (4): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (1): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (5): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (3): BasicBlock(
        (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (6): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (3): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (4): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (5): BasicBlock(
        (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (7): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (2): BasicBlock(
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (1): Sequential(
    (0): AdaptiveConcatPool2d(
      (ap): AdaptiveAvgPool2d(output_size=1)
      (mp): AdaptiveMaxPool2d(output_size=1)
    )
    (1): Flatten()
    (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (3): Dropout(p=0.25, inplace=False)
    (4): Linear(in_features=1024, out_features=512, bias=True)
    (5): ReLU(inplace=True)
    (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (7): Dropout(p=0.5, inplace=False)
    (8): Linear(in_features=512, out_features=37, bias=True)
  )
)
In [8]:
learn.fit_one_cycle(1)
epoch train_loss valid_loss error_rate time
0 0.724376 0.302155 0.106225 32:22
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/torch/nn/functional.py:3000: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "

Create BentoService for model serving

In [9]:
%%writefile pet_classification.py

from bentoml import BentoService, api, env, artifacts
from bentoml.frameworks.fastai import Fastai1ModelArtifact
from bentoml.adapters import ImageInput
from fastai.vision import Image, pil2tensor
import numpy as np

@env(pip_packages=['fastai'])
@artifacts([Fastai1ModelArtifact('pet_classifer')])
class PetClassification(BentoService):
    
    @api(input=ImageInput(), batch=False)
    def predict(self, image):
        fastai_image = pil2tensor(image, np.float32)
        fastai_image = Image(fastai_image)
        result = self.artifacts.pet_classifer.predict(image)
        return str(result)
Overwriting pet_classification.py

Save BentoService to file archive

In [10]:
# 1) import the custom BentoService defined above
from pet_classification import PetClassification

# 2) `pack` it with required artifacts
service = PetClassification()
service.pack('pet_classifer', learn)

# 3) save your BentoSerivce
saved_path = service.save()
[2020-09-22 17:49:00,048] WARNING - Using BentoML installed in `editable` model, the local BentoML repository including all code changes will be packaged together with saved bundle created, under the './bundled_pip_dependencies' directory of the saved bundle.
[2020-09-22 17:49:00,214] INFO - Using default docker base image: `None` specified inBentoML config file or env var. User must make sure that the docker base image either has Python 3.7 or conda installed.
[2020-09-22 17:49:00,218] WARNING - BentoML by default does not include spacy and torchvision package when using FastaiModelArtifact. To make sure BentoML bundle those packages if they are required for your model, either import those packages in BentoService definition file or manually add them via `@env(pip_packages=['torchvision'])` when defining a BentoService
[2020-09-22 17:49:00,221] WARNING - pip package requirement fastai already exist
[2020-09-22 17:49:01,625] INFO - Detected non-PyPI-released BentoML installed, copying local BentoML modulefiles to target saved bundle path..
/usr/local/anaconda3/envs/dev-py3/lib/python3.7/site-packages/setuptools/dist.py:476: UserWarning: Normalizing '0.9.0.pre+3.gcebf2015' to '0.9.0rc0+3.gcebf2015'
  normalized_version,
warning: no previously-included files matching '*~' found anywhere in distribution
warning: no previously-included files matching '*.pyo' found anywhere in distribution
warning: no previously-included files matching '.git' found anywhere in distribution
warning: no previously-included files matching '.ipynb_checkpoints' found anywhere in distribution
warning: no previously-included files matching '__pycache__' found anywhere in distribution
no previously-included directories found matching 'e2e_tests'
no previously-included directories found matching 'tests'
no previously-included directories found matching 'benchmark'
UPDATING BentoML-0.9.0rc0+3.gcebf2015/bentoml/_version.py
set BentoML-0.9.0rc0+3.gcebf2015/bentoml/_version.py to '0.9.0.pre+3.gcebf2015'
[2020-09-22 17:49:05,483] INFO - BentoService bundle 'PetClassification:20200922174900_F25F3F' saved to: /Users/bozhaoyu/bentoml/repository/PetClassification/20200922174900_F25F3F

REST API Model Serving

To start a REST API model server with the BentoService saved above, use the bentoml serve command:

In [15]:
!bentoml serve PetClassification:latest
[2020-09-22 18:05:30,874] INFO - Getting latest version PetClassification:20200922174900_F25F3F
[2020-09-22 18:05:30,875] INFO - Starting BentoML API server in development mode..
[2020-09-22 18:05:31,124] WARNING - Using BentoML installed in `editable` model, the local BentoML repository including all code changes will be packaged together with saved bundle created, under the './bundled_pip_dependencies' directory of the saved bundle.
[2020-09-22 18:05:31,139] WARNING - Saved BentoService bundle version mismatch: loading BentoService bundle create with BentoML version 0.9.0.pre, but loading from BentoML version 0.9.0.pre+3.gcebf2015
[2020-09-22 18:05:34,809] INFO - Using default docker base image: `None` specified inBentoML config file or env var. User must make sure that the docker base image either has Python 3.7 or conda installed.
[2020-09-22 18:05:34,925] WARNING - BentoML by default does not include spacy and torchvision package when using FastaiModelArtifact. To make sure BentoML bundle those packages if they are required for your model, either import those packages in BentoService definition file or manually add them via `@env(pip_packages=['torchvision'])` when defining a BentoService
[2020-09-22 18:05:34,927] WARNING - pip package requirement fastai already exist
 * Serving Flask app "PetClassification" (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
[2020-09-22 18:05:42,267] INFO - {'service_name': 'PetClassification', 'service_version': '20200922174900_F25F3F', 'api': 'predict', 'task': {'data': {'name': 'test.jpg'}, 'task_id': '60d8f815-e40c-4901-94e2-be01dd5aea91', 'http_headers': (('Host', 'localhost:5000'), ('User-Agent', 'curl/7.65.3'), ('Accept', '*/*'), ('Content-Length', '179115'), ('Content-Type', 'multipart/form-data; boundary=------------------------94662ac64c8ea5e1'), ('Expect', '100-continue'))}, 'result': {'data': '"(Category tensor(36), tensor(36), tensor([1.0797e-07, 8.9836e-07, 1.1527e-06, 8.1427e-09, 4.5582e-09, 1.3850e-07,\\n        2.5530e-07, 7.7388e-08, 1.4291e-08, 1.9044e-08, 2.4578e-07, 1.8761e-07,\\n        8.1688e-09, 6.6407e-08, 2.1143e-08, 2.6274e-07, 1.2610e-07, 4.0838e-07,\\n        1.0855e-07, 2.6197e-09, 2.5782e-08, 1.9102e-09, 1.6407e-07, 3.2818e-08,\\n        5.6539e-09, 1.3923e-08, 1.8689e-06, 3.3067e-07, 9.8042e-07, 8.2738e-09,\\n        1.8158e-08, 2.5630e-09, 2.3708e-06, 3.0268e-09, 9.2770e-08, 3.0787e-08,\\n        9.9999e-01]))"', 'http_status': 200, 'http_headers': (('Content-Type', 'application/json'),)}, 'request_id': '60d8f815-e40c-4901-94e2-be01dd5aea91'}
127.0.0.1 - - [22/Sep/2020 18:05:42] "POST /predict HTTP/1.1" 200 -
WARNING: Logging before flag parsing goes to stderr.
I0922 18:05:42.268567 4588494272 _internal.py:122] 127.0.0.1 - - [22/Sep/2020 18:05:42] "POST /predict HTTP/1.1" 200 -
^C

If you are running this notebook from Google Colab, you can start the dev server with --run-with-ngrok option, to gain acccess to the API endpoint via a public endpoint managed by ngrok:

In [ ]:
!bentoml serve PetClassification:latest --run-with-ngrok

Open http://127.0.0.1:5000 to see more information about the REST APIs server in your browser.

Send prediction requeset to the REST API server

Navigate to parent directory of the notebook(so you have reference to the test.jpg image), and run the following curl command to send the image to REST API server and get a prediction result:

curl -i \
    --request POST \
    --header "Content-Type: multipart/form-data" \
    -F "image=@test.jpg" \
    localhost:5000/predict

Containerize model server with Docker

One common way of distributing this model API server for production deployment, is via Docker containers. And BentoML provides a convenient way to do that.

Note that docker is not available in Google Colab. You will need to download and run this notebook locally to try out this containerization with docker feature.

If you already have docker configured, simply run the follow command to product a docker container serving the IrisClassifier prediction service created above:

In [16]:
!bentoml containerize PetClassification:latest
[2020-09-22 18:07:15,056] INFO - Getting latest version PetClassification:20200922174900_F25F3F
Found Bento: /Users/bozhaoyu/bentoml/repository/PetClassification/20200922174900_F25F3F
[2020-09-22 18:07:15,098] WARNING - Using BentoML installed in `editable` model, the local BentoML repository including all code changes will be packaged together with saved bundle created, under the './bundled_pip_dependencies' directory of the saved bundle.
[2020-09-22 18:07:15,114] WARNING - Saved BentoService bundle version mismatch: loading BentoService bundle create with BentoML version 0.9.0.pre, but loading from BentoML version 0.9.0.pre+3.gcebf2015
Tag not specified, using tag parsed from BentoService: 'petclassification:20200922174900_F25F3F'
Building Docker image petclassification:20200922174900_F25F3F from PetClassification:latest 
-we in here
processed docker file
(None, None)
root in create archive /Users/bozhaoyu/bentoml/repository/PetClassification/20200922174900_F25F3F ['Dockerfile', 'MANIFEST.in', 'PetClassification', 'PetClassification/__init__.py', 'PetClassification/__pycache__', 'PetClassification/__pycache__/pet_classification.cpython-37.pyc', 'PetClassification/artifacts', 'PetClassification/artifacts/__init__.py', 'PetClassification/artifacts/pet_classifer.pkl', 'PetClassification/bentoml.yml', 'PetClassification/pet_classification.py', 'README.md', 'bentoml-init.sh', 'bentoml.yml', 'bundled_pip_dependencies', 'bundled_pip_dependencies/BentoML-0.9.0rc0+3.gcebf2015.tar.gz', 'docker-entrypoint.sh', 'environment.yml', 'python_version', 'requirements.txt', 'setup.py']
\about to build
about to upgrade params
check each param and update
if use config proxy
if buildargs
if shmsize
if labels
if cache from
if target
if network_mode
if squash
if extra hosts is not None
if platform is not None
if isolcation is not None
if context is not None
setting auth {'Content-Type': 'application/tar'}
|docker build <tempfile._TemporaryFileWrapper object at 0x7ff6cd574d30> {'t': 'petclassification:20200922174900_F25F3F', 'remote': None, 'q': False, 'nocache': False, 'rm': False, 'forcerm': False, 'pull': False, 'dockerfile': (None, None)}
\docker response <Response [200]>
context closes
print responses
Step 1/15 : FROM bentoml/model-server:0.9.0.pre
 ---> a25066aa8b0e
Step 2/15 : ARG EXTRA_PIP_INSTALL_ARGS=
 ---> Using cache
 ---> 315719b8980e
Step 3/15 : ENV EXTRA_PIP_INSTALL_ARGS $EXTRA_PIP_INSTALL_ARGS
 ---> Using cache
 ---> a3b6c8107d94
Step 4/15 : COPY environment.yml requirements.txt setup.sh* bentoml-init.sh python_version* /bento/
/ ---> 620f679281bb
Step 5/15 : WORKDIR /bento
| ---> Running in 748311d8f81c
\ ---> a8c99c4676f4
Step 6/15 : RUN chmod +x /bento/bentoml-init.sh
 ---> Running in 93992fc4d4e1
/ ---> 8f59bfb17869
Step 7/15 : RUN if [ -f /bento/bentoml-init.sh ]; then bash -c /bento/bentoml-init.sh; fi
 ---> Running in 1e1ae04be7b0
-+++ dirname /bento/bentoml-init.sh

++ cd /bento
++ pwd -P

+ SAVED_BUNDLE_PATH=/bento
+ cd /bento

+ '[' -f ./setup.sh ']'

+ '[' -f ./python_version ']'

++ cat ./python_version

+ PY_VERSION_SAVED=3.7.3
+ DESIRED_PY_VERSION=3.7

++ python -c 'import sys; print(f"{sys.version_info.major}.{sys.version_info.minor}")'

+ CURRENT_PY_VERSION=3.7
+ [[ 3.7 == \3\.\7 ]]
+ echo 'Python Version in docker base image 3.7 matches requirement python=3.7. Skipping.'

Python Version in docker base image 3.7 matches requirement python=3.7. Skipping.
Updating conda base environment with environment.yml
+ command -v conda
+ echo 'Updating conda base environment with environment.yml'
+ conda env update -n base -f ./environment.yml

\Collecting package metadata (repodata.json): ...working... 
|done
Solving environment: ...working... 
-done
/
Downloading and Extracting Packages
certifi-2020.6.20    | 151 KB    |            |   0% 
certifi-2020.6.20    | 151 KB    | #          |  11% 
certifi-2020.6.20    | 151 KB    | ########## | 100% 
certifi-2020.6.20    | 151 KB    | ########## | 100% 

openssl-1.1.1h       | 2.1 MB    |            |   0% 
openssl-1.1.1h       | 2.1 MB    | #1         |  12% 
openssl-1.1.1h       | 2.1 MB    | #####4     |  55% 
openssl-1.1.1h       | 2.1 MB    | ########## | 100% 
openssl-1.1.1h       | 2.1 MB    | ########## | 100% 

python_abi-3.7       | 4 KB      |            |   0% 
python_abi-3.7       | 4 KB      | ########## | 100% 

cffi-1.14.3          | 223 KB    |            |   0% 
cffi-1.14.3          | 223 KB    | ########## | 100% 
cffi-1.14.3          | 223 KB    | ########## | 100% 

libffi-3.2.1         | 47 KB     |            |   0% 
libffi-3.2.1         | 47 KB     | ########## | 100% 

ca-certificates-2020 | 145 KB    |            |   0% 
ca-certificates-2020 | 145 KB    | ########## | 100% 

pip-20.2.3           | 1.1 MB    |            |   0% 
pip-20.2.3           | 1.1 MB    | ######8    |  69% 
pip-20.2.3           | 1.1 MB    | ########## | 100% 
pip-20.2.3           | 1.1 MB    | ########## | 100% 

Preparing transaction: 
...working... 
\done
Verifying transaction: ...working... 
-done
Executing transaction: ...working... 
|done
-#
# To activate this environment, use
#
#     $ conda activate base
#
# To deactivate an active environment, use
#
#     $ conda deactivate
-+ pip install -r ./requirements.txt --no-cache-dir

-Requirement already satisfied: bentoml==0.9.0.pre in /opt/conda/lib/python3.7/site-packages (from -r ./requirements.txt (line 1)) (0.9.0rc0)
-Collecting fastai==1.0.61
|  Downloading fastai-1.0.61-py3-none-any.whl (239 kB)
\Collecting imageio==2.5.0
-  Downloading imageio-2.5.0-py3-none-any.whl (3.3 MB)
\Collecting torch==1.6.0
-  Downloading torch-1.6.0-cp37-cp37m-manylinux1_x86_64.whl (748.8 MB)
-Requirement already satisfied: certifi in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (2020.6.20)
Requirement already satisfied: aiohttp in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (3.6.2)
Requirement already satisfied: psutil in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (5.7.2)
Requirement already satisfied: requests in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (2.24.0)
Requirement already satisfied: sqlalchemy-utils<0.36.8 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.36.7)
/Requirement already satisfied: grpcio<=1.27.2 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.27.2)
Requirement already satisfied: multidict in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (4.7.6)
Requirement already satisfied: flask in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.1.2)
Requirement already satisfied: alembic in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.4.3)
Requirement already satisfied: cerberus in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.3.2)
Requirement already satisfied: docker in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (4.3.1)
Requirement already satisfied: sqlalchemy>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.3.19)
Requirement already satisfied: tabulate in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.8.7)
Requirement already satisfied: ruamel.yaml>=0.15.0 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.15.87)
Requirement already satisfied: humanfriendly in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (8.2)
Requirement already satisfied: click>=7.0 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (7.1.2)
|Requirement already satisfied: python-dateutil<3.0.0,>=2.7.3 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (2.8.1)
Requirement already satisfied: python-json-logger in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.1.11)
Requirement already satisfied: boto3 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.15.2)
Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.8.0)
Requirement already satisfied: packaging in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (20.4)
Requirement already satisfied: gunicorn in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (20.0.4)
Requirement already satisfied: configparser in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (5.0.0)
Requirement already satisfied: numpy in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.19.2)
Requirement already satisfied: py-zipkin in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.20.0)
Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (3.13.0)
\Collecting bottleneck
-  Downloading Bottleneck-1.3.2.tar.gz (88 kB)
  Installing build dependencies: started
/  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
-  Getting requirements to build wheel: finished with status 'done'
    Preparing wheel metadata: started
\    Preparing wheel metadata: finished with status 'done'
/Collecting Pillow
  Downloading Pillow-7.2.0-cp37-cp37m-manylinux1_x86_64.whl (2.2 MB)
|Collecting pandas
  Downloading pandas-1.1.2-cp37-cp37m-manylinux1_x86_64.whl (10.5 MB)
|Collecting fastprogress>=0.2.1
  Downloading fastprogress-1.0.0-py3-none-any.whl (12 kB)
|Collecting scipy
  Downloading scipy-1.5.2-cp37-cp37m-manylinux1_x86_64.whl (25.9 MB)
-Collecting spacy>=2.0.18; python_version < "3.8"
/  Downloading spacy-2.3.2-cp37-cp37m-manylinux1_x86_64.whl (9.9 MB)
-Collecting beautifulsoup4
  Downloading beautifulsoup4-4.9.1-py3-none-any.whl (115 kB)
|Collecting numexpr
  Downloading numexpr-2.7.1-cp37-cp37m-manylinux1_x86_64.whl (162 kB)
\Collecting pyyaml
-  Downloading PyYAML-5.3.1.tar.gz (269 kB)
-Collecting matplotlib
/  Downloading matplotlib-3.3.2-cp37-cp37m-manylinux1_x86_64.whl (11.6 MB)
-Collecting nvidia-ml-py3
  Downloading nvidia-ml-py3-7.352.0.tar.gz (19 kB)
-Collecting torchvision
  Downloading torchvision-0.7.0-cp37-cp37m-manylinux1_x86_64.whl (5.9 MB)
-Collecting future
  Downloading future-0.18.2.tar.gz (829 kB)
/Requirement already satisfied: async-timeout<4.0,>=3.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (3.0.1)
Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.5.1)
Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (20.2.0)
|Requirement already satisfied: chardet<4.0,>=2.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.25.10)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (2.10)
Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from sqlalchemy-utils<0.36.8->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.15.0)
Requirement already satisfied: Jinja2>=2.10.1 in /opt/conda/lib/python3.7/site-packages (from flask->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (2.11.2)
Requirement already satisfied: Werkzeug>=0.15 in /opt/conda/lib/python3.7/site-packages (from flask->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.0.1)
Requirement already satisfied: itsdangerous>=0.24 in /opt/conda/lib/python3.7/site-packages (from flask->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.1.0)
Requirement already satisfied: python-editor>=0.3 in /opt/conda/lib/python3.7/site-packages (from alembic->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.0.4)
Requirement already satisfied: Mako in /opt/conda/lib/python3.7/site-packages (from alembic->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.1.3)
Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages (from cerberus->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (49.6.0.post20200814)
Requirement already satisfied: websocket-client>=0.32.0 in /opt/conda/lib/python3.7/site-packages (from docker->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.57.0)
Requirement already satisfied: botocore<1.19.0,>=1.18.2 in /opt/conda/lib/python3.7/site-packages (from boto3->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.18.2)
Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /opt/conda/lib/python3.7/site-packages (from boto3->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.3.3)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/lib/python3.7/site-packages (from boto3->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.10.0)
Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (2.4.7)
Requirement already satisfied: thriftpy2>=0.4.0 in /opt/conda/lib/python3.7/site-packages (from py-zipkin->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (0.4.11)
-Collecting pytz>=2017.2
/  Downloading pytz-2020.1-py2.py3-none-any.whl (510 kB)
|Collecting blis<0.5.0,>=0.4.0
\  Downloading blis-0.4.1-cp37-cp37m-manylinux1_x86_64.whl (3.7 MB)
|Collecting preshed<3.1.0,>=3.0.2
\  Downloading preshed-3.0.2-cp37-cp37m-manylinux1_x86_64.whl (118 kB)
-Collecting catalogue<1.1.0,>=0.0.7
  Downloading catalogue-1.0.0-py2.py3-none-any.whl (7.7 kB)
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /opt/conda/lib/python3.7/site-packages (from spacy>=2.0.18; python_version < "3.8"->fastai==1.0.61->-r ./requirements.txt (line 2)) (4.48.2)
/Collecting murmurhash<1.1.0,>=0.28.0
  Downloading murmurhash-1.0.2-cp37-cp37m-manylinux1_x86_64.whl (19 kB)
|Collecting wasabi<1.1.0,>=0.4.0
  Downloading wasabi-0.8.0-py3-none-any.whl (23 kB)
\Collecting cymem<2.1.0,>=2.0.2
  Downloading cymem-2.0.3-cp37-cp37m-manylinux1_x86_64.whl (32 kB)
-Collecting plac<1.2.0,>=0.9.6
  Downloading plac-1.1.3-py2.py3-none-any.whl (20 kB)
/Collecting srsly<1.1.0,>=1.0.2
|  Downloading srsly-1.0.2-cp37-cp37m-manylinux1_x86_64.whl (185 kB)
/Collecting thinc==7.4.1
  Downloading thinc-7.4.1-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB)
-Collecting soupsieve>1.2
  Downloading soupsieve-2.0.1-py3-none-any.whl (32 kB)
/Collecting cycler>=0.10
  Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
|Collecting kiwisolver>=1.0.1
  Downloading kiwisolver-1.2.0-cp37-cp37m-manylinux1_x86_64.whl (88 kB)
Requirement already satisfied: typing-extensions>=3.7.4; python_version < "3.8" in /opt/conda/lib/python3.7/site-packages (from yarl<2.0,>=1.0->aiohttp->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (3.7.4.3)
Requirement already satisfied: MarkupSafe>=0.23 in /opt/conda/lib/python3.7/site-packages (from Jinja2>=2.10.1->flask->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (1.1.1)
Requirement already satisfied: ply<4.0,>=3.4 in /opt/conda/lib/python3.7/site-packages (from thriftpy2>=0.4.0->py-zipkin->bentoml==0.9.0.pre->-r ./requirements.txt (line 1)) (3.11)
\Collecting importlib-metadata>=0.20; python_version < "3.8"
-  Downloading importlib_metadata-2.0.0-py2.py3-none-any.whl (31 kB)
/Collecting zipp>=0.5
  Downloading zipp-3.2.0-py3-none-any.whl (5.1 kB)
Building wheels for collected packages: bottleneck, pyyaml, nvidia-ml-py3, future
  Building wheel for bottleneck (PEP 517): started
|  Building wheel for bottleneck (PEP 517): finished with status 'done'
  Created wheel for bottleneck: filename=Bottleneck-1.3.2-cp37-cp37m-linux_x86_64.whl size=386274 sha256=88121d9f7b0fa037534f41e261612790cb42c837f1abf65623b9510346a64409
  Stored in directory: /tmp/pip-ephem-wheel-cache-f6i4rnbq/wheels/87/85/9c/a325c89ff0498660ef8a335fb4b3912939c273ea4f094af29f
  Building wheel for pyyaml (setup.py): started
\  Building wheel for pyyaml (setup.py): finished with status 'done'
  Created wheel for pyyaml: filename=PyYAML-5.3.1-cp37-cp37m-linux_x86_64.whl size=44619 sha256=2eb2a99a7fa65346e6d4893f856b6f82387be995421c4afd79152d65c689c749
  Stored in directory: /tmp/pip-ephem-wheel-cache-f6i4rnbq/wheels/5e/03/1e/e1e954795d6f35dfc7b637fe2277bff021303bd9570ecea653
  Building wheel for nvidia-ml-py3 (setup.py): started
|  Building wheel for nvidia-ml-py3 (setup.py): finished with status 'done'
  Created wheel for nvidia-ml-py3: filename=nvidia_ml_py3-7.352.0-py3-none-any.whl size=19191 sha256=645e7135884f4003044530a970eaeeb9766c911b02092aefc465f270ba1e34a6
  Stored in directory: /tmp/pip-ephem-wheel-cache-f6i4rnbq/wheels/df/99/da/c34f202dc8fd1dffd35e0ecf1a7d7f8374ca05fbcbaf974b83
  Building wheel for future (setup.py): started
-  Building wheel for future (setup.py): finished with status 'done'
  Created wheel for future: filename=future-0.18.2-py3-none-any.whl size=491059 sha256=cc1fcb02bd96cb1aec99e45cadda53dd7fe0289172d314d22e62006ab62a66ef
  Stored in directory: /tmp/pip-ephem-wheel-cache-f6i4rnbq/wheels/56/b0/fe/4410d17b32f1f0c3cf54cdfb2bc04d7b4b8f4ae377e2229ba0
Successfully built bottleneck pyyaml nvidia-ml-py3 future
\Installing collected packages: bottleneck, Pillow, pytz, pandas, fastprogress, scipy, future, torch, blis, murmurhash, cymem, preshed, zipp, importlib-metadata, catalogue, wasabi, plac, srsly, thinc, spacy, soupsieve, beautifulsoup4, numexpr, pyyaml, cycler, kiwisolver, matplotlib, nvidia-ml-py3, torchvision, fastai, imageio
|Successfully installed Pillow-7.2.0 beautifulsoup4-4.9.1 blis-0.4.1 bottleneck-1.3.2 catalogue-1.0.0 cycler-0.10.0 cymem-2.0.3 fastai-1.0.61 fastprogress-1.0.0 future-0.18.2 imageio-2.5.0 importlib-metadata-2.0.0 kiwisolver-1.2.0 matplotlib-3.3.2 murmurhash-1.0.2 numexpr-2.7.1 nvidia-ml-py3-7.352.0 pandas-1.1.2 plac-1.1.3 preshed-3.0.2 pytz-2020.1 pyyaml-5.3.1 scipy-1.5.2 soupsieve-2.0.1 spacy-2.3.2 srsly-1.0.2 thinc-7.4.1 torch-1.6.0 torchvision-0.7.0 wasabi-0.8.0 zipp-3.2.0
| ---> e75835a54407
Step 8/15 : COPY . /bento
| ---> e25fabebfe7b
Step 9/15 : RUN if [ -d /bento/bundled_pip_dependencies ]; then pip install -U bundled_pip_dependencies/* ;fi
 ---> Running in c36ac282169e
|Processing ./bundled_pip_dependencies/BentoML-0.9.0rc0+3.gcebf2015.tar.gz
/  Installing build dependencies: started
/  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
|  Getting requirements to build wheel: finished with status 'done'
    Preparing wheel metadata: started
-    Preparing wheel metadata: finished with status 'done'
|Requirement already satisfied, skipping upgrade: sqlalchemy>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.3.19)
Requirement already satisfied, skipping upgrade: configparser in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (5.0.0)
Requirement already satisfied, skipping upgrade: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (3.13.0)
Requirement already satisfied, skipping upgrade: boto3 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.15.2)
Requirement already satisfied, skipping upgrade: flask in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.1.2)
Requirement already satisfied, skipping upgrade: prometheus-client in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (0.8.0)
Requirement already satisfied, skipping upgrade: alembic in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.4.3)
Requirement already satisfied, skipping upgrade: tabulate in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (0.8.7)
Requirement already satisfied, skipping upgrade: gunicorn in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (20.0.4)
Requirement already satisfied, skipping upgrade: py-zipkin in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (0.20.0)
Requirement already satisfied, skipping upgrade: humanfriendly in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (8.2)
\Requirement already satisfied, skipping upgrade: python-dateutil<3.0.0,>=2.7.3 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (2.8.1)
Requirement already satisfied, skipping upgrade: psutil in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (5.7.2)
Requirement already satisfied, skipping upgrade: grpcio<=1.27.2 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.27.2)
Requirement already satisfied, skipping upgrade: requests in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (2.24.0)
Requirement already satisfied, skipping upgrade: python-json-logger in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (0.1.11)
Requirement already satisfied, skipping upgrade: aiohttp in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (3.6.2)
Requirement already satisfied, skipping upgrade: cerberus in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.3.2)
Requirement already satisfied, skipping upgrade: numpy in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (1.19.2)
Requirement already satisfied, skipping upgrade: ruamel.yaml>=0.15.0 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (0.15.87)
Requirement already satisfied, skipping upgrade: multidict in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (4.7.6)
Requirement already satisfied, skipping upgrade: certifi in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (2020.6.20)
Requirement already satisfied, skipping upgrade: click>=7.0 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (7.1.2)
Requirement already satisfied, skipping upgrade: docker in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (4.3.1)
Requirement already satisfied, skipping upgrade: packaging in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (20.4)
Requirement already satisfied, skipping upgrade: sqlalchemy-utils<0.36.8 in /opt/conda/lib/python3.7/site-packages (from BentoML==0.9.0rc0+3.gcebf2015) (0.36.7)
-Requirement already satisfied, skipping upgrade: six>=1.9 in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->BentoML==0.9.0rc0+3.gcebf2015) (1.15.0)
Requirement already satisfied, skipping upgrade: setuptools in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->BentoML==0.9.0rc0+3.gcebf2015) (49.6.0.post20200814)
Requirement already satisfied, skipping upgrade: jmespath<1.0.0,>=0.7.1 in /opt/conda/lib/python3.7/site-packages (from boto3->BentoML==0.9.0rc0+3.gcebf2015) (0.10.0)
Requirement already satisfied, skipping upgrade: botocore<1.19.0,>=1.18.2 in /opt/conda/lib/python3.7/site-packages (from boto3->BentoML==0.9.0rc0+3.gcebf2015) (1.18.2)
Requirement already satisfied, skipping upgrade: s3transfer<0.4.0,>=0.3.0 in /opt/conda/lib/python3.7/site-packages (from boto3->BentoML==0.9.0rc0+3.gcebf2015) (0.3.3)
/Requirement already satisfied, skipping upgrade: Jinja2>=2.10.1 in /opt/conda/lib/python3.7/site-packages (from flask->BentoML==0.9.0rc0+3.gcebf2015) (2.11.2)
Requirement already satisfied, skipping upgrade: itsdangerous>=0.24 in /opt/conda/lib/python3.7/site-packages (from flask->BentoML==0.9.0rc0+3.gcebf2015) (1.1.0)
Requirement already satisfied, skipping upgrade: Werkzeug>=0.15 in /opt/conda/lib/python3.7/site-packages (from flask->BentoML==0.9.0rc0+3.gcebf2015) (1.0.1)
Requirement already satisfied, skipping upgrade: python-editor>=0.3 in /opt/conda/lib/python3.7/site-packages (from alembic->BentoML==0.9.0rc0+3.gcebf2015) (1.0.4)
Requirement already satisfied, skipping upgrade: Mako in /opt/conda/lib/python3.7/site-packages (from alembic->BentoML==0.9.0rc0+3.gcebf2015) (1.1.3)
Requirement already satisfied, skipping upgrade: thriftpy2>=0.4.0 in /opt/conda/lib/python3.7/site-packages (from py-zipkin->BentoML==0.9.0rc0+3.gcebf2015) (0.4.11)
Requirement already satisfied, skipping upgrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests->BentoML==0.9.0rc0+3.gcebf2015) (1.25.10)
Requirement already satisfied, skipping upgrade: chardet<4,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests->BentoML==0.9.0rc0+3.gcebf2015) (3.0.4)
Requirement already satisfied, skipping upgrade: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests->BentoML==0.9.0rc0+3.gcebf2015) (2.10)
Requirement already satisfied, skipping upgrade: attrs>=17.3.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->BentoML==0.9.0rc0+3.gcebf2015) (20.2.0)
Requirement already satisfied, skipping upgrade: yarl<2.0,>=1.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->BentoML==0.9.0rc0+3.gcebf2015) (1.5.1)
Requirement already satisfied, skipping upgrade: async-timeout<4.0,>=3.0 in /opt/conda/lib/python3.7/site-packages (from aiohttp->BentoML==0.9.0rc0+3.gcebf2015) (3.0.1)
Requirement already satisfied, skipping upgrade: websocket-client>=0.32.0 in /opt/conda/lib/python3.7/site-packages (from docker->BentoML==0.9.0rc0+3.gcebf2015) (0.57.0)
|Requirement already satisfied, skipping upgrade: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging->BentoML==0.9.0rc0+3.gcebf2015) (2.4.7)
Requirement already satisfied, skipping upgrade: MarkupSafe>=0.23 in /opt/conda/lib/python3.7/site-packages (from Jinja2>=2.10.1->flask->BentoML==0.9.0rc0+3.gcebf2015) (1.1.1)
Requirement already satisfied, skipping upgrade: ply<4.0,>=3.4 in /opt/conda/lib/python3.7/site-packages (from thriftpy2>=0.4.0->py-zipkin->BentoML==0.9.0rc0+3.gcebf2015) (3.11)
Requirement already satisfied, skipping upgrade: typing-extensions>=3.7.4; python_version < "3.8" in /opt/conda/lib/python3.7/site-packages (from yarl<2.0,>=1.0->aiohttp->BentoML==0.9.0rc0+3.gcebf2015) (3.7.4.3)
Building wheels for collected packages: BentoML
  Building wheel for BentoML (PEP 517): started
|  Building wheel for BentoML (PEP 517): finished with status 'done'
  Created wheel for BentoML: filename=BentoML-0.9.0rc0+3.gcebf2015-py3-none-any.whl size=3064091 sha256=79250e21b71f04efb1fd86188407884c15041f511160f3c6b1c9113e6b72c79d
  Stored in directory: /root/.cache/pip/wheels/a0/45/41/62152db705af4ff47e7a3d6abf6247986eef4aa1b94a58d3b9
Successfully built BentoML
-Installing collected packages: BentoML
  Attempting uninstall: BentoML
    Found existing installation: BentoML 0.9.0rc0
|    Uninstalling BentoML-0.9.0rc0:
-      Successfully uninstalled BentoML-0.9.0rc0
/Successfully installed BentoML-0.9.0rc0+3.gcebf2015
| ---> 4356037cff29
Step 10/15 : ENV PORT 5000
 ---> Running in 441be054cda4
\ ---> 32a586ff17ff
Step 11/15 : EXPOSE $PORT
- ---> Running in 8de4ab9267ff
/ ---> b8fe98623e2a
Step 12/15 : COPY docker-entrypoint.sh /usr/local/bin/
| ---> 5d1f6bfef6b4
Step 13/15 : RUN chmod +x /usr/local/bin/docker-entrypoint.sh
\ ---> Running in ebf4403d6e3d
- ---> 560393532aa9
Step 14/15 : ENTRYPOINT [ "docker-entrypoint.sh" ]
/ ---> Running in d0a576ce4ce9
| ---> d266b4444454
Step 15/15 : CMD ["bentoml", "serve-gunicorn", "/bento"]
 ---> Running in d7b225b03c60
\ ---> 1b0a26d38dc7
Successfully built 1b0a26d38dc7
-Successfully tagged petclassification:20200922174900_F25F3F
Finished building petclassification:20200922174900_F25F3F from PetClassification:latest

Start a container with the docker image built in the previous step:

In [ ]:
!docker run -p 5000:5000 PetClassification/20200122122128_513734

Load saved BentoService

bentoml.load is the API for loading a BentoML packaged model in python:

In [12]:
from bentoml import load

service = load(saved_path)

print(service.predict(data.get(0)))
[2019-09-17 15:20:59,886] WARNING - Module `pet_classification` already loaded, using existing imported module.
(Category Egyptian_Mau, tensor(5), tensor([8.1198e-05, 4.7572e-03, 8.4651e-06, 7.2410e-04, 4.4823e-04, 9.9232e-01,
        1.2686e-04, 8.9391e-06, 3.2297e-05, 2.6294e-04, 1.2570e-05, 1.7887e-04,
        2.3823e-05, 1.0635e-05, 3.7823e-06, 2.6734e-05, 4.9237e-05, 3.0513e-05,
        5.5845e-05, 7.1444e-05, 3.7852e-04, 1.9912e-05, 4.3253e-06, 2.8950e-05,
        7.1766e-06, 5.2756e-06, 1.9716e-05, 2.6185e-06, 9.0641e-05, 1.7248e-05,
        9.3070e-06, 3.1759e-05, 7.4544e-05, 1.3818e-05, 2.7183e-05, 1.8018e-05,
        1.3240e-05]))

Launch inference job from CLI

BentoML cli supports loading and running a packaged model from CLI. With the DataframeInput adapter, the CLI command supports reading input Dataframe data from CLI argument or local csv or json files:

In [17]:
!bentoml run PetClassification:latest predict --input=test.jpg
[2020-01-22 12:50:18,951] WARNING - BentoML local changes detected - Local BentoML repository including all code changes will be bundled together with the BentoService bundle. When used with docker, the base docker image will be default to same version as last PyPI release at version: 0.5.8. You can also force bentoml to use a specific version for deploying your BentoService bundle, by setting the config 'core/bentoml_deploy_version' to a pinned version or your custom BentoML on github, e.g.:'bentoml_deploy_version = git+https://github.com/{username}/bentoml.git@{branch}'
[2020-01-22 12:50:18,964] WARNING - Saved BentoService bundle version mismatch: loading BentoServie bundle create with BentoML version 0.5.8,  but loading from BentoML version 0.5.8+23.g1dd72d3
[2020-01-22 12:50:22,038] WARNING - BentoML local changes detected - Local BentoML repository including all code changes will be bundled together with the BentoService bundle. When used with docker, the base docker image will be default to same version as last PyPI release at version: 0.5.8. You can also force bentoml to use a specific version for deploying your BentoService bundle, by setting the config 'core/bentoml_deploy_version' to a pinned version or your custom BentoML on github, e.g.:'bentoml_deploy_version = git+https://github.com/{username}/bentoml.git@{branch}'
[2020-01-22 12:50:22,157] WARNING - BentoML local changes detected - Local BentoML repository including all code changes will be bundled together with the BentoService bundle. When used with docker, the base docker image will be default to same version as last PyPI release at version: 0.5.8. You can also force bentoml to use a specific version for deploying your BentoService bundle, by setting the config 'core/bentoml_deploy_version' to a pinned version or your custom BentoML on github, e.g.:'bentoml_deploy_version = git+https://github.com/{username}/bentoml.git@{branch}'
(Category yorkshire_terrier, tensor(36), tensor([6.5418e-06, 1.1117e-06, 1.4023e-06, 1.2001e-06, 1.4748e-07, 5.9564e-08,
        1.6650e-06, 1.6947e-06, 1.4603e-07, 8.4881e-08, 8.7069e-07, 3.1522e-07,
        7.8667e-08, 3.8861e-07, 1.8602e-06, 8.0380e-06, 6.4890e-07, 5.7006e-06,
        3.4203e-06, 6.0791e-08, 1.5988e-07, 1.5740e-07, 8.2322e-06, 1.0582e-06,
        2.8686e-07, 3.3809e-07, 2.8787e-05, 6.6988e-08, 8.7025e-06, 2.5589e-07,
        1.6868e-07, 1.1191e-07, 3.5333e-06, 2.2819e-07, 7.3852e-07, 5.6413e-07,
        9.9991e-01]))

Deployment Options

If you are at a small team with limited engineering or DevOps resources, try out automated deployment with BentoML CLI, currently supporting AWS Lambda, AWS SageMaker, and Azure Functions:

If the cloud platform you are working with is not on the list above, try out these step-by-step guide on manually deploying BentoML packaged model to cloud platforms:

Lastly, if you have a DevOps or ML Engineering team who's operating a Kubernetes or OpenShift cluster, use the following guides as references for implementating your deployment strategy:

In [ ]: