				tht m		
			$\frac{\pi .5}{0.4}$			
			为			
			$w=$	$\begin{gathered} \substack{\text { com } \\ \text { mom } \\ 0.0} \end{gathered}$		
Empirical CDF：$\hat{F}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i} \leq t\right\}}$ Empirical PDF：$\hat{f}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \delta\left(t-X_{i}\right)$（continuous）						
Empirical PDF：$\hat{f}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \delta\left(t-X_{i}\right)$（continuEmpirical PDF：$\hat{p}_{n}(t)=\frac{1}{n}\|x=t\| x \in D$（discrete）						
		mimm				
		咅				
			D．（Span of Universe of Continuous Ridge			
			D．（Deses fumetion Clase \boldsymbol{H} in（lat）			
			\＃xx $f(x)-h(x)=\\|f-h\\|_{\infty, k}<0$			
			Ruge fumetioms			
${ }_{\text {de }}$ Analysis						
		Com．	隹	T．em		
		${ }_{\text {D }}$		${ }_{R}$		
				com．		
			T	come		
		b．				
atite pan						
			Live			
			${ }_{\text {com }}^{\text {com }}$			
				隹		
			D．			
			$\frac{\tanh ^{\prime}(x)=4 \sigma^{\prime}(2 x)=4 \sigma(2 x)(1-\sigma(2 x))}{\text { Connection between Sigmoid and Tanh（Equal Representation }}$			
$\frac{\partial}{\partial \mathbf{x}}\left[(\mathbf{A x}+\mathbf{b})^{\top} \mathbf{C}(\mathbf{D x}+\mathbf{e})\right]=\mathbf{D}^{\top} \mathbf{C}^{\top}(\mathbf{A x}+\mathbf{b})+\mathbf{A}^{\top} \mathbf{C}(\mathbf{D x}+\mathbf{e})$ $\frac{\partial}{\partial \mathbf{x}}\left[\\|\mathbf{f}(\mathbf{x})\\|_{2}^{2}\right]=\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x})^{\top} \mathbf{f}(\mathbf{x})\right]=2 \frac{\partial}{\partial \mathbf{x}}[\mathbf{f}(\mathbf{x})] \mathbf{f}(\mathbf{x})=2 \mathbf{J}_{f} \mathbf{f}(\mathbf{x})$			$\begin{aligned} & \text { Streng } \\ & \sigma(x)= \end{aligned}$			
			P．			
		0				
			D．（ Absolite Vatue（Rectifeation）Unit（AVU））			

	（n）
	＝
$=x=2$	
Exa	E
maxem	
	－
$x+(\mathrm{mx}+,+\infty)$	
	0.0
x^{2}	
5	mornom
为	vimmemmern
mat	
50，	S
	－
$\pm=x^{*}=5$	E
	5 masmex
或	\％
＝miswemem	mix momm
＊	
5－5゙5w	20，
5ax	
	\％
－$=$ as	䢒
\％remex	
－mime	
\％	\％

The receptive feled x_{i}^{l} of node x_{i}^{l} is deffined as $\tau_{i}^{l}:=\left\{j \mid w_{i,}^{\prime} \neq 0\right.$

derivative $\frac{\partial \text { ntin is analogous. }}{\text { din }}$

$\frac{\sqrt{4} \sqrt{4}+}{}$

$\frac{\square}{\square} \frac{\square}{\square} \square$

$\underset{-14.1 \text { - Learning as }}{14}$

$-14.2-$ Objectives as Expectations
$\nabla_{\theta} R(D)=\mathbb{E}_{S_{N} \sim P_{D}}\left[\nabla_{\theta} R\left(S_{N}\right)\right]=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{0 R} R(\theta ;\{x|x| y(1)\})\right]$

Ex.So Io our risk finction R, we say hat the gradieito ofit

 contin
git
gitit
and

 $\forall x y: \quad\langle f(y)-\nabla f(x), y-x) \geq \mu\|y-x \mid\|_{2}^{2}$
where $\|\|\|$ is any norm. An equivelent condition is the following:

 $F(x)=A x$,
So then, we cant define our risk as
$\mathbf{A} \in \mathbb{R}^{m \times x}$

So if the mean $\mu=$ ot then our input is uncorrelated, and every
coture is of traraneo

Using the ininarity of the expectation and the trace, and some trace
identituse ceas us us to
$=\operatorname{Tr}\left(E\left[y y^{\top}\right]\right)-2 T\left(A \mathbb{A}\left[x x^{T}\right]\right)+T\left(A E\left[x x^{T}\right] A\right)$

Com. convex combination of two points \leq evaluation of conver
comination tho poins.
Comm. And

Models with multitication of many weights (depth, recurrence):

- Very large Lipschitz constant
- Would theoretically reauire eer
she

5

Which in the end g ives us

Then, we have that the common term in the gradients $\mathbf{A}-\Gamma$ can
$=\mathrm{U}(\hat{Q} \overline{\mathrm{~W}}-\Sigma)^{\top}$

And we can ocmpute
of $\bar{W}, \mathrm{~W}$ as follows

$\underset{\text { And since were picking } S_{K} \subseteq S_{K} \text { at random, note how }}{ }$

D. (Epoch =ones sweep through the whole data)

radient on the ful
. Almest have a look ateme ome of the practicalities

Stimum strongly yonvenc case). so wo
$t=\max (0.001$,

\qquad
\qquad

$$
r_{k}^{2}(t)=\sum_{i=1}^{i} \sum_{i=1}^{2} q_{i}^{2}
$$

$$
v_{i}^{2}(t)=\sum_{i=1}^{t} \rho^{t}
$$

$\gamma_{i=1}^{2}(t)=\sum_{i=1}^{1}=^{t^{1-\infty}}$

$\left(\prod_{=1}^{\hbar} w_{i}\right)^{x}$
For later notation, let us collect all the wights in a set
$W:=\left\{w_{1}, \ldots, w_{J}\right)$
After the gradient ster well have the folowing situation:
$v^{\mathrm{New}}=\left(\prod_{i=1}^{!}\left(w_{l}-\eta \frac{\partial \mathcal{R}}{\partial u_{i}}\right)\right)$

$=\left(\left(\prod_{i=1}^{L} w_{i}\right)-\eta \frac{\partial \mathcal{L}}{\partial w_{1}}\left(\prod_{i=2}^{\frac{\partial w_{i}}{n}} w_{i}\right)+\cdots+(-\eta)^{u}\left(\prod_{i=1} \frac{\partial \mathcal{R}}{\partial w_{i}}\right)\right)$
$=\left(\prod_{i=1}^{t} w_{i}\right)^{x-\eta} \frac{\partial \mathcal{R}}{\partial w_{1}}\left(\prod_{=2}^{t} w_{i}\right)$
()$\left._{i=1}^{n} \frac{\partial \mathcal{R}}{n}\right)^{x}$
$\underbrace{v-\eta \frac{\partial \mathcal{R}}{\partial w_{1}}}\left(\prod_{i=2}^{L}\right)_{i})^{x+\cdots+(-\eta)^{x}}\left(\prod_{i=1}^{t} \frac{\partial \mathcal{R}}{\partial w_{i}}\right) x^{x}$

$=\sqrt{\left.\delta+\frac{1}{|I|} \sum_{i \in 1}\left(F_{j}^{2} \circ \ldots \circ F^{1}\right)(\mathbb{X}[\mid])-\mu_{j}^{l}\right)}$

 $\frac{o n}{\partial u_{i}}=\lambda^{\lambda} w$
which mean
and

$\mathcal{R}(\theta) \approx \mathcal{R}\left(\theta^{*}\right)+\underset{=0}{\nabla_{0} \mathcal{R}\left(\theta^{*}\right)^{\top}\left(\theta-\theta^{*}\right)+\frac{1}{2}\left(\theta-\theta^{*}\right)^{\top} \mathbf{H}(\theta)}$
$=\boldsymbol{R}\left(\theta^{*}\right)+\frac{1}{2}\left(\theta-\theta^{*}\right)^{\top} \mathbf{H}\left(\theta-\theta^{*}\right) \quad(+)$
$\left(\mathbf{H}_{\left.\mathcal{H}_{i}\right)_{i, j}}=\frac{\partial^{2} R}{\partial \theta_{i} \theta_{j}}\right.$

$f \mathcal{R}(\mathrm{in}(t)$.
$\nabla_{0}\left[\mathcal{R}\left(\theta^{*}\right)+\frac{1}{2}\left(\theta-\theta^{*}\right)^{\top} \mathbf{H}\left(\theta-\theta^{*}\right)\right]=-\mathbf{H}^{*}+\mathbf{H} \quad \quad\left({ }^{*}\right)$
Further, recall that

$\left(\mathbf{Q A Q} Q^{T}+\operatorname{diag}(\lambda)\right)^{-1} Q_{1 Q} Q^{T} \theta^{*}$

$=\frac{(\Lambda+\operatorname{diag}(\lambda))^{-1} \Lambda}{=\operatorname{ding}\left(\frac{\pi}{9+\pi}+\cdots\right.}$
So this give us an itea what happons with θ in the ingections of

$\xrightarrow[\square]{\square}$

 , ..inin $\min ^{R}(\theta)$
 $\operatorname{cosent}_{\theta(t+1)=\Pi_{r}(\theta(t)-\eta \mathcal{R}), \quad \Pi_{r}(v)==\min \left\{1, \frac{r}{\|v\|}\right\} v}$

 is is ins because the Jacobian of the gradient map is the Hessian (as seen previousty) we have that

subtracting θ^{θ} on both sideses gives us $\theta(t+1)-\theta^{*} \approx\left(1-\eta H(\theta)-(\theta)-\theta^{\circ}\right)$

 $\bar{\theta}(t)=\bar{\sigma}^{*}-(\underline{1}-\eta \Lambda)^{\prime} \tilde{\theta}^{\boldsymbol{\theta}}$.

 $P_{\text {anember }}$ nemembes $(x)=\sqrt[4]{\Pi_{\mu} P(\mu) P(y \mid x, \mu)}$

\qquad

 D. (Pointwise Mutual Information)

and well suasas the dotproduct to something between 0 and 1 to
make it serie as

estimate $P\left(w_{1}, \ldots, w_{\tau}\right){ }^{\text {roded }}={ }_{=\text {rut }} \prod_{i=1}^{T} P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)$

${ }^{\log \left(P\left(w_{z} \mid \boldsymbol{w}=w_{t-1}, \ldots, w_{1}\right)\right)}=x_{w_{t}}^{\top} z_{w}+$ const

Max

Time-Invariance: the state evolution fuccion F is indepen

/ Do back-propagation over time of weight and biases

 $\xrightarrow{+\rightarrow \underbrace{+}}$

This techingue is called teacher forcing (even if we do a wron prodiction, we force it o o be the true value).

Now, this means that $\begin{aligned} & \left.\text { If } \sigma_{\text {max }} \mathbf{W}\right)<1 \text {, then the gradients will vanish } \\ & \text {. }\end{aligned}$

$\nabla_{x} R \leftarrow \nabla_{x} \mathcal{R} \cdot \frac{\gamma_{\text {max }}}{\left.\max \| \| x, \|_{x}, \gamma_{\text {max }}\right)}$

 The nice thing is that we can compute both se
$\mathrm{y}^{\prime}=H\left(\mathrm{~h}^{\prime}, \mathrm{g}^{\prime}, \theta\right)$

16 Memory \& Attention

O. (Gated Unit)
hhe ofolowing picture ilustrates how we have a memory unit where

$\hat{+} \rightarrow$

$p_{(\pi \mid x)}=\prod_{=1}^{r} y_{t t}$

 -. (Nouraif Trentiabe Memo
D.
DTHing Machine)

 Usally, theres sine value

ty controller works as foo

For aperery vector see which memorv ealser

				$\left\lvert\, \begin{aligned} & \text {－17．4．2－Latent Variable Models } \\ & \text { Classically we define complex models via the marginalization of a }\end{aligned}\right.$		
				$=\sum_{\text {m }} \underline{(x, x)}$	We cannot optimize this with MLE，because MLE would just set c arbitrarily high．（we want：c to be s．t．we get a valid probability distr．）	
					Mind ono	
						comme
			为			
				Principal Component Analysis／Factor Analysis （ f linear） Nonnegative Matrix Factorization （ f＂psomolu＂or Bernoulli model，and bot \mathbf{Z} and \mathbf{B} have to be a		
		3．Construct the observed data model by integrating／summing out the latent variables		㫦		
．						
			（ex）			
	为					
		\qquad				
－How to make the RNN Encoder／Decoder The following things were discovered by Sutskever 2014 ：				，		
		A typical approach to for lat analysis． －Linear Factor Analysis				
com				${ }_{\text {D }}^{\text {D．}}$（TT		
	D．					Comem
coicle						Minimax Come beit
			d			
		$\underbrace{\mu=\frac{1}{k} \sum_{i=1}^{t} \mathrm{x}_{1}}$			And	
	\％			19 Generative Models		come
177 Unsut						边
			（en	$\begin{aligned} & \text { following goal: } \\ & \text { Goal: given data } D \text {, } \\ & \text { tion } p_{\text {data. }} \text { We want t } \end{aligned}$	，	mato
comen		come	M．			
						$\stackrel{\square}{\circ}$
		（1）			，math taco	
and		at them（after the proof）．$\widetilde{\mathbf{x}}$ ． $\widetilde{\mathbf{x}}:=\mathbf{W} \mathbf{z}$ s．t． $\mathbf{x}=\boldsymbol{\mu}+\widetilde{\mathbf{x}}+\boldsymbol{\eta}$ ．Now let＇s determine the MGF of		\％		
cosme	$\underbrace{\left(U_{i}^{-1}\right)}_{i}$	）．				
			D．（Multivariable $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{X} \in \mathbb{R}^{\boldsymbol{n}}$			
$\int p_{p(x) d x}=1$.				\％		Ther
come				and		come
	Atat					
为		为			rewrite the data（log）likelih product for all points－you instances in front of everyth	
	Then we define $\quad \mathrm{s}=\mathrm{xx}^{\top}$					Ota
$\overline{r o m}_{0}(x)=\frac{1}{n} \sum_{i=1}^{n} n_{n}\left(x-x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} k\left(\frac{x-x_{1}}{n}\right)$		$\left.w^{t}+\sum\right)^{T}$ ．				
	$\mathbf{S}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ So，the column vectors of \mathbf{U} are the					
	mank ．and U U					
				This is a well－known decon negative phase of learning		
						为
	Onie					
		，				

