
C2_W3_Lab_1_MLMetadata

May 22, 2021

1 Ungraded Lab: Walkthrough of ML Metadata
Keeping records at each stage of the project is an important aspect of machine learning pipelines.
Especially in production models which involve many iterations of datasets and re-training, having
these records will help in maintaining or debugging the deployed system. ML Metadata addresses
this need by having an API suited specifically for keeping track of any progress made in ML projects.

As mentioned in earlier labs, you have already used MLMetadata when you ran your TFX pipelines.
Each component automatically records information to a metadata store as you go through each
stage. It allowed you to retrieve information such as the name of the training splits or the location
of an inferred schema.

In this notebook, you will look more closely at how ML Metadata can be used directly for recording
and retrieving metadata independent from a TFX pipeline (i.e. without using TFX components).
You will use TFDV to infer a schema and record all information about this process. These will
show how the different components are related to each other so you can better interact with the
database when you go back to using TFX in the next labs. Moreover, knowing the inner workings
of the library will help you adapt it for other platforms if needed.

Let’s get to it!

1.1 Imports

[1]: from ml_metadata.metadata_store import metadata_store
from ml_metadata.proto import metadata_store_pb2

import tensorflow as tf
print('TF version: {}'.format(tf.__version__))

import tensorflow_data_validation as tfdv
print('TFDV version: {}'.format(tfdv.version.__version__))

import urllib
import zipfile

TF version: 2.3.1
TFDV version: 0.24.1

1

https://www.tensorflow.org/tfx/guide/mlmd

1.2 Download dataset
You will be using the Chicago Taxi dataset for this lab. Let’s download the CSVs into your
workspace.

[2]: # Download the zip file from GCP and unzip it
url = 'https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/
↪→datasets/chicago_data.zip'

zip, headers = urllib.request.urlretrieve(url)
zipfile.ZipFile(zip).extractall()
zipfile.ZipFile(zip).close()

print("Here's what we downloaded:")
!ls -R data

Here's what we downloaded:
data:
census_data eval serving train

data/census_data:
adult.data

data/eval:
data.csv

data/serving:
data.csv

data/train:
data.csv

1.3 Process Outline
Here is the figure shown in class that describes the different components in an ML Metadata store:

The green box in the middle shows the data model followed by ML Metadata. The official docu-
mentation describe each of these and we’ll show it here as well for easy reference:

• ArtifactType describes an artifact’s type and its properties that are stored in the metadata
store. You can register these types on-the-fly with the metadata store in code, or you can
load them in the store from a serialized format. Once you register a type, its definition is
available throughout the lifetime of the store.

• An Artifact describes a specific instance of an ArtifactType, and its properties that are
written to the metadata store.

• An ExecutionType describes a type of component or step in a workflow, and its runtime
parameters.

• An Execution is a record of a component run or a step in an ML workflow and the runtime
parameters. An execution can be thought of as an instance of an ExecutionType. Executions
are recorded when you run an ML pipeline or step.

2

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://www.tensorflow.org/tfx/guide/mlmd#data_model
https://www.tensorflow.org/tfx/guide/mlmd#data_model

• An Event is a record of the relationship between artifacts and executions. When an execution
happens, events record every artifact that was used by the execution, and every artifact that
was produced. These records allow for lineage tracking throughout a workflow. By looking
at all events, MLMD knows what executions happened and what artifacts were created as a
result. MLMD can then recurse back from any artifact to all of its upstream inputs.

• A ContextType describes a type of conceptual group of artifacts and executions in a workflow,
and its structural properties. For example: projects, pipeline runs, experiments, owners etc.

• A Context is an instance of a ContextType. It captures the shared information within the
group. For example: project name, changelist commit id, experiment annotations etc. It has
a user-defined unique name within its ContextType.

• An Attribution is a record of the relationship between artifacts and contexts.
• An Association is a record of the relationship between executions and contexts.

As mentioned earlier, you will use TFDV to generate a schema and record this process in the ML
Metadata store. You will be starting from scratch so you will be defining each component of the
data model. The outline of steps involve:

1. Defining the ML Metadata’s storage database
2. Setting up the necessary artifact types
3. Setting up the execution types
4. Generating an input artifact unit
5. Generating an execution unit
6. Registering an input event
7. Running the TFDV component
8. Generating an output artifact unit
9. Registering an output event

10. Updating the execution unit
11. Seting up and generating a context unit
12. Generating attributions and associations

You can then retrieve information from the database to investigate aspects of your project. For
example, you can find which dataset was used to generate a particular schema. You will also do
that in this exercise.

For each of these steps, you may want to have the MetadataStore API documentation open so you
can lookup any of the methods you will be using to interact with the metadata store. You can also
look at the metadata_store protocol buffer here to see descriptions of each data type covered in
this tutorial.

1.4 Define ML Metadata’s Storage Database
The first step would be to instantiate your storage backend. As mentioned in class, there are
several types supported such as fake (temporary) database, SQLite, MySQL, and even cloud-based
storage. For this demo, you will just be using a fake database for quick experimentation.

[3]: # Instantiate a connection config
connection_config = metadata_store_pb2.ConnectionConfig()

Set an empty fake database proto
connection_config.fake_database.SetInParent()

3

https://www.tensorflow.org/tfx/ml_metadata/api_docs/python/mlmd/MetadataStore
https://github.com/google/ml-metadata/blob/r0.24.0/ml_metadata/proto/metadata_store.proto

Setup the metadata store
store = metadata_store.MetadataStore(connection_config)

1.5 Register ArtifactTypes
Next, you will create the artifact types needed and register them to the store. Since our simple
exercise will just involve generating a schema using TFDV, you will only create two artifact types:
one for the input dataset and another for the output schema. The main steps will be to:

• Declare an ArtifactType()
• Define the name of the artifact type
• Define the necessary properties within these artifact types. For example, it is important to

know the data split name so you may want to have a split property for the artifact type
that holds datasets.

• Use put_artifact_type() to register them to the metadata store. This generates an id that
you can use later to refer to a particular artifact type.

Bonus: For practice, you can also extend the code below to create an artifact type for the statistics.

[4]: # Create ArtifactType for the input dataset
data_artifact_type = metadata_store_pb2.ArtifactType()
data_artifact_type.name = 'DataSet'
data_artifact_type.properties['name'] = metadata_store_pb2.STRING
data_artifact_type.properties['split'] = metadata_store_pb2.STRING
data_artifact_type.properties['version'] = metadata_store_pb2.INT

Register artifact type to the Metadata Store
data_artifact_type_id = store.put_artifact_type(data_artifact_type)

Create ArtifactType for Schema
schema_artifact_type = metadata_store_pb2.ArtifactType()
schema_artifact_type.name = 'Schema'
schema_artifact_type.properties['name'] = metadata_store_pb2.STRING
schema_artifact_type.properties['version'] = metadata_store_pb2.INT

Register artifact type to the Metadata Store
schema_artifact_type_id = store.put_artifact_type(schema_artifact_type)

print('Data artifact type:\n', data_artifact_type)
print('Schema artifact type:\n', schema_artifact_type)
print('Data artifact type ID:', data_artifact_type_id)
print('Schema artifact type ID:', schema_artifact_type_id)

Data artifact type:
name: "DataSet"

properties {
key: "name"
value: STRING

4

}
properties {

key: "split"
value: STRING

}
properties {

key: "version"
value: INT

}

Schema artifact type:
name: "Schema"

properties {
key: "name"
value: STRING

}
properties {

key: "version"
value: INT

}

Data artifact type ID: 1
Schema artifact type ID: 2

1.6 Register ExecutionType
You will then create the execution types needed. For the simple setup, you will just declare one for
the data validation component with a state property so you can record if the process is running
or already completed.

[5]: # Create ExecutionType for Data Validation component
dv_execution_type = metadata_store_pb2.ExecutionType()
dv_execution_type.name = 'Data Validation'
dv_execution_type.properties['state'] = metadata_store_pb2.STRING

Register execution type to the Metadata Store
dv_execution_type_id = store.put_execution_type(dv_execution_type)

print('Data validation execution type:\n', dv_execution_type)
print('Data validation execution type ID:', dv_execution_type_id)

Data validation execution type:
name: "Data Validation"

properties {
key: "state"
value: STRING

}

5

Data validation execution type ID: 3

1.7 Generate input artifact unit
With the artifact types created, you can now create instances of those types. The cell below
creates the artifact for the input dataset. This artifact is recorded in the metadata store through
the put_artifacts() function. Again, it generates an id that can be used for reference.

[6]: # Declare input artifact of type DataSet
data_artifact = metadata_store_pb2.Artifact()
data_artifact.uri = './data/train/data.csv'
data_artifact.type_id = data_artifact_type_id
data_artifact.properties['name'].string_value = 'Chicago Taxi dataset'
data_artifact.properties['split'].string_value = 'train'
data_artifact.properties['version'].int_value = 1

Submit input artifact to the Metadata Store
data_artifact_id = store.put_artifacts([data_artifact])[0]

print('Data artifact:\n', data_artifact)
print('Data artifact ID:', data_artifact_id)

Data artifact:
type_id: 1

uri: "./data/train/data.csv"
properties {

key: "name"
value {

string_value: "Chicago Taxi dataset"
}

}
properties {

key: "split"
value {

string_value: "train"
}

}
properties {

key: "version"
value {

int_value: 1
}

}

Data artifact ID: 1

6

1.8 Generate execution unit
Next, you will create an instance of the Data Validation execution type you registered earlier.
You will set the state to RUNNING to signify that you are about to run the TFDV function. This is
recorded with the put_executions() function.

[7]: # Register the Execution of a Data Validation run
dv_execution = metadata_store_pb2.Execution()
dv_execution.type_id = dv_execution_type_id
dv_execution.properties['state'].string_value = 'RUNNING'

Submit execution unit to the Metadata Store
dv_execution_id = store.put_executions([dv_execution])[0]

print('Data validation execution:\n', dv_execution)
print('Data validation execution ID:', dv_execution_id)

Data validation execution:
type_id: 3

properties {
key: "state"
value {

string_value: "RUNNING"
}

}

Data validation execution ID: 1

1.9 Register input event
An event defines a relationship between artifacts and executions. You will generate the input event
relationship for dataset artifact and data validation execution units. The list of event types are
shown here and the event is recorded with the put_events() function.

[8]: # Declare the input event
input_event = metadata_store_pb2.Event()
input_event.artifact_id = data_artifact_id
input_event.execution_id = dv_execution_id
input_event.type = metadata_store_pb2.Event.DECLARED_INPUT

Submit input event to the Metadata Store
store.put_events([input_event])

print('Input event:\n', input_event)

Input event:
artifact_id: 1

execution_id: 1
type: DECLARED_INPUT

7

https://github.com/google/ml-metadata/blob/master/ml_metadata/proto/metadata_store.proto#L187

1.10 Run the TFDV component
You will now run the TFDV component to generate the schema of dataset. This should look
familiar since you’ve done this already in Week 1.

[9]: # Infer a schema by passing statistics to `infer_schema()`
train_data = './data/train/data.csv'
train_stats = tfdv.generate_statistics_from_csv(data_location=train_data)
schema = tfdv.infer_schema(statistics=train_stats)

schema_file = './schema.pbtxt'
tfdv.write_schema_text(schema, schema_file)

print("Dataset's Schema has been generated at:", schema_file)

WARNING:tensorflow:From /opt/conda/lib/python3.8/site-
packages/tensorflow_data_validation/utils/stats_util.py:229: tf_record_iterator
(from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a
future version.
Instructions for updating:
Use eager execution and:
`tf.data.TFRecordDataset(path)`

WARNING:tensorflow:From /opt/conda/lib/python3.8/site-
packages/tensorflow_data_validation/utils/stats_util.py:229: tf_record_iterator
(from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a
future version.
Instructions for updating:
Use eager execution and:
`tf.data.TFRecordDataset(path)`

Dataset's Schema has been generated at: ./schema.pbtxt

1.11 Generate output artifact unit
Now that the TFDV component has finished running and schema has been generated, you can
create the artifact for the generated schema.

[10]: # Declare output artifact of type Schema_artifact
schema_artifact = metadata_store_pb2.Artifact()
schema_artifact.uri = schema_file
schema_artifact.type_id = schema_artifact_type_id
schema_artifact.properties['version'].int_value = 1
schema_artifact.properties['name'].string_value = 'Chicago Taxi Schema'

Submit output artifact to the Metadata Store
schema_artifact_id = store.put_artifacts([schema_artifact])[0]

8

print('Schema artifact:\n', schema_artifact)
print('Schema artifact ID:', schema_artifact_id)

Schema artifact:
type_id: 2

uri: "./schema.pbtxt"
properties {

key: "name"
value {

string_value: "Chicago Taxi Schema"
}

}
properties {

key: "version"
value {

int_value: 1
}

}

Schema artifact ID: 2

1.12 Register output event
Analogous to the input event earlier, you also want to define an output event to record the ouput
artifact of a particular execution unit.

[11]: # Declare the output event
output_event = metadata_store_pb2.Event()
output_event.artifact_id = schema_artifact_id
output_event.execution_id = dv_execution_id
output_event.type = metadata_store_pb2.Event.DECLARED_OUTPUT

Submit output event to the Metadata Store
store.put_events([output_event])

print('Output event:\n', output_event)

Output event:
artifact_id: 2

execution_id: 1
type: DECLARED_OUTPUT

1.13 Update the execution unit
As the TFDV component has finished running successfully, you need to update the state of the
execution unit and record it again to the store.

9

[12]: # Mark the `state` as `COMPLETED`
dv_execution.id = dv_execution_id
dv_execution.properties['state'].string_value = 'COMPLETED'

Update execution unit in the Metadata Store
store.put_executions([dv_execution])

print('Data validation execution:\n', dv_execution)

Data validation execution:
id: 1

type_id: 3
properties {

key: "state"
value {

string_value: "COMPLETED"
}

}

1.14 Setting up Context Types and Generating a Context Unit
You can group the artifacts and execution units into a Context. First, you need to define a
ContextType which defines the required context. It follows a similar format as artifact and event
types. You can register this with the put_context_type() function.

[13]: # Create a ContextType
expt_context_type = metadata_store_pb2.ContextType()
expt_context_type.name = 'Experiment'
expt_context_type.properties['note'] = metadata_store_pb2.STRING

Register context type to the Metadata Store
expt_context_type_id = store.put_context_type(expt_context_type)

Similarly, you can create an instance of this context type and use the put_contexts() method to
register to the store.

[14]: # Generate the context
expt_context = metadata_store_pb2.Context()
expt_context.type_id = expt_context_type_id
Give the experiment a name
expt_context.name = 'Demo'
expt_context.properties['note'].string_value = 'Walkthrough of metadata'

Submit context to the Metadata Store
expt_context_id = store.put_contexts([expt_context])[0]

print('Experiment Context type:\n', expt_context_type)

10

print('Experiment Context type ID: ', expt_context_type_id)

print('Experiment Context:\n', expt_context)
print('Experiment Context ID: ', expt_context_id)

Experiment Context type:
name: "Experiment"

properties {
key: "note"
value: STRING

}

Experiment Context type ID: 4
Experiment Context:
type_id: 4

name: "Demo"
properties {

key: "note"
value {

string_value: "Walkthrough of metadata"
}

}

Experiment Context ID: 1

1.15 Generate attribution and association relationships
With the Context defined, you can now create its relationship with the artifact and executions
you previously used. You will create the relationship between schema artifact unit and experiment
context unit to form an Attribution. Similarly, you will create the relationship between data val-
idation execution unit and experiment context unit to form an Association. These are registered
with the put_attributions_and_associations() method.

[15]: # Generate the attribution
expt_attribution = metadata_store_pb2.Attribution()
expt_attribution.artifact_id = schema_artifact_id
expt_attribution.context_id = expt_context_id

Generate the association
expt_association = metadata_store_pb2.Association()
expt_association.execution_id = dv_execution_id
expt_association.context_id = expt_context_id

Submit attribution and association to the Metadata Store
store.put_attributions_and_associations([expt_attribution], [expt_association])

print('Experiment Attribution:\n', expt_attribution)
print('Experiment Association:\n', expt_association)

11

Experiment Attribution:
artifact_id: 2

context_id: 1

Experiment Association:
execution_id: 1

context_id: 1

1.16 Retrieving Information from the Metadata Store
You’ve now recorded the needed information to the metadata store. If we did this in a persistent
database, you can track which artifacts and events are related to each other even without seeing
the code used to generate it. See a sample run below where you investigate what dataset is used
to generate the schema. (**It would be obvious which dataset is used in our simple demo because
we only have two artifacts registered. Thus, assume that you have thousands of entries in the
metadata store.*)

[16]: # Get artifact types
store.get_artifact_types()

[16]: [id: 1
name: "DataSet"
properties {

key: "name"
value: STRING

}
properties {

key: "split"
value: STRING

}
properties {

key: "version"
value: INT

},
id: 2
name: "Schema"
properties {

key: "name"
value: STRING

}
properties {

key: "version"
value: INT

}]

[17]: # Get 1st element in the list of `Schema` artifacts.
You will investigate which dataset was used to generate it.

12

schema_to_inv = store.get_artifacts_by_type('Schema')[0]

print output
print(schema_to_inv)

id: 2
type_id: 2
uri: "./schema.pbtxt"
properties {

key: "name"
value {

string_value: "Chicago Taxi Schema"
}

}
properties {

key: "version"
value {

int_value: 1
}

}
create_time_since_epoch: 1621639851631
last_update_time_since_epoch: 1621639851631

[18]: # Get events related to the schema id
schema_events = store.get_events_by_artifact_ids([schema_to_inv.id])

print(schema_events)

[artifact_id: 2
execution_id: 1
type: DECLARED_OUTPUT
milliseconds_since_epoch: 1621639867452
]

You see that it is an output of an execution so you can look up the execution id to see related
artifacts.

[19]: # Get events related to the output above
execution_events = store.get_events_by_execution_ids([schema_events[0].
↪→execution_id])

print(execution_events)

[artifact_id: 1
execution_id: 1
type: DECLARED_INPUT
milliseconds_since_epoch: 1621639807384

13

, artifact_id: 2
execution_id: 1
type: DECLARED_OUTPUT
milliseconds_since_epoch: 1621639867452
]

You see the declared input of this execution so you can select that from the list and lookup the
details of the artifact.

[20]: # Look up the artifact that is a declared input
artifact_input = execution_events[0]

store.get_artifacts_by_id([artifact_input.artifact_id])

[20]: [id: 1
type_id: 1
uri: "./data/train/data.csv"
properties {

key: "name"
value {

string_value: "Chicago Taxi dataset"
}

}
properties {

key: "split"
value {

string_value: "train"
}

}
properties {

key: "version"
value {

int_value: 1
}

}
create_time_since_epoch: 1621639740363
last_update_time_since_epoch: 1621639740363]

Great! Now you’ve fetched the dataset artifact that was used to generate the schema. You can ap-
proach this differently and we urge you to practice using the different methods of the MetadataStore
API to get more familiar with interacting with the database.

1.16.1 Wrap Up

In this notebook, you got to practice using ML Metadata outside of TFX. This should help you
understand its inner workings so you will know better how to query ML Metadata stores or even
set it up for your own use cases. TFX leverages this library to keep records of pipeline runs and you
will get to see more of that in the next labs. Next up, you will review how to work with schemas
and in the next notebook, you will see how it can be implemented in a TFX pipeline.

14

https://www.tensorflow.org/tfx/ml_metadata/api_docs/python/mlmd/MetadataStore
https://www.tensorflow.org/tfx/ml_metadata/api_docs/python/mlmd/MetadataStore

	Ungraded Lab: Walkthrough of ML Metadata
	Imports
	Download dataset
	Process Outline
	Define ML Metadata's Storage Database
	Register ArtifactTypes
	Register ExecutionType
	Generate input artifact unit
	Generate execution unit
	Register input event
	Run the TFDV component
	Generate output artifact unit
	Register output event
	Update the execution unit
	Setting up Context Types and Generating a Context Unit
	Generate attribution and association relationships
	Retrieving Information from the Metadata Store
	Wrap Up

