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1 Ungraded Lab: Feature Selection
Feature selection involves picking the set of features that are most relevant to the target variable.
This helps in reducing the complexity of your model, as well as minimizing the resources required
for training and inference. This has greater effect in production models where you maybe dealing
with terabytes of data or serving millions of requests.

In this notebook, you will run through the different techniques in performing feature selection on
the Breast Cancer Dataset. Most of the modules will come from scikit-learn, one of the most
commonly used machine learning libraries. It features various machine learning algorithms and has
built-in implementations of different feature selection methods. Using these, you will be able to
compare which method works best for this particular dataset.

1.1 Imports

[1]: # for data processing and manipulation
import pandas as pd
import numpy as np

# scikit-learn modules for feature selection and model evaluation
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE, SelectKBest, SelectFromModel, chi2,␣
↪→f_classif

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, precision_score,␣
↪→recall_score, f1_score

from sklearn.svm import LinearSVC
from sklearn.feature_selection import SelectFromModel
from sklearn.preprocessing import StandardScaler, MinMaxScaler

# libraries for visualization
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
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1.2 Load the dataset
We’ve already downloaded the CSV in your workspace. Run the cell below to load it in the lab
environment and inspect its properties.

[2]: # Load the dataset
df = pd.read_csv('./data/breast_cancer_data.csv')

# Print datatypes
print(df.dtypes)

# Describe columns
df.describe(include='all')

id int64
diagnosis object
radius_mean float64
texture_mean float64
perimeter_mean float64
area_mean float64
smoothness_mean float64
compactness_mean float64
concavity_mean float64
concave points_mean float64
symmetry_mean float64
fractal_dimension_mean float64
radius_se float64
texture_se float64
perimeter_se float64
area_se float64
smoothness_se float64
compactness_se float64
concavity_se float64
concave points_se float64
symmetry_se float64
fractal_dimension_se float64
radius_worst float64
texture_worst float64
perimeter_worst float64
area_worst float64
smoothness_worst float64
compactness_worst float64
concavity_worst float64
concave points_worst float64
symmetry_worst float64
fractal_dimension_worst float64
Unnamed: 32 float64
dtype: object
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[2]: id diagnosis radius_mean texture_mean perimeter_mean \
count 5.690000e+02 569 569.000000 569.000000 569.000000
unique NaN 2 NaN NaN NaN
top NaN B NaN NaN NaN
freq NaN 357 NaN NaN NaN
mean 3.037183e+07 NaN 14.127292 19.289649 91.969033
std 1.250206e+08 NaN 3.524049 4.301036 24.298981
min 8.670000e+03 NaN 6.981000 9.710000 43.790000
25% 8.692180e+05 NaN 11.700000 16.170000 75.170000
50% 9.060240e+05 NaN 13.370000 18.840000 86.240000
75% 8.813129e+06 NaN 15.780000 21.800000 104.100000
max 9.113205e+08 NaN 28.110000 39.280000 188.500000

area_mean smoothness_mean compactness_mean concavity_mean \
count 569.000000 569.000000 569.000000 569.000000
unique NaN NaN NaN NaN
top NaN NaN NaN NaN
freq NaN NaN NaN NaN
mean 654.889104 0.096360 0.104341 0.088799
std 351.914129 0.014064 0.052813 0.079720
min 143.500000 0.052630 0.019380 0.000000
25% 420.300000 0.086370 0.064920 0.029560
50% 551.100000 0.095870 0.092630 0.061540
75% 782.700000 0.105300 0.130400 0.130700
max 2501.000000 0.163400 0.345400 0.426800

concave points_mean … texture_worst perimeter_worst area_worst \
count 569.000000 … 569.000000 569.000000 569.000000
unique NaN … NaN NaN NaN
top NaN … NaN NaN NaN
freq NaN … NaN NaN NaN
mean 0.048919 … 25.677223 107.261213 880.583128
std 0.038803 … 6.146258 33.602542 569.356993
min 0.000000 … 12.020000 50.410000 185.200000
25% 0.020310 … 21.080000 84.110000 515.300000
50% 0.033500 … 25.410000 97.660000 686.500000
75% 0.074000 … 29.720000 125.400000 1084.000000
max 0.201200 … 49.540000 251.200000 4254.000000

smoothness_worst compactness_worst concavity_worst \
count 569.000000 569.000000 569.000000
unique NaN NaN NaN
top NaN NaN NaN
freq NaN NaN NaN
mean 0.132369 0.254265 0.272188
std 0.022832 0.157336 0.208624
min 0.071170 0.027290 0.000000
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25% 0.116600 0.147200 0.114500
50% 0.131300 0.211900 0.226700
75% 0.146000 0.339100 0.382900
max 0.222600 1.058000 1.252000

concave points_worst symmetry_worst fractal_dimension_worst \
count 569.000000 569.000000 569.000000
unique NaN NaN NaN
top NaN NaN NaN
freq NaN NaN NaN
mean 0.114606 0.290076 0.083946
std 0.065732 0.061867 0.018061
min 0.000000 0.156500 0.055040
25% 0.064930 0.250400 0.071460
50% 0.099930 0.282200 0.080040
75% 0.161400 0.317900 0.092080
max 0.291000 0.663800 0.207500

Unnamed: 32
count 0.0
unique NaN
top NaN
freq NaN
mean NaN
std NaN
min NaN
25% NaN
50% NaN
75% NaN
max NaN

[11 rows x 33 columns]

[3]: # Preview the dataset
df.head()

[3]: id diagnosis radius_mean texture_mean perimeter_mean area_mean \
0 842302 M 17.99 10.38 122.80 1001.0
1 842517 M 20.57 17.77 132.90 1326.0
2 84300903 M 19.69 21.25 130.00 1203.0
3 84348301 M 11.42 20.38 77.58 386.1
4 84358402 M 20.29 14.34 135.10 1297.0

smoothness_mean compactness_mean concavity_mean concave points_mean \
0 0.11840 0.27760 0.3001 0.14710
1 0.08474 0.07864 0.0869 0.07017
2 0.10960 0.15990 0.1974 0.12790
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3 0.14250 0.28390 0.2414 0.10520
4 0.10030 0.13280 0.1980 0.10430

… texture_worst perimeter_worst area_worst smoothness_worst \
0 … 17.33 184.60 2019.0 0.1622
1 … 23.41 158.80 1956.0 0.1238
2 … 25.53 152.50 1709.0 0.1444
3 … 26.50 98.87 567.7 0.2098
4 … 16.67 152.20 1575.0 0.1374

compactness_worst concavity_worst concave points_worst symmetry_worst \
0 0.6656 0.7119 0.2654 0.4601
1 0.1866 0.2416 0.1860 0.2750
2 0.4245 0.4504 0.2430 0.3613
3 0.8663 0.6869 0.2575 0.6638
4 0.2050 0.4000 0.1625 0.2364

fractal_dimension_worst Unnamed: 32
0 0.11890 NaN
1 0.08902 NaN
2 0.08758 NaN
3 0.17300 NaN
4 0.07678 NaN

[5 rows x 33 columns]

1.3 Remove Unwanted Features
You can remove features that are not needed when making predictions. The column Unnamed: 32
has NaN values for all rows. Moreover, the id is just an arbitrary number assigned to patients and
has nothing to do with the diagnosis. Hence, you can remove them from the dataset.

[4]: # Check if there are null values in any of the columns. You will see `Unnamed:␣
↪→32` has a lot.

df.isna().sum()

[4]: id 0
diagnosis 0
radius_mean 0
texture_mean 0
perimeter_mean 0
area_mean 0
smoothness_mean 0
compactness_mean 0
concavity_mean 0
concave points_mean 0
symmetry_mean 0
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fractal_dimension_mean 0
radius_se 0
texture_se 0
perimeter_se 0
area_se 0
smoothness_se 0
compactness_se 0
concavity_se 0
concave points_se 0
symmetry_se 0
fractal_dimension_se 0
radius_worst 0
texture_worst 0
perimeter_worst 0
area_worst 0
smoothness_worst 0
compactness_worst 0
concavity_worst 0
concave points_worst 0
symmetry_worst 0
fractal_dimension_worst 0
Unnamed: 32 569
dtype: int64

[5]: # Remove Unnamed: 32 and id columns
columns_to_remove = ['Unnamed: 32', 'id']
df.drop(columns_to_remove, axis=1, inplace=True)

# Check that the columns are indeed dropped
df.head()

[5]: diagnosis radius_mean texture_mean perimeter_mean area_mean \
0 M 17.99 10.38 122.80 1001.0
1 M 20.57 17.77 132.90 1326.0
2 M 19.69 21.25 130.00 1203.0
3 M 11.42 20.38 77.58 386.1
4 M 20.29 14.34 135.10 1297.0

smoothness_mean compactness_mean concavity_mean concave points_mean \
0 0.11840 0.27760 0.3001 0.14710
1 0.08474 0.07864 0.0869 0.07017
2 0.10960 0.15990 0.1974 0.12790
3 0.14250 0.28390 0.2414 0.10520
4 0.10030 0.13280 0.1980 0.10430

symmetry_mean … radius_worst texture_worst perimeter_worst \
0 0.2419 … 25.38 17.33 184.60
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1 0.1812 … 24.99 23.41 158.80
2 0.2069 … 23.57 25.53 152.50
3 0.2597 … 14.91 26.50 98.87
4 0.1809 … 22.54 16.67 152.20

area_worst smoothness_worst compactness_worst concavity_worst \
0 2019.0 0.1622 0.6656 0.7119
1 1956.0 0.1238 0.1866 0.2416
2 1709.0 0.1444 0.4245 0.4504
3 567.7 0.2098 0.8663 0.6869
4 1575.0 0.1374 0.2050 0.4000

concave points_worst symmetry_worst fractal_dimension_worst
0 0.2654 0.4601 0.11890
1 0.1860 0.2750 0.08902
2 0.2430 0.3613 0.08758
3 0.2575 0.6638 0.17300
4 0.1625 0.2364 0.07678

[5 rows x 31 columns]

1.4 Integer Encode Diagnosis
You may have realized that the target column, diagnosis, is encoded as a string type categorical
variable: M for malignant and B for benign. You need to convert these into integers before training
the model. Since there are only two classes, you can use 0 for benign and 1 for malignant. Let’s
create a column diagnosis_int containing this integer representation.

[6]: # Integer encode the target variable, diagnosis
df["diagnosis_int"] = (df["diagnosis"] == 'M').astype('int')

# Drop the previous string column
df.drop(['diagnosis'], axis=1, inplace=True)

# Check the new column
df.head()

[6]: radius_mean texture_mean perimeter_mean area_mean smoothness_mean \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030

compactness_mean concavity_mean concave points_mean symmetry_mean \
0 0.27760 0.3001 0.14710 0.2419
1 0.07864 0.0869 0.07017 0.1812
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2 0.15990 0.1974 0.12790 0.2069
3 0.28390 0.2414 0.10520 0.2597
4 0.13280 0.1980 0.10430 0.1809

fractal_dimension_mean … texture_worst perimeter_worst area_worst \
0 0.07871 … 17.33 184.60 2019.0
1 0.05667 … 23.41 158.80 1956.0
2 0.05999 … 25.53 152.50 1709.0
3 0.09744 … 26.50 98.87 567.7
4 0.05883 … 16.67 152.20 1575.0

smoothness_worst compactness_worst concavity_worst concave points_worst \
0 0.1622 0.6656 0.7119 0.2654
1 0.1238 0.1866 0.2416 0.1860
2 0.1444 0.4245 0.4504 0.2430
3 0.2098 0.8663 0.6869 0.2575
4 0.1374 0.2050 0.4000 0.1625

symmetry_worst fractal_dimension_worst diagnosis_int
0 0.4601 0.11890 1
1 0.2750 0.08902 1
2 0.3613 0.08758 1
3 0.6638 0.17300 1
4 0.2364 0.07678 1

[5 rows x 31 columns]

1.5 Model Performance
Next, split the dataset into feature vectors X and target vector (diagnosis) Y to fit a Random-
ForestClassifier. You will then compare the performance of each feature selection technique, using
accuracy, roc, precision, recall and f1-score as evaluation metrics.

[7]: # Split feature and target vectors
X = df.drop("diagnosis_int", 1)
Y = df["diagnosis_int"]

1.5.1 Fit the Model and Calculate Metrics

You will define helper functions to train your model and use the scikit-learn modules to evaluate
your results.

[8]: def fit_model(X, Y):
'''Use a RandomForestClassifier for this problem.'''

# define the model to use
model = RandomForestClassifier(criterion='entropy', random_state=47)
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# Train the model
model.fit(X, Y)

return model

[9]: def calculate_metrics(model, X_test_scaled, Y_test):
'''Get model evaluation metrics on the test set.'''

# Get model predictions
y_predict_r = model.predict(X_test_scaled)

# Calculate evaluation metrics for assesing performance of the model.
roc=roc_auc_score(Y_test, y_predict_r)
acc = accuracy_score(Y_test, y_predict_r)
prec = precision_score(Y_test, y_predict_r)
rec = recall_score(Y_test, y_predict_r)
f1 = f1_score(Y_test, y_predict_r)

return acc, roc, prec, rec, f1

[10]: def train_and_get_metrics(X, Y):
'''Train a Random Forest Classifier and get evaluation metrics'''

# Split train and test sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.

↪→2,stratify=Y, random_state = 123)

# All features of dataset are float values. You normalize all features of␣
↪→the train and test dataset here.

scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Call the fit model function to train the model on the normalized features␣
↪→and the diagnosis values

model = fit_model(X_train_scaled, Y_train)

# Make predictions on test dataset and calculate metrics.
roc, acc, prec, rec, f1 = calculate_metrics(model, X_test_scaled, Y_test)

return acc, roc, prec, rec, f1

[11]: def evaluate_model_on_features(X, Y):
'''Train model and display evaluation metrics.'''

# Train the model, predict values and get metrics

9



acc, roc, prec, rec, f1 = train_and_get_metrics(X, Y)

# Construct a dataframe to display metrics.
display_df = pd.DataFrame([[acc, roc, prec, rec, f1, X.shape[1]]],␣

↪→columns=["Accuracy", "ROC", "Precision", "Recall", "F1 Score", 'Feature␣
↪→Count'])

return display_df

Now you can train the model with all features included then calculate the metrics. This will be
your baseline and you will compare this to the next outputs when you do feature selection.

[12]: # Calculate evaluation metrics
all_features_eval_df = evaluate_model_on_features(X, Y)
all_features_eval_df.index = ['All features']

# Initialize results dataframe
results = all_features_eval_df

# Check the metrics
results.head()

[12]: Accuracy ROC Precision Recall F1 Score Feature Count
All features 0.967262 0.964912 0.931818 0.97619 0.953488 30

1.6 Correlation Matrix
It is a good idea to calculate and visualize the correlation matrix of a data frame to see which
features have high correlation. You can do that with just a few lines as shown below. The Pandas
corr() method computes the Pearson correlation by default and you will plot it with Matlab PyPlot
and Seaborn. The darker blue boxes show features with high positive correlation while white ones
indicate high negative correlation. The diagonals will have 1’s because the feature is mapped on to
itself.

[13]: # Set figure size
plt.figure(figsize=(20,20))

# Calculate correlation matrix
cor = df.corr()

# Plot the correlation matrix
sns.heatmap(cor, annot=True, cmap=plt.cm.PuBu)
plt.show()
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1.7 Filter Methods
Let’s start feature selection with filter methods. This type of feature selection uses statistical
methods to rank a given set of features. Moreover, it does this ranking regardless of the model you
will be training on (i.e. you only need the feature values). When using these, it is important to
note the types of features and target variable you have. Here are a few examples:

• Pearson Correlation (numeric features - numeric target, exception: when target is 0/1 coded)
• ANOVA f-test (numeric features - categorical target)
• Chi-squared (categorical features - categorical target)

Let’s use some of these in the next cells.
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1.7.1 Correlation with the target variable

Let’s start by determining which features are strongly correlated with the diagnosis (i.e. the target
variable). Since we have numeric features and our target, although categorical, is 0/1 coded, we
can use Pearson correlation to compute the scores for each feature. This is also categorized as
supervised feature selection because we’re taking into account the relationship of each feature with
the target variable. Moreover, since only one variable’s relationship to the target is taken at a time,
this falls under univariate feature selection.

[14]: # Get the absolute value of the correlation
cor_target = abs(cor["diagnosis_int"])

# Select highly correlated features (thresold = 0.2)
relevant_features = cor_target[cor_target>0.2]

# Collect the names of the features
names = [index for index, value in relevant_features.iteritems()]

# Drop the target variable from the results
names.remove('diagnosis_int')

# Display the results
print(names)

['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean',
'symmetry_mean', 'radius_se', 'perimeter_se', 'area_se', 'compactness_se',
'concavity_se', 'concave points_se', 'radius_worst', 'texture_worst',
'perimeter_worst', 'area_worst', 'smoothness_worst', 'compactness_worst',
'concavity_worst', 'concave points_worst', 'symmetry_worst',
'fractal_dimension_worst']

Now try training the model again but only with the features in the columns you just gathered.
You can observe that there is an improvement in the metrics compared to the model you trained
earlier.

[15]: # Evaluate the model with new features
strong_features_eval_df = evaluate_model_on_features(df[names], Y)
strong_features_eval_df.index = ['Strong features']

# Append to results and display
results = results.append(strong_features_eval_df)
results.head()

[15]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.97619 0.953488
Strong features 0.974206 0.973684 0.953488 0.97619 0.964706

Feature Count
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All features 30
Strong features 25

1.7.2 Correlation with other features

You will now eliminate features which are highly correlated with each other. This helps remove
redundant features thus resulting in a simpler model. Since the scores are calculated regardless of
the target variable, this can be categorized under unsupervised feature selection.

For this, you will plot the correlation matrix of the features selected previously. Let’s first visualize
the correlation matrix again.

[16]: # Set figure size
plt.figure(figsize=(20,20))

# Calculate the correlation matrix for target relevant features that you␣
↪→previously determined

new_corr = df[names].corr()

# Visualize the correlation matrix
sns.heatmap(new_corr, annot=True, cmap=plt.cm.Blues)
plt.show()
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You will see that radius_mean is highly correlated to radius worst, perimeter_worst, and
area_worst. You can retain radius_mean and remove the rest of the features highly correlated to
it.

Moreover, concavity_mean is highly correlated to concave points_mean. You will remove
concave points_mean and retain concavity_mean from your set of features.

This is a more magnified view of the features that are highly correlated to each other.

[17]: # Set figure size
plt.figure(figsize=(12,10))
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# Select a subset of features
new_corr = df[['perimeter_mean', 'radius_worst', 'perimeter_worst',␣
↪→'area_worst', 'concave points_mean', 'radius_mean', 'concavity_mean']].corr()

# Visualize the correlation matrix
sns.heatmap(new_corr, annot=True, cmap=plt.cm.Blues)
plt.show()

You will now evaluate the model on the features selected based on your observations. You can see
that the metrics show the same values as when it was using 25 features. This indicates that you
can get the same model performance even if you reduce the number of features. In other words,
the 4 features you removed were indeed redundant and you only needed the ones you retained.

[18]: # Remove the features with high correlation to other features
subset_feature_corr_names = [x for x in names if x not in ['perimeter_mean',␣
↪→'radius_worst', 'perimeter_worst', 'area_worst', 'concavepoints_mean']]
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# Calculate and check evaluation metrics
subset_feature_eval_df =␣
↪→evaluate_model_on_features(df[subset_feature_corr_names], Y)

subset_feature_eval_df.index = ['Subset features']

# Append to results and display
results = results.append(subset_feature_eval_df)
results.head(n=10)

[18]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.97619 0.953488
Strong features 0.974206 0.973684 0.953488 0.97619 0.964706
Subset features 0.974206 0.973684 0.953488 0.97619 0.964706

Feature Count
All features 30
Strong features 25
Subset features 21

1.7.3 Univariate Selection with Sci-Kit Learn

Sci-kit learn offers more filter methods in its feature selection module. Moreover, it also has
convenience methods for how you would like to filter the features. You can see the available options
here in the official docs.

For this exercise, you will compute the ANOVA F-values to select the top 20 features using
SelectKBest().

[19]: def univariate_selection():

# Split train and test sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.

↪→2,stratify=Y, random_state = 123)

# All features of dataset are float values. You normalize all features of␣
↪→the train and test dataset here.

scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# User SelectKBest to select top 20 features based on f-test
selector = SelectKBest(f_classif, k=20)

# Fit to scaled data, then transform it
X_new = selector.fit_transform(X_train_scaled, Y_train)

# Print the results
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feature_idx = selector.get_support()
for name, included in zip(df.drop("diagnosis_int",1 ).columns, feature_idx):

print("%s: %s" % (name, included))

# Drop the target variable
feature_names = df.drop("diagnosis_int",1 ).columns[feature_idx]

return feature_names

You will now evaluate the model on the features selected by univariate selection.

[20]: univariate_feature_names = univariate_selection()

radius_mean: True
texture_mean: True
perimeter_mean: True
area_mean: True
smoothness_mean: False
compactness_mean: True
concavity_mean: True
concave points_mean: True
symmetry_mean: False
fractal_dimension_mean: False
radius_se: True
texture_se: False
perimeter_se: True
area_se: True
smoothness_se: False
compactness_se: False
concavity_se: False
concave points_se: True
symmetry_se: False
fractal_dimension_se: False
radius_worst: True
texture_worst: True
perimeter_worst: True
area_worst: True
smoothness_worst: True
compactness_worst: True
concavity_worst: True
concave points_worst: True
symmetry_worst: True
fractal_dimension_worst: False

[21]: # Calculate and check model metrics
univariate_eval_df = evaluate_model_on_features(df[univariate_feature_names], Y)
univariate_eval_df.index = ['F-test']
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# Append to results and display
results = results.append(univariate_eval_df)
results.head(n=10)

[21]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.97619 0.953488
Strong features 0.974206 0.973684 0.953488 0.97619 0.964706
Subset features 0.974206 0.973684 0.953488 0.97619 0.964706
F-test 0.974206 0.973684 0.953488 0.97619 0.964706

Feature Count
All features 30
Strong features 25
Subset features 21
F-test 20

You can see that the performance metrics are the same as in the previous section but it uses only
20 features.

1.8 Wrapper Methods
Wrapper methods use a model to measure the effectiveness of a particular subset of features. As
mentioned in class, one approach is to remove or add features sequentially. You can either start
with 1 feature and gradually add until no improvement is made (forward selection), or do the
reverse (backward selection). That can be done with the SequentialFeatureSelector class which
uses k-fold cross validation scores to decide which features to add or remove. Recursive Feature
Elimination is similar to backwards elimination but uses feature importance scores to prune the
number of features. You can also specify how many features to remove at each iteration of the
recursion. Let’s use this as the wrapper for our model below.

1.8.1 Recursive Feature Elimination

You used the RandomForestClassifier as the model algorithm for which features should be
selected. Now, you will use Recursive Feature Elimination, which wraps around the selected
model to perform feature selection. This time, you can repeat the same task of selecting the top
20 features using RFE instead of SelectKBest.

[22]: def run_rfe():

# Split train and test sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.

↪→2,stratify=Y, random_state = 123)

# All features of dataset are float values. You normalize all features of␣
↪→the train and test dataset here.

scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
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X_test_scaled = scaler.transform(X_test)

# Define the model
model = RandomForestClassifier(criterion='entropy', random_state=47)

# Wrap RFE around the model
rfe = RFE(model, 20)

# Fit RFE
rfe = rfe.fit(X_train_scaled, Y_train)
feature_names = df.drop("diagnosis_int",1 ).columns[rfe.get_support()]

return feature_names

rfe_feature_names = run_rfe()

You will now evaluate the RandomForestClassifier on the features selected by RFE. You will
see that there is a slight performance drop compared to the previous approaches.

[23]: # Calculate and check model metrics
rfe_eval_df = evaluate_model_on_features(df[rfe_feature_names], Y)
rfe_eval_df.index = ['RFE']

# Append to results and display
results = results.append(rfe_eval_df)
results.head(n=10)

[23]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.97619 0.953488
Strong features 0.974206 0.973684 0.953488 0.97619 0.964706
Subset features 0.974206 0.973684 0.953488 0.97619 0.964706
F-test 0.974206 0.973684 0.953488 0.97619 0.964706
RFE 0.967262 0.964912 0.931818 0.97619 0.953488

Feature Count
All features 30
Strong features 25
Subset features 21
F-test 20
RFE 20

1.9 Embedded Methods
Some models already have intrinsic properties that select the best features when it is constructed.
With that, you can simply access these properties to get the scores for each feature. Let’s look at
some examples in the following sections.
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1.9.1 Feature Importances

Feature importance is already built-in in scikit-learn’s tree based models like RandomForest-
Classifier. Once the model is fit, the feature importance is available as a property named fea-
ture_importances_.

You can use SelectFromModel to select features from the trained model based on a given threshold.

[24]: def feature_importances_from_tree_based_model_():

# Split train and test set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.

↪→2,stratify=Y, random_state = 123)

# Define the model to use
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

model = RandomForestClassifier()
model = model.fit(X_train_scaled,Y_train)

# Plot feature importance
plt.figure(figsize=(10, 12))
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.sort_values(ascending=False).plot(kind='barh')
plt.show()

return model

def select_features_from_model(model):

model = SelectFromModel(model, prefit=True, threshold=0.013)
feature_idx = model.get_support()
feature_names = df.drop("diagnosis_int",1 ).columns[feature_idx]

return feature_names

model = feature_importances_from_tree_based_model_()
feature_imp_feature_names = select_features_from_model(model)
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[25]: # Calculate and check model metrics
feat_imp_eval_df = evaluate_model_on_features(df[feature_imp_feature_names], Y)
feat_imp_eval_df.index = ['Feature Importance']

# Append to results and display
results = results.append(feat_imp_eval_df)
results.head(n=10)

[25]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.97619 0.953488
Strong features 0.974206 0.973684 0.953488 0.97619 0.964706
Subset features 0.974206 0.973684 0.953488 0.97619 0.964706
F-test 0.974206 0.973684 0.953488 0.97619 0.964706
RFE 0.967262 0.964912 0.931818 0.97619 0.953488
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Feature Importance 0.967262 0.964912 0.931818 0.97619 0.953488

Feature Count
All features 30
Strong features 25
Subset features 21
F-test 20
RFE 20
Feature Importance 16

1.9.2 L1 Regularization

L1 or Lasso Regulartization introduces a penalty term to the loss function which leads to the least
important features being eliminated. Implementation in scikit-learn can be done with a LinearSVC
model as the learning algorithm. You can then use SelectFromModel to select features based on
the LinearSVC model’s output of L1 regularization.

[26]: def run_l1_regularization():

# Split train and test set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.

↪→2,stratify=Y, random_state = 123)

# All features of dataset are float values. You normalize all features of␣
↪→the train and test dataset here.

scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Select L1 regulated features from LinearSVC output
selection = SelectFromModel(LinearSVC(C=1, penalty='l1', dual=False))
selection.fit(X_train_scaled, Y_train)

feature_names = df.drop("diagnosis_int",1 ).columns[(selection.
↪→get_support())]

return feature_names

l1reg_feature_names = run_l1_regularization()

[27]: # Calculate and check model metrics
l1reg_eval_df = evaluate_model_on_features(df[l1reg_feature_names], Y)
l1reg_eval_df.index = ['L1 Reg']

# Append to results and display
results = results.append(l1reg_eval_df)
results.head(n=10)
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[27]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.976190 0.953488
Strong features 0.974206 0.973684 0.953488 0.976190 0.964706
Subset features 0.974206 0.973684 0.953488 0.976190 0.964706
F-test 0.974206 0.973684 0.953488 0.976190 0.964706
RFE 0.967262 0.964912 0.931818 0.976190 0.953488
Feature Importance 0.967262 0.964912 0.931818 0.976190 0.953488
L1 Reg 0.929563 0.929825 0.886364 0.928571 0.906977

Feature Count
All features 30
Strong features 25
Subset features 21
F-test 20
RFE 20
Feature Importance 16
L1 Reg 18

With these results and also your domain knowledge, you can decide which set of features to use to
train on the entire dataset. If you will be basing it on the f1 score, you may narrow it down to the
Strong features, Subset features and F-test rows because they have the highest scores. If
you want to save resources, the F-test will be the most optimal of these 3 because it uses the least
number of features. On the other hand, if you find that all the resulting scores for all approaches
are acceptable, then you may just go for the method with the smallest set of features.

1.10 Wrap Up
That’s it for this quick rundown of the different feature selection methods. As shown, you can
do quick experiments with these because convenience modules are already available in libraries
like sci-kit learn. It is a good idea to do this preprocessing step because not only will you save
resources, you may even get better results than when you use all features. Try it out on your
previous/upcoming projects and see what results you get!
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