
C2_W1_Lab_1_TFDV_Exercise

May 22, 2021

1 Ungraded Lab: TFDV Exercise
In this notebook, you will get to practice using TensorFlow Data Validation (TFDV), an open-
source Python package from the TensorFlow Extended (TFX) ecosystem.

TFDV helps to understand, validate, and monitor production machine learning data at scale. It
provides insight into some key questions in the data analysis process such as:

• What are the underlying statistics of my data?

• What does my training dataset look like?

• How does my evaluation and serving datasets compare to the training dataset?

• How can I find and fix data anomalies?

The figure below summarizes the usual TFDV workflow:

As shown, you can use TFDV to compute descriptive statistics of the training data and generate a
schema. You can then validate new datasets (e.g. the serving dataset from your customers) against
this schema to detect and fix anomalies. This helps prevent the different types of skew. That way,
you can be confident that your model is training on or predicting data that is consistent with the
expected feature types and distribution.

This ungraded exercise demonstrates useful functions of TFDV at an introductory level as prepa-
ration for this week’s graded programming exercise. Specifically, you will:

• Generate and visualize statistics from a dataset
• Detect and fix anomalies in an evaluation dataset

Let’s begin!

1.1 Package Installation and Imports

[1]: import tensorflow as tf
import tensorflow_data_validation as tfdv
import pandas as pd

from sklearn.model_selection import train_test_split
from util import add_extra_rows

from tensorflow_metadata.proto.v0 import schema_pb2

1

https://cloud.google.com/solutions/machine-learning/analyzing-and-validating-data-at-scale-for-ml-using-tfx
https://www.tensorflow.org/tfx

print('TFDV Version: {}'.format(tfdv.__version__))
print('Tensorflow Version: {}'.format(tf.__version__))

TFDV Version: 0.24.1
Tensorflow Version: 2.3.1

1.2 Download the dataset
You will be working with the Census Income Dataset, a dataset that can be used to predict if
an individual earns more than or less than 50k US Dollars annually. The summary of attribute
names with descriptions/expected values is shown below and you can read more about it in this
data description file.

• age: continuous.
• workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked.
• fnlwgt: continuous.
• education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc,

9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
• education-num: continuous.
• marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse.
• occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-
moving, Priv-house-serv, Protective-serv, Armed-Forces.

• relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
• race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
• sex: Female, Male.
• capital-gain: continuous.
• capital-loss: continuous.
• hours-per-week: continuous.
• native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras,
Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-
Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,
Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-
Netherlands.

Let’s load the dataset and split it into training and evaluation sets. We will not shuffle them for
consistent results in this demo notebook but you should otherwise in real projects.

[2]: # Read in the training and evaluation datasets
df = pd.read_csv('data/adult.data', skipinitialspace=True)

Split the dataset. Do not shuffle for this demo notebook.
train_df, eval_df = train_test_split(df, test_size=0.2, shuffle=False)

Let’s see the first few columns of the train and eval sets.

2

http://archive.ics.uci.edu/ml/datasets/Census+Income
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names

[3]: # Preview the train set
train_df.head()

[3]: age workclass fnlwgt education education-num \
0 39 State-gov 77516 Bachelors 13
1 50 Self-emp-not-inc 83311 Bachelors 13
2 38 Private 215646 HS-grad 9
3 53 Private 234721 11th 7
4 28 Private 338409 Bachelors 13

marital-status occupation relationship race sex \
0 Never-married Adm-clerical Not-in-family White Male
1 Married-civ-spouse Exec-managerial Husband White Male
2 Divorced Handlers-cleaners Not-in-family White Male
3 Married-civ-spouse Handlers-cleaners Husband Black Male
4 Married-civ-spouse Prof-specialty Wife Black Female

capital-gain capital-loss hours-per-week native-country label
0 2174 0 40 United-States <=50K
1 0 0 13 United-States <=50K
2 0 0 40 United-States <=50K
3 0 0 40 United-States <=50K
4 0 0 40 Cuba <=50K

[5]: print(train_df.shape)

(26048, 15)

[4]: # Preview the eval set
eval_df.head()

[4]: age workclass fnlwgt education education-num marital-status \
26048 30 Private 270886 Some-college 10 Never-married
26049 21 Private 216129 HS-grad 9 Never-married
26050 33 Private 189368 Some-college 10 Married-civ-spouse
26051 19 ? 141418 Some-college 10 Never-married
26052 19 Private 306225 HS-grad 9 Never-married

occupation relationship race sex capital-gain \
26048 Other-service Own-child White Female 0
26049 Other-service Own-child White Male 0
26050 Transport-moving Husband Black Male 0
26051 ? Own-child White Male 0
26052 Handlers-cleaners Own-child White Male 0

capital-loss hours-per-week native-country label
26048 0 40 United-States <=50K

3

26049 0 35 United-States <=50K
26050 0 40 United-States >50K
26051 0 15 United-States <=50K
26052 0 25 United-States <=50K

[6]: print(eval_df.shape)

(6513, 15)

From these few columns, you can get a first impression of the data. You will notice that most are
strings and integers. There are also columns that are mostly zeroes. In the next sections, you will
see how to use TFDV to aggregate and process this information so you can inspect it more easily.

1.2.1 Adding extra rows

To demonstrate how TFDV can detect anomalies later, you will add a few extra rows to the
evaluation dataset. These are either malformed or have values that will trigger certain alarms
later in this notebook. The code to add these can be seen in the add_extra_rows() function of
util.py found in your Jupyter workspace. You can look at it later and even modify it after you’ve
completed the entire exercise. For now, let’s just execute the function and add the rows that we’ve
defined by default.

[7]: # add extra rows
eval_df = add_extra_rows(eval_df)

preview the added rows
eval_df.tail(4)

[7]: age workclass fnlwgt education education-num marital-status \
6513 46 NaN 257473 Bachelors 8 Married-civ-spouse
6514 0 Private 257473 Masters 8 Married-civ-spouse
6515 1000 Private 257473 Masters 8 Married-civ-spouse
6516 25 ? 257473 Masters 8 Married-civ-spouse

occupation relationship race sex capital-gain capital-loss \
6513 Plumber Husband Other Male 1000 0
6514 Adm-clerical Wife Asian Female 0 0
6515 Prof-specialty Husband Black Male 0 0
6516 gamer Husband Asian Female 0 0

hours-per-week native-country label
6513 41 Australia >50K
6514 40 Pakistan >50K
6515 20 Cameroon <=50K
6516 50 Mongolia <=50K

4

1.3 Generate and visualize training dataset statistics
You can now compute and visualize the statistics of your training dataset. TFDV accepts three
input formats: TensorFlow’s TFRecord, Pandas Dataframe, and CSV file. In this exercise, you will
feed in the Pandas Dataframes you generated from the train-test split.

You can compute your dataset statistics by using the generate_statistics_from_dataframe()
method. Under the hood, it distributes the analysis via Apache Beam which allows it to scale over
large datasets.

The results returned by this step for numerical and categorical data are summarized in this table:

Numerical Data Categorical Data
Count of data records Count of data records

% of missing data records % of missing data records
Mean, std, min, max unique records

% of zero values Avg string length

[8]: # Generate training dataset statistics
train_stats = tfdv.generate_statistics_from_dataframe(train_df)

Once you’ve generated the statistics, you can easily visualize your results with the
visualize_statistics() method. This shows a Facets interface and is very useful to spot if
you have a high amount of missing data or high standard deviation. Run the cell below and
explore the different settings in the output interface (e.g. Sort by, Reverse order, Feature search).

[9]: # Visualize training dataset statistics
tfdv.visualize_statistics(train_stats)

<IPython.core.display.HTML object>

1.4 Infer data schema
Next step is to create a data schema to describe your train set. Simply put, a schema describes
standard characteristics of your data such as column data types and expected data value range.
The schema is created on a dataset that you consider as reference, and can be reused to validate
other incoming datasets.

With the computed statistics, TFDV allows you to automatically generate an initial version of the
schema using the infer_schema() method. This returns a Schema protocol buffer containing the
result. As mentioned in the TFX paper (Section 3.3), the results of the schema inference can be
summarized as follows:

• The expected type of each feature.
• The expected presence of each feature, in terms of a minimum count and fraction of examples

that must contain the feature.
• The expected valency of the feature in each example, i.e., minimum and maximum number

of values.
• The expected domain of a feature, i.e., the small universe of values for a string feature, or

range for an integer feature.

5

https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/generate_statistics_from_dataframe
https://beam.apache.org/
https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/visualize_statistics
https://pair-code.github.io/facets/
https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/infer_schema
https://developers.google.com/protocol-buffers
http://stevenwhang.com/tfx_paper.pdf

Run the cell below to infer the training dataset schema.

[10]: # Infer schema from the computed statistics.
schema = tfdv.infer_schema(statistics=train_stats)

Display the inferred schema
tfdv.display_schema(schema)

Type Presence Valency Domain
Feature name
'age' INT required -
'workclass' STRING required 'workclass'
'fnlwgt' INT required -
'education' STRING required 'education'
'education-num' INT required -
'marital-status' STRING required 'marital-status'
'occupation' STRING required 'occupation'
'relationship' STRING required 'relationship'
'race' STRING required 'race'
'sex' STRING required 'sex'
'capital-gain' INT required -
'capital-loss' INT required -
'hours-per-week' INT required -
'native-country' STRING required 'native-country'
'label' STRING required 'label'

␣
↪→ ␣
↪→ ␣
↪→ ␣
↪→ ␣
↪→ ␣
↪→ Values

Domain
'workclass' '?', 'Federal-gov', 'Local-gov', 'Never-worked', 'Private',␣
↪→'Self-emp-inc', 'Self-emp-not-inc', 'State-gov', 'Without-pay'

'education' '10th', '11th', '12th', '1st-4th', '5th-6th', '7th-8th',␣
↪→'9th', 'Assoc-acdm', 'Assoc-voc', 'Bachelors', 'Doctorate', 'HS-grad',␣
↪→'Masters', 'Preschool', 'Prof-school', 'Some-college'

'marital-status' 'Divorced', 'Married-AF-spouse', 'Married-civ-spouse',␣
↪→'Married-spouse-absent', 'Never-married', 'Separated', 'Widowed'

'occupation' '?', 'Adm-clerical', 'Armed-Forces', 'Craft-repair',␣
↪→'Exec-managerial', 'Farming-fishing', 'Handlers-cleaners',␣
↪→'Machine-op-inspct', 'Other-service', 'Priv-house-serv', 'Prof-specialty',␣
↪→'Protective-serv', 'Sales', 'Tech-support', 'Transport-moving'

'relationship' 'Husband', 'Not-in-family', 'Other-relative', 'Own-child',␣
↪→'Unmarried', 'Wife'

6

'race' 'Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other',␣
↪→'White'

'sex' 'Female', 'Male'
'native-country' '?', 'Cambodia', 'Canada', 'China', 'Columbia', 'Cuba',␣
↪→'Dominican-Republic', 'Ecuador', 'El-Salvador', 'England', 'France',␣
↪→'Germany', 'Greece', 'Guatemala', 'Haiti', 'Holand-Netherlands', 'Honduras',␣
↪→'Hong', 'Hungary', 'India', 'Iran', 'Ireland', 'Italy', 'Jamaica', 'Japan',␣
↪→'Laos', 'Mexico', 'Nicaragua', 'Outlying-US(Guam-USVI-etc)', 'Peru',␣
↪→'Philippines', 'Poland', 'Portugal', 'Puerto-Rico', 'Scotland', 'South',␣
↪→'Taiwan', 'Thailand', 'Trinadad&Tobago', 'United-States', 'Vietnam',␣
↪→'Yugoslavia'

'label' '<=50K', '>50K'

1.5 Generate and visualize evaluation dataset statistics
The next step after generating the schema is to now look at the evaluation dataset. You will begin
by computing its statistics then compare it with the training statistics. It is important that the
numerical and categorical features of the evaluation data belongs roughly to the same range as the
training data. Otherwise, you might have distribution skew that will negatively affect the accuracy
of your model.

TFDV allows you to generate both the training and evaluation dataset statistics side-by-side. You
can use the visualize_statistics() function and pass additional parameters to overlay the
statistics from both datasets (referenced as left-hand side and right-hand side statistics). Let’s see
what these parameters are:

• lhs_statistics: Required parameter. Expects an instance of
DatasetFeatureStatisticsList.

• rhs_statistics: Expects an instance of DatasetFeatureStatisticsList to compare with
lhs_statistics.

• lhs_name: Name of the lhs_statistics dataset.

• rhs_name: Name of the rhs_statistics dataset.

[11]: # Generate evaluation dataset statistics
eval_stats = tfdv.generate_statistics_from_dataframe(eval_df)

Compare training with evaluation
tfdv.visualize_statistics(

lhs_statistics=eval_stats,
rhs_statistics=train_stats,
lhs_name='EVAL_DATASET',
rhs_name='TRAIN_DATASET'

)

<IPython.core.display.HTML object>

We encourage you to observe the results generated and toggle the menus to practice manipulating
the visualization (e.g. sort by missing/zeroes). You’ll notice that TFDV detects the malformed rows

7

https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/visualize_statistics

we introduced earlier. First, the min and max values of the age row shows 0 and 1000, respectively.
We know that those values do not make sense if we’re talking about working adults. Secondly, the
workclass row in the Categorical Features says that 0.02% of the data is missing that particular
attribute. Let’s drop these rows to make the data more clean.

[12]: # filter the age range
eval_df = eval_df[eval_df['age'] > 16]
eval_df = eval_df[eval_df['age'] < 91]

drop missing values
eval_df.dropna(inplace=True)

You can then compute the statistics again and see the difference in the results.

[13]: # Generate evaluation dataset statistics
eval_stats = tfdv.generate_statistics_from_dataframe(eval_df)

Compare training with evaluation
tfdv.visualize_statistics(

lhs_statistics=eval_stats,
rhs_statistics=train_stats,
lhs_name='EVAL_DATASET',
rhs_name='TRAIN_DATASET'

)

<IPython.core.display.HTML object>

1.6 Calculate and display evaluation anomalies
You can use your reference schema to check for anomalies such as new values for a specific feature
in the evaluation data. Detected anomalies can either be considered a real error that needs to be
cleaned, or depending on your domain knowledge and the specific case, they can be accepted.

Let’s detect and display evaluation anomalies and see if there are any problems that need to be
addressed.

[14]: # Check evaluation data for errors by validating the evaluation dataset␣
↪→statistics using the reference schema

anomalies = tfdv.validate_statistics(statistics=eval_stats, schema=schema)

Visualize anomalies
tfdv.display_anomalies(anomalies)

Anomaly short description \
Feature name
'native-country' Unexpected string values
'occupation' Unexpected string values
'race' Unexpected string values

8

Anomaly long␣
↪→description

Feature name
'native-country' Examples contain values missing from the schema: Mongolia␣
↪→(<1%).

'occupation' Examples contain values missing from the schema: gamer (<1%).
'race' Examples contain values missing from the schema: Asian (<1%).

1.7 Revising the Schema
As shown in the results above, TFDV is able to detect the remaining irregularities we introduced
earlier. The short and long descriptions tell us what were detected. As expected, there are string
values for race, native-country and occupation that are not found in the domain of the training
set schema (you might see a different result if the shuffling of the datasets was applied). What you
decide to do about the anomalies depend on your domain knowledge of the data. If an anomaly
indicates a data error, then the underlying data should be fixed. Otherwise, you can update the
schema to include the values in the evaluation dataset.

TFDV provides a set of utility methods and parameters that you can use for revising the inferred
schema. This reference lists down the type of anomalies and the parameters that you can edit but
we’ll focus only on a couple here.

• You can relax the minimum fraction of values that must come from the domain of a particular
feature (as described by ENUM_TYPE_UNEXPECTED_STRING_VALUES in the reference):

tfdv.get_feature(schema, 'feature_column_name').distribution_constraints.min_domain_mass = <float: 0.0 to 1.0>

• You can add a new value to the domain of a particular feature:

tfdv.get_feature(schema, 'feature_column_name').value.append('string')

Let’s use these in the next section.

1.8 Fix anomalies in the schema
Let’s say that we want to accept the string anomalies reported as valid. If you want to tolerate a
fraction of missing values from the evaluation dataset, you can do it like this:

[15]: # Relax the minimum fraction of values that must come from the domain for the␣
↪→feature `native-country`

country_feature = tfdv.get_feature(schema, 'native-country')
country_feature.distribution_constraints.min_domain_mass = 0.9

Relax the minimum fraction of values that must come from the domain for the␣
↪→feature `occupation`

occupation_feature = tfdv.get_feature(schema, 'occupation')
occupation_feature.distribution_constraints.min_domain_mass = 0.9

If you want to be rigid and instead add only valid values to the domain, you can do it like this:

9

https://www.tensorflow.org/tfx/data_validation/anomalies
https://www.tensorflow.org/tfx/data_validation/anomalies

[16]: # Add new value to the domain of the feature `race`
race_domain = tfdv.get_domain(schema, 'race')
race_domain.value.append('Asian')

In addition, you can also restrict the range of a numerical feature. This will let you know of invalid
values without having to inspect it visually (e.g. the invalid age values earlier).

[17]: # Restrict the range of the `age` feature
tfdv.set_domain(schema, 'age', schema_pb2.IntDomain(name='age', min=17, max=90))

Display the modified schema. Notice the `Domain` column of `age`.
tfdv.display_schema(schema)

Type Presence Valency Domain
Feature name
'age' INT required [17,90]
'workclass' STRING required 'workclass'
'fnlwgt' INT required -
'education' STRING required 'education'
'education-num' INT required -
'marital-status' STRING required 'marital-status'
'occupation' STRING required 'occupation'
'relationship' STRING required 'relationship'
'race' STRING required 'race'
'sex' STRING required 'sex'
'capital-gain' INT required -
'capital-loss' INT required -
'hours-per-week' INT required -
'native-country' STRING required 'native-country'
'label' STRING required 'label'

␣
↪→ ␣
↪→ ␣
↪→ ␣
↪→ ␣
↪→ ␣
↪→ Values

Domain
'workclass' '?', 'Federal-gov', 'Local-gov', 'Never-worked', 'Private',␣
↪→'Self-emp-inc', 'Self-emp-not-inc', 'State-gov', 'Without-pay'

'education' '10th', '11th', '12th', '1st-4th', '5th-6th', '7th-8th',␣
↪→'9th', 'Assoc-acdm', 'Assoc-voc', 'Bachelors', 'Doctorate', 'HS-grad',␣
↪→'Masters', 'Preschool', 'Prof-school', 'Some-college'

'marital-status' 'Divorced', 'Married-AF-spouse', 'Married-civ-spouse',␣
↪→'Married-spouse-absent', 'Never-married', 'Separated', 'Widowed'

10

'occupation' '?', 'Adm-clerical', 'Armed-Forces', 'Craft-repair',␣
↪→'Exec-managerial', 'Farming-fishing', 'Handlers-cleaners',␣
↪→'Machine-op-inspct', 'Other-service', 'Priv-house-serv', 'Prof-specialty',␣
↪→'Protective-serv', 'Sales', 'Tech-support', 'Transport-moving'

'relationship' 'Husband', 'Not-in-family', 'Other-relative', 'Own-child',␣
↪→'Unmarried', 'Wife'

'race' 'Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other',␣
↪→'White', 'Asian'

'sex' 'Female', 'Male'
'native-country' '?', 'Cambodia', 'Canada', 'China', 'Columbia', 'Cuba',␣
↪→'Dominican-Republic', 'Ecuador', 'El-Salvador', 'England', 'France',␣
↪→'Germany', 'Greece', 'Guatemala', 'Haiti', 'Holand-Netherlands', 'Honduras',␣
↪→'Hong', 'Hungary', 'India', 'Iran', 'Ireland', 'Italy', 'Jamaica', 'Japan',␣
↪→'Laos', 'Mexico', 'Nicaragua', 'Outlying-US(Guam-USVI-etc)', 'Peru',␣
↪→'Philippines', 'Poland', 'Portugal', 'Puerto-Rico', 'Scotland', 'South',␣
↪→'Taiwan', 'Thailand', 'Trinadad&Tobago', 'United-States', 'Vietnam',␣
↪→'Yugoslavia'

'label' '<=50K', '>50K'

With these revisions, running the validation should now show no anomalies.

[18]: # Validate eval stats after updating the schema
updated_anomalies = tfdv.validate_statistics(eval_stats, schema)
tfdv.display_anomalies(updated_anomalies)

<IPython.core.display.HTML object>

1.9 Examining dataset slices
TFDV also allows you to analyze specific slices of your dataset. This is particularly useful if you
want to inspect if a feature type is well-represented in your dataset. Let’s walk through an example
where we want to compare the statistics for male and female participants.

First, you will use the get_feature_value_slicer method from the slicing_util to get the
features you want to examine. You can specify that by passing a dictionary to the features
argument. If you want to get the entire domain of a feature, then you can map the feature name
with None as shown below. This means that you will get slices for both Male and Female entries.
This returns a function that can be used to extract the said feature slice.

[19]: from tensorflow_data_validation.utils import slicing_util

slice_fn = slicing_util.get_feature_value_slicer(features={'sex': None})

With the slice function ready, you can now generate the statistics. You need to tell TFDV that
you need statistics for the features you set and you can do that through the slice_functions
argument of tfdv.StatsOptions. Let’s prepare that in the cell below. Notice that you also need
to pass in the schema.

11

https://github.com/tensorflow/data-validation/blob/master/tensorflow_data_validation/utils/slicing_util.py#L48
https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/StatsOptions

[20]: # Declare stats options
slice_stats_options = tfdv.StatsOptions(schema=schema,

slice_functions=[slice_fn],
infer_type_from_schema=True)

You will then pass these options to the generate_statistics_from_csv() method. As of writing,
generating sliced statistics only works for CSVs so you will need to convert the Pandas dataframe
to a CSV. Passing the slice_stats_options to generate_statistics_from_dataframe() will
not produce the expected results.

[21]: # Convert dataframe to CSV since `slice_functions` works only with `tfdv.
↪→generate_statistics_from_csv`

CSV_PATH = 'slice_sample.csv'
train_df.to_csv(CSV_PATH)

Calculate statistics for the sliced dataset
sliced_stats = tfdv.generate_statistics_from_csv(CSV_PATH,␣
↪→stats_options=slice_stats_options)

WARNING:tensorflow:From /opt/conda/lib/python3.8/site-
packages/tensorflow_data_validation/utils/stats_util.py:229: tf_record_iterator
(from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a
future version.
Instructions for updating:
Use eager execution and:
`tf.data.TFRecordDataset(path)`

WARNING:tensorflow:From /opt/conda/lib/python3.8/site-
packages/tensorflow_data_validation/utils/stats_util.py:229: tf_record_iterator
(from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a
future version.
Instructions for updating:
Use eager execution and:
`tf.data.TFRecordDataset(path)`

With that, you now have the statistics for the set slice. These are packed into a
DatasetFeatureStatisticsList protocol buffer. You can see the dataset names below. The
first element in the list (i.e. index=0) is named All_Examples which just contains the statistics for
the entire dataset. The next two elements (i.e. named sex_Male and sex_Female) are the datasets
that contain the stats for the slices. It is important to note that these datasets are of the type:
DatasetFeatureStatistics. You will see why this is important after the cell below.

[22]: print(f'Datasets generated: {[sliced.name for sliced in sliced_stats.
↪→datasets]}')

print(f'Type of sliced_stats elements: {type(sliced_stats.datasets[0])}')

Datasets generated: ['All Examples', 'sex_Male', 'sex_Female']
Type of sliced_stats elements: <class

12

'tensorflow_metadata.proto.v0.statistics_pb2.DatasetFeatureStatistics'>

You can then visualize the statistics as before to examine the slices. An important
caveat is visualize_statistics() accepts a DatasetFeatureStatisticsList type instead of
DatasetFeatureStatistics. Thus, at least for this version of TFDV, you will need to convert it
to the correct type.

[23]: from tensorflow_metadata.proto.v0.statistics_pb2 import␣
↪→DatasetFeatureStatisticsList

Convert `Male` statistics (index=1) to the correct type and get the dataset␣
↪→name

male_stats_list = DatasetFeatureStatisticsList()
male_stats_list.datasets.extend([sliced_stats.datasets[1]])
male_stats_name = sliced_stats.datasets[1].name

Convert `Female` statistics (index=2) to the correct type and get the dataset␣
↪→name

female_stats_list = DatasetFeatureStatisticsList()
female_stats_list.datasets.extend([sliced_stats.datasets[2]])
female_stats_name = sliced_stats.datasets[2].name

Visualize the two slices side by side
tfdv.visualize_statistics(

lhs_statistics=male_stats_list,
rhs_statistics=female_stats_list,
lhs_name=male_stats_name,
rhs_name=female_stats_name

)

<IPython.core.display.HTML object>

You should now see the visualization of the two slices and you can compare how they are represented
in the dataset.

We encourage you to go back to the beginning of this section and try different slices. Here are
other ways you can explore:

• If you want to be more specific, then you can map the specific value to the feature name. For
example, if you want just Male, then you can declare it as features={'sex': [b'Male']}.
Notice that the string literal needs to be passed in as bytes with the b' prefix.

• You can also pass in several features if you want. For example, if you want to slice through
both the sex and race features, then you can do features={'sex': None, 'race': None}.

You might find it cumbersome or inefficient to redo the whole process for a particular slice. For
that, you can make helper functions to streamline the type conversions and you will see one imple-
mentation in this week’s assignment.

13

1.10 Wrap up
This exercise demonstrated how you would use Tensorflow Data Validation in a machine learning
project.

• It allows you to scale the computation of statistics over datasets.

• You can infer the schema of a given dataset and revise it based on your domain knowledge.

• You can inspect discrepancies between the training and evaluation datasets by visualizing the
statistics and detecting anomalies.

• You can analyze specific slices of your dataset.

You can consult this notebook in this week’s programming assignment as well as these additional
resources:

• TFDV Guide
• TFDV blog post
• Tensorflow Official Tutorial
• API Docs

14

https://www.tensorflow.org/tfx/data_validation/get_started
https://blog.tensorflow.org/2018/09/introducing-tensorflow-data-validation.html
https://colab.research.google.com/github/tensorflow/tfx/blob/master/docs/tutorials/data_validation/tfdv_basic.ipynb#scrollTo=mPt5BHTwy_0F
https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv

	Ungraded Lab: TFDV Exercise
	Package Installation and Imports
	Download the dataset
	Adding extra rows

	Generate and visualize training dataset statistics
	Infer data schema
	Generate and visualize evaluation dataset statistics
	Calculate and display evaluation anomalies
	Revising the Schema
	Fix anomalies in the schema
	Examining dataset slices
	Wrap up

