1 point	1.	Which of the following do you typically see as you move to deeper layers in a ConvNet?
		n_H and n_W decreases, while n_C also decreases
		n_H and n_W increases, while n_C decreases
		n_H and n_W increases, while n_C also increases
		$igodots n_H$ and n_W decrease, while n_C increases
	2	Which of the following do you typically see in a ConvNet? (Check all that apply.)
point	2.	Multiple CONV layers followed by a POOL layer
		Multiple POOL layers followed by a CONV layer
		FC layers in the last few layers
		FC layers in the first few layers
1	3.	In order to be able to build very deep networks, we usually only use pooling layers to
point		downsize the height/width of the activation volumes while convolutions are used with "valid" padding. Otherwise, we would downsize the input of the model too quickly.
		○ True
		False
1 point	4.	Training a deeper network (for example, adding additional layers to the network) allows the network to fit more complex functions and thus almost always results in lower
point		training error. For this question, assume we're referring to "plain" networks.
		O True
		False
1 point	5.	The following equation captures the computation in a ResNet block. What goes into the two blanks above?
		$a^{[l+2]} = g(W^{[l+2]}g(W^{[l+1]}a^{[l]} + b^{[l+1]}) + b^{l+2} + \underline{\hspace{1cm}}) + \underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$
		$igorplus a^{[l]}$ and 0, respectively
		\bigcirc 0 and $a^{[l]}$, respectively
		$z^{[l]}$ and $a^{[l]}$, respectively
		\bigcirc 0 and $z^{[l+1]}$, respectively
1 point	6.	Which ones of the following statements on Residual Networks are true? (Check all that apply.)
•		A ResNet with L layers would have on the order of L^2 skip connections in total.
		Using a skip-connection helps the gradient to backpropagate and thus helps
		you to train deeper networks
		The skip-connections compute a complex non-linear function of the input to pass to a deeper layer in the network.
		The skip-connection makes it easy for the network to learn an identity mapping
		between the input and the output within the ResNet block.
	7	Suppose you have an input volume of dimension 54x54x15. How many parameters
1 point	7.	Suppose you have an input volume of dimension 64x64x16. How many parameters would a single 1x1 convolutional filter have (including the bias)?
		O 1
		4097
		17
		O 2
	1123	
1 point	8.	Suppose you have an input volume of dimension $n_H \times n_W \times n_C$. Which of the following statements you agree with? (Assume that "1x1 convolutional layer" below always uses a stride of 1 and no padding.)
		You can use a 1x1 convolutional layer to reduce n_H , n_W , and n_C .
		You can use a 1x1 convolutional layer to reduce n_C but not n_H , n_W .
		You can use a pooling layer to reduce $n_H,n_W,$ and $n_C.$
		You can use a pooling layer to reduce $n_H,n_W,$ but not $n_C.$
1 point	9.	Which ones of the following statements on Inception Networks are true? (Check all that apply.)
F 5 11 15		Making an inception network deeper (by stacking more inception blocks
		Inception blocks usually use 1x1 convolutions to reduce the input data
		volume's size before applying 3x3 and 5x5 convolutions. Inception networks incorporates a variety of network architectures (similar to
		dropout, which randomly chooses a network architecture on each step) and thus has a similar regularizing effect as dropout.
		A single inception block allows the network to use a combination of 1x1, 3x3,
		5x5 convolutions and pooling.
	10	Which of the following are common reasons for using open-source implementations of
1 point	10,	ConvNets (both the model and/or weights)? Check all that apply.
		A model trained for one computer vision task can usually be used to perform data augmentation even for a different computer vision task.
		The same techniques for winning computer vision competitions, such as using
		multiple crops at test time, are widely used in practical deployments (or production system deployments) of ConvNets.
		It is a convenient way to get working an implementation of a complex ConvNet architecture.
		Parameters trained for one computer vision task are often useful as pretraining
		for other computer vision tasks.