= Neural Network Basics

« Congratulations! You passed!

1.

@®

10/10 points (100%)

Next ltern

What does a neuron compute?

A neuron computes a function g that scales the input x linearly (Wx + b)
A neuron computes an activation function followed by a linear function (z=Wx + b)

A neuron computes a linear function (z = Wx + b) followed by an activation function

Correct

Co

activation function (sigmoid, tanh, ReLU,

rrect, we generally say that the output of a neuron is a = g{Wx + b) where g is the
)

A neuron computes the mean of all features before applying the output to an
activation function

v 4 2. Which of these s the "Logistic Loss"?
LOGY 0y =) 50 - 59,
points
L(f)ﬁ;ujr)’(i}) = max(0,y® — 5}(:'))
L(i)(j'\,(’],y([)) =| y(iJ g 3‘,(’]!2
@ (949 0= O 1agrn® © !
LYy)y = = Wlegy)+ 1 —yW)leg1 —H7)
Correct

Correct, this is the logistic loss you've seen in lecture!

3

v

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green

and blue. How do you reshape this into a column vector?

@

X = img.reshape((32*32%*3,1))

Correct

4,

P

x = img.reshape{(32*32,3))
x = Iimg.reshape((1,32*32,%3))

x = img.reshape((3,32*32))

Consider the two following random arrays "a" and "b":

np.random.randn{2, 3) # a.shape =
np.random.randn(2, 1) # b.shape

a+ b

(2, 3)
(2, 1)

What will be the shape of "¢"?

c.shape =(3,2)
cshape=(2,1)

The computation cannot happen because the sizes don't match. It's going to be
"Error"l

c.shape = (2, 3)

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed
to each column of a.

v 5:
1
2
paints 3
What

@

Consider the two following random arrays "a" and "b"™

(4, 3)
(3, 2)

np.random.randn{4, 3) # a.shape
np.random.randn(3, 2) # b.shape
a*b

will be the shape of "¢"?

c.shape = (3, 3)

c.shape = (4,2)

The computation cannot happen because the sizes don't match. It's going to be
"Error"!

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different
from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2)

6.

v

Suppose you have n, input features per example. Recall that ¥ = [xt1x(2)

c.shape = (4, 3)

..x™ whatis

the dimension of X?

paints

(L,m)
® m
Correct

Recall that "np.dot{a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs

an element-wise multiplication.

paints

(=)

What

@

Correct

Consider the two following random arrays "a" and "b™

np.random.randn(12288, 158) # a.shape
np.random.randn(158, 45) # b.shape
np.dot(a,b)

(12288, 150)
(158, 45)

is the shape of ¢?

The computation cannot happen because the sizes don't match. It's going to be
"Error"!

c.shape = (12288, 150)
c.shape = (150,150)

c.shape = (12288, 45)

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of
columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

8.

ak
2
3
4
5
6

Consider the following code snippet:

a.shape
b.shape

(3,4)
(4,1}

* for 1 in range(3):

for j in range(4):
c[i]1[3] = a[i][j]1 + b[]]

How do you vectorize this?

c=aT+hbT

c=a+h
@ c=a+hT
Correct

c=aT+b

9.

[®

Consider the following code:

np.random.randn(3, 3)
np.random.randn{3, 1)
a*b

What will be ¢ (If you're not sure, feel free to run this in python to find out).

@

This will invoke broadcasting, so b is copied three times to become (3,3), and = is an
element-wise product so c.shape will be (3, 3)

Correct

v

This will invoke broadcasting, so b is copied three times to become (3, 3), and *
invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3,
3)

This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector.
That is, c.shape = (3,1).

It will lead to an error since you cannot use **” to operate on these two matrices.
You need to instead use np.dot(a,b)

1 0, Consider the following computation graph.

u=a‘h \
v=a'c s J=u+v-w
w=b+c

What is the output J?

@

J=(c-1)*(b+a)

J=(@-N*b+0q

Correct

Yes

J=u+v-w=a*b+a*c-(b+c)=a*(b+c)-(b+c=(a-1)*(b+0).

J=a*b + b*c+a*c

J=(b-1)*(c+a)

Q

