In [ ]:
# HIDDEN
# Credit:  Data8.org

from datascience import *
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')

cones = Table.read_table('cones.csv')
nba = Table.read_table('nba_salaries.csv').relabeled(3, 'SALARY')

Words of Caution

  • Remember to run the cell above. It's for setting up the environment so you can have access to what's needed for this lecture.
  • Data science is not just about code, so please don't go over this notebook by itself. Have the relevant textbook sections or lecture notes at hand so that you can go over the discussion along with the code. Thank you!

Python

In [ ]:
2 + 3
In [ ]:
2 - 3
In [ ]:
2 * 3
In [ ]:
2 / 3
In [ ]:
# 2 * 2 * 2

2 ** 3

Names

In [ ]:
a = 10
In [ ]:
a
In [ ]:
b = 6
In [ ]:
total = a + b
In [ ]:
total
In [ ]:
b = 7
In [ ]:
total
In [ ]:
total = a + b
In [ ]:
total
In [ ]:
hours_per_week = 40
weeks_per_year = 52
In [ ]:
total_hours = hours_per_week * weeks_per_year
In [ ]:
total_hours
In [ ]:
ca_hourly_minimum_wage = 10.50
In [ ]:
total_wages = total_hours * ca_hourly_minimum_wage

total_wages

Functions

In [ ]:
abs(-5)
In [ ]:
a
In [ ]:
b
In [ ]:
abs(b - a)
In [ ]:
min(8, 3)
In [ ]:
round(123.56789)
In [ ]:
round(123.56789, 2)

Tables

In [ ]:
# Each row represents one ice-cream cone

cones
In [ ]:
cones.show(2)
In [ ]:
cones.select('Flavor')
In [ ]:
cones
In [ ]:
cones.select('Flavor', 'Price')
In [ ]:
cones
In [ ]:
cones.drop('Color')
In [ ]:
cones
In [ ]:
no_color = cones.drop('Color')
In [ ]:
no_color
In [ ]:
cones.sort('Price')
In [ ]:
cones.sort('Price', descending=True)
In [ ]:
cones.where('Flavor', 'chocolate')
In [ ]:
cones.where('Flavor', 'Chocolate')
In [ ]:
cones.drop('Color').sort('Price', descending=True)

Example

In [ ]:
# This table can be found online: 
# https://www.statcrunch.com/app/index.php?dataid=1843341

# NBA players, 2015-2016 season

nba
In [ ]:
nba.where('PLAYER', 'Stephen Curry')
In [ ]:
warriors = nba.where('TEAM', 'Golden State Warriors')
In [ ]:
warriors.show()
In [ ]: