
Encrypted Data Vaults

a white paper from Rebooting the Web of Trust IX

by Amy Guy, David Lamers, Tobias Looker, Manu Sporny, and Dmitri Zagidulin

with Daniel Bluhm and Kim Hamilton Dufy

We store a signifcant amount of sensitive data online, such as personally identifying information (PII), trade

secrets, family pictures, and customer information. The data that we store is often not protected in an appropriate

manner.

Legislation, such as the General Data Protection Regulation (GDPR), incentivizes service providers to better

preserve individuals' privacy, primarily through making the providers liable in the event of a data breach. This

liability pressure has revealed a technological gap, whereby providers are often not equipped with technology that

can suitably protect their customers. Encrypted Data Vaults fll this gap and provide a variety of other benefts.

This paper describes current approaches and architectures, derived requirements, design goals, and dangers that

implementers should be aware of when implementing data storage. This paper also explores the base assumptions

of these sorts of systems such as providing privacy-respecting mechanisms for storing, indexing, and retrieving

encrypted data, as well as data portability.

CURRENT ECOSYSTEM AND EXISTING WORK

The problem of decentralized data storage has been approached from various diferent angles, and personal data

stores (PDS), decentralized or otherwise, have a long history in commercial and academic settings [1, 2]. Diferent

approaches have resulted in variations in terminology and architectures. The diagram below shows the types of

components that are emerging, and the roles they play. Encrypted Data Vaults fulfll a storage role.

2019-10-24 Encrypted Data Vaults 1.0 1

https://en.wikipedia.org/wiki/Personal_data_service
http://www.randomwalker.info/publications/critical-look-at-decentralization-v1.pdf

Figure 1: Roles and interactions

What follows is an outline of commonalities and diferences between a selection of existing implementations. This

list is by no means comprehensive, but we tried to choose projects which are representative of the diferent types

of approaches out there, as well as, for practical reasons, choosing ones with which the authors are most familiar.

Architectures and deployment

Many architectures are designed around the idea of separating storage of data from a layer of applications which

make use of the stored data. We can think of these applications as clients, with varying levels of complexity, and

the data stores as servers. Some projects expect an ecosystem of diverse applications to emerge, and design their

protocols with this in mind.

NextCloud, Solid, and DIF's Identity Hubs all describe architectures for decoupling end-user applications from

data storage. Such applications may be generic fle management interfaces for browsing or sharing data, or

specialized domain specifc tools designed for particular tasks (e.g., a calendar). Datashards, Tahoe-LAFS, and

IPFS are only concerned with data storage and retrieval.

In the case of Solid, NextCloud, and Identity Hubs, end users have the option of installing and running the server

portion of the data store on a device they control, or signing up to an already confgured instance hosted by a

trusted third-party (eg. a commercial provider, afliated institution, or friend). For Datashards and Tahoe-LAFS,

end users install a native application on one or more device(s) they control, and data is stored locally to these

devices. IPFS is peer-to-peer, so end users only install the read/write client, and data is stored across a public

network.

2019-10-24 Encrypted Data Vaults 1.0 2

https://docs.ipfs.io/
https://tahoe-lafs.org/trac/tahoe-lafs
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/topics-and-advance-readings/datashards-rationale.md
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md
https://github.com/solid/solid-spec/
https://docs.nextcloud.com/server/16/developer_manual/client_apis/

Identity Hubs are responsible for additional things beyond just data storage, for example management of the end

user's profle; transmission of human- or machine-readable messages through the Actions interface; or pointers to

external services.

Project Type
Data

organized into

Extended fle

metadata

supported?

Encryption

required?

Metadata

encrypted?

Query on

metadata?

DIF Identity

Hubs

Document-based

data store
Collections Yes Unclear * No Yes

Solid File and graph store Containers Yes No No No

Nextcloud File store Directories Yes No No Yes

IPFS
Content-addressable

distributed fle store
n/a No No n/a n/a

Tahoe-LAFS

Clustered

distributed fle

system

Directories No Yes n/a n/a

Datashards
Low-level encrypted

storage protocol
n/a No Yes n/a n/a

* - Unclear if Identity Hubs requires encryption. Encryption proposal paper suggests that it's optional

Project
Read/write

protocol
Authn

Access

Control
Data locality Replication

DIF Identity

Hubs
Custom DID Auth Custom Server Planned

Solid REST (LDP) WebID-OIDC WAC Server Planned

Nextcloud WebDAV Custom
Custom

(RBAC)
Server

Yes (Enterprise version,

via MySQL clustering)

IPFS Cli / HTTP n/a n/a Public nodes Peer-to-peer

Tahoe-LAFS
Various (REST,

WebDAV, others)
n/a Capabilities Storage cluster

Sharded chunks

(multiple copies)

Datashards cli / modular n/a Capabilities
Modular (server,

public nodes, other)
(depends on backend)

2019-10-24 Encrypted Data Vaults 1.0 3

https://discuss.ipfs.io/t/replication-on-ipfs-or-the-backing-up-content-model/372
https://github.com/ipfs/notes/issues/376
https://docs.ipfs.io/reference/api/http/
https://en.wikipedia.org/wiki/Role-based_access_control
https://docs.nextcloud.com/server/stable/admin_manual/file_workflows/access_control.html
https://github.com/solid/web-access-control-spec
https://hackmd.io/OInEIRLxQY2s48tze0E7IQ
https://github.com/decentralized-identity/identity-hub/blob/master/docs/permissions.md
https://github.com/decentralized-identity/identity-hub/blob/master/explainer.md#api
https://github.com/decentralized-identity/papers/blob/master/Hub%20Encryption%20Proposal%20-%20Draft%201.pdf

Encryption policies

An important consideration of encrypted data stores is which components of the architecture have access to the

(unencrypted) data, or who controls the private keys. There are roughly three approaches: storage-side encryption,

client-side (edge) encryption, and gateway-side encryption (which is a hybrid of the previous two).

Any data storage systems that let the user store arbitrary data also support client-side encryption at the most

basic level. That is, they let the user encrypt data themselves, and then store it. This doesn't mean these systems

are optimized for encrypted data however. Querying and access control for encrypted data may be difcult (as is

the case for Solid, NextCloud, Identity Hubs, and IPFS).

Storage-side encryption is usually implemented as whole-disk encryption or flesystem-level encryption. This is

widely supported and understood, and any type of hosted cloud storage is likely to use storage-side encryption. In

this scenario the private keys are managed by the service provider or controller of the storage server, which may

be a diferent entity than the user who is storing the data. Encrypting the data while it resides on disk is a useful

security measure should physical access to the storage hardware be compromised, but does not guarantee that

only the original user who stored the data has access.

Conversely, client-side encryption - as with Datashards - ofers a high level of security and privacy, especially if

metadata can be encrypted as well. Encryption is done at the individual data object level, usually aided by a

keychain or wallet client, so the user has direct access to the private keys. This comes at a cost, however, since

the signifcant responsibility of key management and recovery falls squarely onto the end user. In addition, the

question of key management becomes more complex when data needs to be shared.

Gateway-side encryption systems like Tahoe-LAFS take an approach that combines techniques from storage-side

and client-side encryption architectures. These storage systems, typically encountered among multi-server clusters

or some "encryption as a platform" cloud service providers, recognize that client-side key management may be too

difcult for some users and use cases, and ofer to perform encryption and decryption themselves in a way that is

transparent to the client application. At the same time, they aim to minimize the number of components (storage

servers) that have access to the private decryption keys. As a result, the keys usually reside on "gateway" servers,

which encrypt the data before passing it to the storage servers. The encryption/decryption is transparent to the

client, and the data is opaque to the storage servers, which can be modular/pluggable as a result. Gateway-side

encryption provides some benefts over storage-side systems, but also share the drawbacks: the gateway sysadmin

controls the keys, not the user.

2019-10-24 Encrypted Data Vaults 1.0 4

https://en.wikipedia.org/wiki/Disk_encryption

Encrypted Metadata and Documents vs Blobs

We kill people based on metadata.

- General Michael Hayden, former director of the NSA and the CIA

Whether or not metadata can be (or is required to be) encrypted has implications for privacy, security, and

usability of a system.

Some systems, including Solid, NextCloud, and Identity Hubs, support the inclusion of arbitrary metadata on

binary data blobs. IPFS, Datashards, and Tahoe-LAFS do not. Solid metadata is written by clients per-resource

using RDF. Identity Hubs uses JWTs for per-object metadata, as well as JSON documents for additional

metadata in Collections (also the clients' responsibility). NextCloud clients can add metadata to documents using

WebDAV custom properties. None of these options for including metadata allow for it to be encrypted.

Access Interface and Control

Whether data is accessed over a network or on a local device, data objects tend to need globally unique identifers.

Interfaces for reading and writing data in stores, as well as the mechanisms to restrict or grant the ability to do

so, vary between implementations.

NextCloud and Solid both make use of existing Web standards. NextCloud uses WebDAV to allow client

applications to read, write, and search data on the server's flesystem using a directory structure, supported by a

custom login fow for authentication. Solid combines LDP with OpenID Connect authentication and Web Access

Control to enable users to sign into client applications, which can then read or write data. Resources (data

objects) on Solid servers are represented by HTTP URIs, and Solid servers receive HTTP requests containing

RDF payloads and create or modify the target URI accordingly.

Identity Hubs uses JSON Web Tokens (JWTs) and specifed endpoints. Multiple requests are required, frst to

retrieve metadata for the desired data object(s), and then to retrieve the sequence of commits that make up the

actual data. Mechanisms for authentication are still under development. Access control is carried out via posting

to the Permissions interface.

Tahoe-LAFS uses a client-gateway-storage server architecture, whereby a client passes data to a gateway server

for encryption and chunking. The gateway, in turn, stores the individual chunks on a cluster of storage servers.

Several copies of the data are stored, for greater availability and disaster recovery. Services are identifed with

Foolscap URIs, and the client can be confgured to use HTTP or (S)FTP or to listen to a local directory ('magic

folder') to create, update and delete data. Data is organized in a flesystem-like directory structure and access

control makes use of this.

IPFS is a distributed content-addressed storage mechanism which breaks data up into Merkel-DAGs. IPFS uses

IPLD to generate URIs for data from the content and to link content together on the network and uses DHTs to

discover content on the network.

2019-10-24 Encrypted Data Vaults 1.0 5

https://github.com/ipld/specs
https://foolscap.lothar.com/trac
https://github.com/solid/web-access-control-spec
https://github.com/solid/web-access-control-spec
https://github.com/solid/solid-auth-oidc
https://www.w3.org/TR/ldp
https://docs.nextcloud.com/server/16/developer_manual/client_apis/LoginFlow/
https://docs.nextcloud.com/server/16/developer_manual/client_apis/LoginFlow/

Indexing and Querying

Encrypted data that is opaque to the storage server introduces challenges for indexing and searching the contents

of the data. Some systems work around this with a certain amount of unencrypted metadata attached to the data

objects. Another possibility is unencrypted listings of pointers to fltered subsets of data.

Solid aims to provide a web-accessible interface to a fle system. Resources (RDF documents or arbitrary fles) are

organized into folder-like Containers. Precisely how the data is stored is an implementation detail (e.g., a

flesystem or a database). No search interface has been specifed, but some implementations may expose a

SPARQL endpoint or Triple Pattern Fragments.

Identity Hubs similarly uses a Collections interface for indexing. Clients are responsible for writing appropriate

metadata to Collections, which are not themselves encrypted, enabling the Hub to respond to queries.

NextCloud sorts data objects into directories, and clients can use WebDAV SEARCH and PROPFIND to query

data and metadata.

Tahoe-LAFS, Datashards and IPFS are low-level storage protocols, and do not provide for indexing or searching

the data.

Availability, Replication and Confict Resolution

Replicating data across multiple storage locations is an important resilience and security mechanism. Systems

which support peer-to-peer replication must provide confict resolution mechanisms such as CRDTs or require

end-user intervention to merge fles which get out of sync.

NextCloud provides spreading data across multiple instances for scalability as a commercial enterprise ofering.

Diferent NextCloud servers do not talk to each other directly, but can do so via applications installed by the

user. Similarly, diferent instances of Solid servers do not communicate with each other; client apps can perform

any communication necessary between storage servers, but these are usually servers belonging to diferent users,

rather than stores with copies of the same data.

IPFS, Tahoe-LAFS, and Datashards achieve high availability by chunking data, using content-addressable links,

and storing many copies of the chunks. They don't handle confict resolution since they are low-level protocols and

the data is opaque to the servers.

Identity Hubs synchronization of changes and confict resolution between Hub instances is under development.

Summary

The preceding sections provided an overview of a subset of active projects in the personal data store ecosystem.

These projects aim to give end users control over their data without requiring centralized authorities or

2019-10-24 Encrypted Data Vaults 1.0 6

https://nextcloud.com/globalscale/

proprietary technologies.

Requiring client-side (edge) encryption for all data and metadata at the same time as enabling the user to store

data on multiple devices and to share data with others, whilst also having searchable or queryable data, has been

historically very difcult to implement in one system. We can see from this survey that trade-ofs are often made

which sacrifce privacy in favor of usability, or vice versa.

Due to a number of maturing technologies and standards, we are hopeful that such trade-ofs are no longer

necessary, and that it is possible to design a privacy-preserving protocol for encrypted decentralized data storage

that has broad practical appeal.

CORE USE CASES

The following four use cases have been identifed as representative of common usage patterns (though are by no

means the only ones).

Store and Use Data

I want to store my data in a safe location. I don't want the storage provider to be able to see any data I store.

This means that only I can see and use the data.

Search Data

Over time, I will store a large amount of data. I want to search the data, but don't want the service provider to

know what I'm storing or searching for.

Share Data With One or More Entities

I want to share my data with other people and services. I can decide on giving other entities access to data in my

storage area when I save the data for the frst time or in a later stage. The storage should only give access to

others when I have explicitly given consent for each item.

I want to be able to revoke the access of others at any time. When sharing data, I can include an expiration date

for the access to my data by a third-party.

Store the Same Data in More Than One Place

I want to backup my data across multiple storage locations in case one fails. These locations can be hosted by

diferent storage providers and can be accessible over diferent protocols. One location could be local on my phone,

while another might be cloud-based. The locations should be able to synchronize between each other so data is up

to date in both places regardless of how I create or update data, and this should happen automatically and

without my help as much as possible.

2019-10-24 Encrypted Data Vaults 1.0 7

REQUIREMENTS

This section elaborates upon a number of requirements that have been gathered from the core use cases.

Privacy and Multi-party Encryption

One of the main goals of this system is ensuring the privacy of an entity's data so that it cannot be accessed by

unauthorized parties, including the storage provider.

To accomplish this, the data must be encrypted both while it is in transit (being sent over a network) and while it

is at rest (on a storage system).

Since data could be shared with more than one entity, it is also necessary for the encryption mechanism to

support encrypting data to multiple parties.

Sharing and Authorization

It is necessary to have a mechanism that enables authorized sharing of encrypted information among one or more

entities.

The system is expected to specify one mandatory authorization scheme, but also allow other alternate

authorization schemes. Examples of authorization schemes include OAuth2, Web Access Control, and

Authorization Capabilities (ZCAPs).

Identifers

The system should be identifer agnostic. In general, identifers that are a form of URN or URL are preferred.

While it is presumed that Decentralized Identifers (DIDs) will be used by the system in a few important ways,

hard-coding the implementations to DIDs would be an anti-pattern.

Versioning and Replication

It is expected that information can be backed up on a continuous basis. For this reason, it is necessary for the

system to support at least one mandatory versioning strategy and one mandatory replication strategy, but also

allow other alternate versioning and replication strategies.

Metadata and Searching

Large volumes of data are expected to be stored using this system, which then need to be efciently and

selectively retrieved. To that end, an encrypted search mechanism is a necessary feature of the system.

It is important for clients to be able to associate metadata with the data such that it can be searched. At the

same time, since privacy of both data and metadata is a key requirement, the metadata must be stored in an

encrypted state, and service providers must be able to perform those searches in an opaque and privacy-preserving

way, without being able to see the metadata.

2019-10-24 Encrypted Data Vaults 1.0 8

https://w3c-ccg.github.io/did-spec/
https://w3c-ccg.github.io/zcap-ld/

Protocols

Since this system can reside in a variety of operating environments, it is important that at least one protocol is

mandatory, but that other protocols are also allowed by the design. Examples of protocols include HTTP, gRPC,

Bluetooth, and various binary on-the-wire protocols.

DESIGN GOALS

This section elaborates upon a number of guiding principles and design goals that shape Encrypted Data Vaults.

Layered and Modular Architecture

A layered architectural approach is used to ensure that the foundation for the system is easy to implement while

allowing more complex functionality to be layered on top of the lower foundations.

For example, Layer 1 might contain the mandatory features for the most basic system, Layer 2 might contain

useful features for most deployments, Layer 3 might contain advanced features needed by a small subset of the

ecosystem, and Layer 4 might contain extremely complex features that are needed by a very small subset of the

ecosystem.

Prioritize Privacy

This system is intended to protect an entity's privacy. When exploring new features, always ask "How would this

impact privacy?". New features that negatively impact privacy are expected to undergo extreme scrutiny to

determine if the trade-ofs are worth the new functionality.

Push Implementation Complexity to the Client

Servers in this system are expected to provide functionality strongly focused on the storage and retrieval of

encrypted data. The more a server knows, the greater the risk to the privacy of the entity storing the data, and

the more liability the service provider might have for hosting data. In addition, pushing complexity to the client

enables service providers to provide stable server-side implementations while innovation can by carried out by

clients.

ARCHITECTURE

This section describes the architecture of the Encrypted Data Vault protocol.

This document defnes a client-server relationship, whereby the vault is regarded as the server and the client acts

as the interface used to interact with the vault.

This architecture is layered in nature, where the foundational layer consists of an operational system with minimal

features, and where more advanced features are layered on top. Implementations can choose to implement only the

foundational layer, or optionally, additional layers consisting of a richer set of features for more advanced use cases.

2019-10-24 Encrypted Data Vaults 1.0 9

Deployment Topologies

Based on the use cases, we consider the following deployment topologies:

• Mobile Device Only: The server and the client reside on the same device. The vault is a library providing

functionality via a binary API, using local storage to provide an encrypted database.

• Mobile Device Plus Cloud Storage: A mobile device plays the role of a client, and the server is a remote

cloud-based service provider that has exposed the storage via a network-based API (eg. REST over

HTTPS). Data is not stored on the mobile device.

• Multiple Devices (Single User) Plus Cloud Storage: When adding more devices managed by a single user,

the vault can be used to synchronize data across devices.

• Multiple Devices (Multiple Users) Plus Cloud Storage: When pairing multiple users with cloud storage,

the vault can be used to synchronize data between multiple users with the help of replication and merge

strategies.

Server and Client Responsibilities

The server is assumed to be of low trust, and must have no visibility into the data that it persists. However, even

in this model, the server still has a set of minimum responsibilities it must adhere to.

The client is responsible for providing an interface to the server, with bindings for each relevant protocol (HTTP,

RPC, or binary over-the-wire protocols), as required by the implementation.

All encryption and decryption of data is done on the client side, at the edges. The data (including metadata)

MUST be opaque to the server, and the architecture is designed to prevent the server from being able to decrypt

it.

Layer 1 (L1) Responsibilities

Layer 1 consists of a client-server system that is capable of encrypting data in transit and at rest.

Server: Validate Requests (L1)

When a vault client makes a request to store, query, modify, or delete data in the vault, the server validates the

request. Since the actual data and metadata in any given request is encrypted, such validation is necessarily

limited and largely depends on the protocol and the semantics of the request.

Server: Persist Data (L1)

The mechanism a server uses to persist data, such as storage on a local, networked, or distributed fle system, is

determined by the implementation. The persistence mechanism is expected to adhere to the common expectations

of a data storage provider, such as reliable storage and retrieval of data.

2019-10-24 Encrypted Data Vaults 1.0 10

Server: Persist Global Confguration (L1)

A vault has a global confguration that defnes the following properties:

• Stream chunk size

• Other confg metadata

The confguration allows the the client to perform capability discovery regarding things like authorization,

protocol, and replication mechanisms that are used by the server.

Server: Enforcement of Authorization Policies (L1)

When a client makes a request to store, query, modify, or delete data in the vault, the server enforces any

authorization policy that is associated with the request.

Client: Encrypted Data Chunking (L1)

An Encrypted Data Vault is capable of storing many diferent types of data, including large unstructured binary

data. This means that storing a fle as a single entry would be challenging for systems that have limits on single

record sizes. For example, some databases set the maximum size for a single record to 16MB. As a result, it is

necessary that large data is chunked into sizes that are easily managed by a server. It is the responsibility of the

client to set the chunk size of each resource and chunk large data into manageable chunks for the server. It is the

responsibility of the server to deny requests to store chunks larger that it can handle.

Each chunk is encrypted individually using authenticated encryption. Doing so protects against attacks where an

attacking server replaces chunks in a large fle and requires the entire fle to be downloaded and decrypted by the

victim before determining that the fle is compromised. Encrypting each chunk with authenticated encryption

ensures that a client knows that it has a valid chunk before proceeding to the next one. Note that another

authorized client can still perform an attack by doing authenticated encryption on a chunk, but a server is not

capable of launching the same attack.

Client: Resource Structure (L1)

The process of storing encrypted data starts with the creation of a Resource by the client, with the following

structure.

Resource:

• id (required)

• meta

‣ meta.contentType MIME type

• content - entire payload, or a manifest-like list of hashlinks to individual chunks

If the data is less than the chunk size, it is embedded directly into the content.

2019-10-24 Encrypted Data Vaults 1.0 11

Otherwise, the data is sharded into chunks by the client (see next section), and each chunk is encrypted and sent

to the server. In this case, content contains a manifest-like listing of URIs to individual chunks (integrity-

protected by Hashlinks).

Client: Encrypted Resource Structure (L1)

The process of creating the Encrypted Resource. If the data was sharded into chunks, this is done after the

individual chunks are written to the server.

• id

• index - encrypted index tags prepared by the client (for use with privacy-preserving querying over

encrypted resources)

• Chunk size (if diferent from the default in global confg)

• Versioning metadata - such as sequence numbers, Git-like hashes, or other mechanisms

• Encrypted resource payload - encoded as a jwe, cwe or other appropriate mechanism

Layer 2 (L2) Responsibilities

Layer 2 consists of a system that is capable of sharing data among multiple entities, of versioning and replication,

and of performing privacy-preserving searches in an efcient manner.

Client: Encrypted Search Indexes (L2)

To enable privacy-preserving querying (where the search index is opaque to the server), the client must prepare a

list of encrypted index tags (which are stored in the Encrypted Resource, alongside the encrypted data contents).

Client: Versioning and Replication (L2)

A server must support at least one versioning/change control mechanism. Replication is done by the client, not by

the server (since the client controls the keys, knows about which other servers to replicate to, etc.). If an

Encrypted Data Vault implementation aims to provide replication functionality, it MUST also pick a

versioning/change control strategy (since replication necessarily involves confict resolution). Some versioning

strategies are implicit ("last write wins", eg. rsync or uploading a fle to a fle hosting service), but keep in mind

that a replication strategy always implies that some sort of confict resolution mechanism should be involved.

Client: Sharing With Other Entities (L2)

An individual vault's choice of authorization mechanism determines how a client shares resources with other

entities (authorization capability link or similar mechanism).

Layer 3 (L3) Responsibilities

Server: Notifcations (L3)

It is helpful if data storage providers are able to notify clients when changes to persisted data occurs. A server

may optionally implement a mechanism by which clients can subscribe to changes in the vault.

2019-10-24 Encrypted Data Vaults 1.0 12

https://tools.ietf.org/html/rfc8152#section-5
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/draft-sporny-hashlink

Client: Vault-wide Integrity Protection (L3)

Vault-wide integrity protection is provided to prevent a variety of storage provider attacks where data is modifed

in a way that is undetectable, such as if documents are reverted to older versions or deleted. This protection

requires that a global catalog of all the resource identifers that belong to a user, along with the most recent

version, is stored and kept up to date by the client. Some clients may store a copy of this catalog locally (and

include integrity protection mechanism such as Hashlinks) to guard against interference or deletion by the server.

EXTENSION POINTS

Encrypted Data Vaults support a number of extension points:

• Protocol/API - One or more protocols such as library APIs, HTTPS, gRPC, or Bluetooth can be used to

access the system.

• Encryption Strategies - One or more encryption strategies such as AES-GCM or XSalsa20Poly1305 can be

used to encrypt data.

• Authorization Strategies - One or more authorization strategies such as OAuth2, HTTP Signatures, or

Authorization Capabilities can be used to protect access to encrypted data.

• Versioning Strategies and Replication Strategies - One or more versioning and replication strategies such

as counters, cryptographic hashes, or CRDTs (Confict-free Replicated Data Types) can be used to

synchronize data.

• Notifcation mechanisms - One or more notifcation mechanisms can be used to signal to clients that data

has changed in the vault.

SECURITY AND PRIVACY CONSIDERATIONS

This section details the general security and privacy considerations as well as specifc privacy implications of

deploying Encrypted Data Vaults into production environments.

Malicious or Accidental Modifcation of Data

While a service provider is not able to read data in an Encrypted Data Vault, it is possible for a service provider

to delete, add, or modify encrypted data. The deletion, addition, or modifcation of encrypted data can be

prevented by keeping a global manifest of data in the data vault.

Compromised Vault

An Encrypted Data Vault can be compromised if the data controller (the entity who holds the decryption keys

and appropriate authorization credentials) accidentally grants access to an attacker. For example, a victim might

accidentally authorize an attacker to the entire vault or mishandle their encryption key. Once an attacker has

access to the system, they may modify, remove, or change the vault's confguration.

2019-10-24 Encrypted Data Vaults 1.0 13

https://tools.ietf.org/html/draft-sporny-hashlink

Data Access Timing Attacks

While it is normally difcult for a server to determine the identity of an entity as well as the purpose for which

that entity is accessing the Encrypted Data Vault, there is always metadata related to access patterns, rough fle

sizes, and other information that is leaked when an entity accesses the vault. The system has been designed to not

leak information that it creates concerning privacy limitations, an approach that protects against many, but not

all, surveillance strategies that may be used by servers that are not acting in the best interest of the privacy of the

vault's users.

Encrypted Data on Public Networks

Assuming that all encryption schemes will eventually be broken is a safe assumption to make when protecting

one's data. For this reason, it is inadvisable that servers use any sort of public storage network to store encrypted

data as a storage strategy.

Unencrypted Data on Server

While this system goes to great lengths to encrypt content and metadata, there are a handful of felds that cannot

be encrypted in order to ensure the server can provide the features outlined in this specifcation. For example, a

version number associated with data provides insight into how often the data is modifed. The identifers

associated with encrypted content enables a server to gain knowledge by possibly correlating identifers across

documents. Implementations are advised to minimize the amount of information that is stored in an unencrypted

fashion.

Partial Matching on Encrypted Indexes

The encrypted indexes used by this system are designed to maximize privacy. As a result, there are a number of

operations that are common in search systems that are not available with encrypted indexes, such as partial

matching on encrypted text felds or searches over a scalar range. These features might be added in the future

through the use of zero-knowledge encryption schemes.

Threat Model for Malicious Service Provider

While it is expected that most service providers are not malicious, it is also important to understand what a

malicious service provider can and cannot do. The following attacks are possible given a malicious service

provider:

• Correlation of entities accessing information in a vault

• Speculation about the types of fles stored in a vault depending on fle size and access patterns

• Addition, deletion, and modifcation of encrypted data

• Not enforcing authorization policy set on the encrypted data

• Exfltrating encrypted data to an unknown external system

2019-10-24 Encrypted Data Vaults 1.0 14

FUTURE WORK

The following items will be considered during our ongoing and future work on Encrypted Data Vaults:

• Query details, sorting, pagination

• Key management

• Choice of authorization strategy

• Choice of change control / confict resolution strategy

• Notifcation / pub-sub mechanisms

• With respect to the authorization model, does the vault merely enforce authorization rules or act as an

authorization server?

• How can end users be reassured of the trustworthiness of a vault host?

• Further analysis of potential attack vectors of malicious servers, and mitigation techniques.

• What are the opportunities for encrypted searching (Homomorphic encryption, ZKPs), and what are the

dangers?

• Retrieval of the history of an object's updates

CONCLUSION

This paper has described current approaches and architectures for encrypted storage systems, provided derived

requirements and design goals, and highlighted dangers that implementers should be aware of when implementing

privacy-preserving data storage systems. This paper also explored the base assumptions of these sorts of systems

such as providing privacy-respecting mechanisms for storing, indexing, and retrieving encrypted data, as well as

data portability. The authors of this paper expect to continue to work on these concepts and contribute them to a

pre-standards track specifcation that achieves the concepts and goals outlined in this paper.

Additional Credits

Lead Author: Amy Guy

Authors: David Lamers, Tobias Looker, Manu Sporny, and Dmitri Zagidulin

Contributors: Daniel Bluhm and Kim Hamilton Dufy

Sample APA Citation:

Guy, A., Lamers, D., Looker, T., Sporny, M. and Zagidulin, D. (2019). Encrypted Data Vaults. Rebooting the

Web of Trust IX. Retrieved from https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/fnal-

documents/encrypted-data-vaults.pdf.

This paper is licensed under CC-BY-4.0.

2019-10-24 Encrypted Data Vaults 1.0 15

https://creativecommons.org/licenses/by/4.0/
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/final-documents/encrypted-data-vaults.pdf
https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/final-documents/encrypted-data-vaults.pdf

About Rebooting the Web of Trust

This paper was produced as part of the Rebooting the Web of Trust IX design workshop. On September 3rd to 6th,

2019, over 60 tech visionaries came together in Prague, The Czech Republic to talk about the future of

decentralized trust on the internet with the goal of writing at least 5 white papers and specs. This is one of them.

RWOT Board of Directors: Christopher Allen, Joe Andrieu, Kim Hamilton Dufy

Members of the Organizing Committee: Dan Burnett, Dmitri Zagidulin

Sponsors: Digital Contract Design (Gold), Protocol Labs (Silver), Digital Bazaar (Ongoing Sustaining), Jolocom

Community Sponsors: Blockchain Commons, Consensys, Learning Machine, Legendary Requirements

Workshop Credits: Christopher Allen (Founder, Co-Producer), Joe Andrieu (Co-Producer and Facilitator), and

Shannon Appelcline (Editor-in-chief).

Thanks to our other contributors and sponsors!

Thanks also to Paralelní Polis and the Institute for CryptoAnarchy in Prague.

What’s Next?

The design workshop and this paper are just starting points for Rebooting the Web of Trust. If you have any

comments, thoughts, or expansions on this paper, please post them to our GitHub issues page:

https://github.com/WebOfTrustInfo/rwot9/issues

The tenth Rebooting the Web of Trust design workshop is scheduled for early 2020. If you’d like to be involved or

would like to help sponsor the event, email:

rwot-leadership@googlegroups.com

2019-10-24 Encrypted Data Vaults 1.0 16

mailto:rwot-leadership@googlegroups.com
https://github.com/WebOfTrustInfo/rwot9/issues
https://github.com/WebOfTrustInfo/rwot9-prague

	Current ecosystem and existing work
	Architectures and deployment
	Encryption policies
	Encrypted Metadata and Documents vs Blobs
	Access Interface and Control
	Indexing and Querying
	Availability, Replication and Conflict Resolution
	Summary

	Core Use Cases
	Store and Use Data
	Search Data
	Share Data With One or More Entities
	Store the Same Data in More Than One Place

	Requirements
	Privacy and Multi-party Encryption
	Sharing and Authorization
	Identifiers
	Versioning and Replication
	Metadata and Searching
	Protocols

	Design Goals
	Layered and Modular Architecture
	Prioritize Privacy
	Push Implementation Complexity to the Client

	Architecture
	Deployment Topologies
	Server and Client Responsibilities
	Layer 1 (L1) Responsibilities
	Server: Validate Requests (L1)
	Server: Persist Data (L1)
	Server: Persist Global Configuration (L1)
	Server: Enforcement of Authorization Policies (L1)
	Client: Encrypted Data Chunking (L1)
	Client: Resource Structure (L1)
	Client: Encrypted Resource Structure (L1)

	Layer 2 (L2) Responsibilities
	Client: Encrypted Search Indexes (L2)
	Client: Versioning and Replication (L2)
	Client: Sharing With Other Entities (L2)

	Layer 3 (L3) Responsibilities
	Server: Notifications (L3)
	Client: Vault-wide Integrity Protection (L3)

	Extension Points
	Security and Privacy Considerations
	Malicious or Accidental Modification of Data
	Compromised Vault
	Data Access Timing Attacks
	Encrypted Data on Public Networks
	Unencrypted Data on Server
	Partial Matching on Encrypted Indexes
	Threat Model for Malicious Service Provider

	Future Work
	Conclusion
	About Rebooting the Web of Trust
	What’s Next?

