
Blockcerts V3 Proposal

a white paper from Rebooting the Web of Trust IX

by Anthony Ronning aronning@learningmachine.com (Learning Machine)

and Wong Wai Chung waichung@nextid.com (NextID)

ABSTRACT

As the standards around Verifable Credentials are starting to take form, diferent favors of "verifable

credentials-like" data structures need to make necessary changes to leverage on the rulesets outlined and

constantly reviewed by knowledgeable communities such as the W3C. The purpose of this paper is to identify all

of the changes needed for Blockcerts to comply with the Verifable Credentials (VCs) and Decentralized Identifers

(DIDs) standards and to expand upon the additional benefts of using a blockchain in combination with Verifable

Credentials. This paper is meant to act as an explainer in which a formal specifcation can be created.

This paper proposes multiple implementation options for several properties. The intention is that we can engage

the Blockcerts / Verifable Credential communities and see what fts best.

VERIFIABLE CREDENTIAL SCHEMA

Verifable Credentials are a data model that is defned and published as a W3C Recommendation. It seeks to

represent the same information as a physical credential while also being tamper-evident and more trustworthy.

Verifable Credentials address future considerations in our societies, which are becoming increasingly digitalized,

including (but not limited to) privacy-preserving goals.

2019-11-19 Blockcerts V3 Proposal 1.0 1

mailto:aronning@learningmachine.com
https://w3c.github.io/did-core/
https://w3c.github.io/vc-data-model/
mailto:waichung@nextid.com

An example of a minimally viable Verifable Credential can be seen below:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/openbadges/v2"
],
 "id": "https://example.org/beths-robotics-badge.json",
 "type": ["VerifiableCredential", "OpenBadgesV2"],
 "issuer": "https://example.org/organization.json",
 "issuanceDate": "2016-12-31T23:59:59Z",
 "credentialSubject": {
 "id": "https://example.org/recipient-id.json",
 "roboticsForBeginners": {
 "id": "https://example.org/organization.json",
 "name": [{
 "value": "Awesome Robotics Badge",
 "lang": "en",
 "description": "For doing awesome things with robots that people think is
pretty great.",
 }]
 }
 },
 "proof": {
 "type": "RsaSignature2018",
 "created": "2017-06-18T21:19:10Z",
 "proofPurpose": "assertionMethod",
 "verificationMethod": "https://example.edu/issuers/keys/1",
 "jws": "eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..TCYt5X
 sITJX1CxPCT8yAV-TVkIEq_PbChOMqsLfRoPsnsgw5WEuts01mq-pQy7UJiN5mgRxD-WUc
 X16dUEMGlv50aqzpqh4Qktb3rk-BuQy72IFLOqV0G_zS245-kronKb78cPN25DGlcTwLtj
 PAYuNzVBAh4vGHSrQyHUdBBPM"
 }
}

OPEN BADGES & BLOCKCERTS SCHEMA

Open Badges

Currently, Blockcerts is an Extension to Open Badges, which is a specifcation and open technical standard

originally developed by the Mozilla Foundation. Open Badges is widely adopted by Universities and

Microcredential platforms as a way to issue achievements that recipients can hold and collect in "backpacks". The

beneft of using a blockchain as an extension to Open Badges is to provide immutability and proof of existence.

2019-11-19 Blockcerts V3 Proposal 1.0 2

https://foundation.mozilla.org/
https://openbadges.org/

An example of a standard Open Badge can be seen below:

{
 "@context": "https://w3id.org/openbadges/v2",
 "type": "Assertion",
 "id": "https://example.org/beths-robotics-badge.json",
 "recipient": {
 "type": "email",
 "hashed": true,
 "salt": "deadsea",
 "identity":
 "sha256$c7ef86405ba71b85acd8e2e95166c4b111448089f2e1599f42fe1bba46e865c5"
 },
 "issuedOn": "2016-12-31T23:59:59Z",
 "badge": {
 "id": "https://example.org/robotics-badge.json",
 "type": "BadgeClass",
 "name": "Awesome Robotics Badge",
 "description": "For doing awesome things with robots that people think is
pretty great.",
 "image": "https://example.org/robotics-badge.png",
 "criteria": "https://example.org/robotics-badge.html",
 "issuer": {
 "type": "Profile",
 "id": "https://example.org/organization.json",
 "name": "An Example Badge Issuer",
 "image": "https://example.org/logo.png",
 "url": "https://example.org",
 "email": "steved@example.org",
 }
 },
 "verification": {
 "type": "hosted"
 }
}

An Open Badge can be separated into three parts: the assertion, the badge, and the issuer.

Assertion:

{
 "@context": "https://w3id.org/openbadges/v2",
 "type": "Assertion",
 "id": "https://example.org/beths-robotics-badge.json",
 "recipient": {
 "type": "email",
 "hashed": true,

2019-11-19 Blockcerts V3 Proposal 1.0 3

 "salt": "deadsea",
 "identity":
 "sha256$c7ef86405ba71b85acd8e2e95166c4b111448089f2e1599f42fe1bba46e865c5"
 },
 "image": "https://example.org/beths-robot-badge.png",
 "evidence": "https://example.org/beths-robot-work.html",
 "issuedOn": "2016-12-31T23:59:59Z",
 "badge": "https://example.org/robotics-badge.json",
 "verification": {
 "type": "hosted"
 }
}

Assertion.badge resolves into the below:

Badge:

{
 "@context": "https://w3id.org/openbadges/v2",
 "type": "BadgeClass",
 "id": "https://example.org/robotics-badge.json",
 "type": "BadgeClass",
 "name": "Awesome Robotics Badge",
 "description": "For doing awesome things with robots that people think is
pretty great.",
 "image": "https://example.org/robotics-badge.png",
 "criteria": "https://example.org/robotics-badge.html",
 "issuer": "https://example.org/organization.json",
}

Assertion.badge.issuer resolves into the below:

Issuer:

{
 "@context": "https://w3id.org/openbadges/v2",
 "type": "Profile",
 "id": "https://example.org/organization.json",
 "name": "An Example Badge Issuer",
 "image": "https://example.org/logo.png",
 "url": "https://example.org",
 "email": "steved@example.org",
}

2019-11-19 Blockcerts V3 Proposal 1.0 4

Blockcerts

Blockcerts follows this model as well, but with additional felds that allow it to be anchored by a blockchain.

An example of a Blockcerts can be seen below:

{
 "@context": [
 "https://w3id.org/openbadges/v2",
 "https://w3id.org/blockcerts/v2.1"
],
 "type": "Assertion",
 "id": "urn:uuid:bbba8553-8ec1-445f-82c9-a57251dd731c",
 "badge": {
 "id": "urn:uuid:82a4c9f2-3588-457b-80ea-da695571b8fc",
 "type": "BadgeClass",
 "name": "Certificate of Accomplishment",
 "image": "data:image/png;base64,...",
 "description": "Lorem ipsum dolor sit amet, mei docendi concludaturque ad, cu
nec partem graece. Est aperiam consetetur cu, expetenda moderatius neglegentur ei
nam, suas dolor laudem eam an.",
 "criteria": {
 "narrative": "Nibh iriure ei nam, modo ridens neglegentur mel eu. At his cibo
mucius."
 },
 "issuer": {
 "id": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json",
 "type": "Profile",
 "name": "University of Learning",
 "url": "https://www.issuer.org",
 "email": "contact@issuer.org",
 "revocationList": "https://www.blockcerts.org/samples/2.0/revocation-list-
testnet.json",
 "image": "data:image/png;..."
 }
 },
 "recipient": {
 "hashed": false,
 "identity": "eularia@landroth.org",
 "type": "email"
 },
 "recipientProfile": {
 "type": [
 "RecipientProfile",
 "Extension"
],
 "publicKey": "ecdsa-koblitz-pubkey:mtr98kany9G1XYNU74pRnfBQmaCg2FZLmc",

2019-11-19 Blockcerts V3 Proposal 1.0 5

 "name": "Eularia Landroth"
 },
 "issuedOn": "2017-06-29T14:58:57.461422+00:00",
 "verification": {
 "publicKey": "ecdsa-koblitz-pubkey:msBCHdwaQ7N2ypBYupkp6uNxtr9Pg76imj",
 "type": [
 "MerkleProofVerification2017",
 "Extension"
]
 },
 "signature": {
 "type": [
 "MerkleProof2017",
 "Extension"
],
 "targetHash":
 "637ec732fa4b7b56f4c15a6a12680519a17a9e9eade09f5b424a48eb0e6f5ad0",
 "merkleRoot":
 "f029b45bb1a7b1f0b970f6de35344b73cccd16177b4c037acbc2541c7fc27078",
 "anchors": [
 {
 "sourceId":
 "d75b7a5bdb3d5244b753e6b84e987267cfa4ffa7a532a2ed49ad3848be1d82f8",
 "type": "BTCOpReturn",
 "chain": "bitcoinMainnet"
 }
],
 "proof": [
 {
 "right": "11174e220fe74de907d1107e2a357e41434123f2948fc6b946fbfd7e3e3eecd1"
 }
]
 }
}

Besides minor diferences in layout/metadata between the example Blockcerts and the example Open Badge, the

main diferences in schema (i.e., in the Blockcerts extensions) are below.

2019-11-19 Blockcerts V3 Proposal 1.0 6

RecipientProfle

Schema link

"recipientProfile": {
 "type": [
 "RecipientProfile",
 "Extension"
],
 "publicKey": "ecdsa-koblitz-pubkey:mtr98kany9G1XYNU74pRnfBQmaCg2FZLmc",
 "name": "Eularia Landroth"
 }

The recipientProfile allows for additional recipient information that can be used to make a strong claim of

ownership over the credential. In addition to the name and publicKey properties in this example, there is an id

feld in this schema that is reserved for future uses of DIDs.

Verifcation

Schema link

"verification": {
 "publicKey": "ecdsa-koblitz-pubkey:msBCHdwaQ7N2ypBYupkp6uNxtr9Pg76imj",
 "type": [
 "MerkleProofVerification2017",
 "Extension"
]
 }

In this example, verification is an Open Badge VerificationObject with a

MerkleProofVerification2017 extension to allow for the publicKey of the issuer. It is used during the

verifcation step of Blockcerts to ensure that the issuer's public key matches the public key that creates the

blockchain transaction with this credential.

Signature

Schema link

"signature": {
 "type": [
 "MerkleProof2017",
 "Extension"
],
 "targetHash":
 "637ec732fa4b7b56f4c15a6a12680519a17a9e9eade09f5b424a48eb0e6f5ad0",
 "merkleRoot":
 "f029b45bb1a7b1f0b970f6de35344b73cccd16177b4c037acbc2541c7fc27078",

2019-11-19 Blockcerts V3 Proposal 1.0 7

https://www.blockcerts.org/schema/2.0/merkleProof2017Schema.json
https://github.com/IMSGlobal/cert-schema/blob/master/docs/open_badge_v2_extensions.md
https://www.blockcerts.org/schema/2.0/recipientSchema.json

 "anchors": [
 {
 "sourceId":
 "d75b7a5bdb3d5244b753e6b84e987267cfa4ffa7a532a2ed49ad3848be1d82f8",
 "type": "BTCOpReturn",
 "chain": "bitcoinMainnet"
 }
],
 "proof": [
 {
 "right": "11174e220fe74de907d1107e2a357e41434123f2948fc6b946fbfd7e3e3eecd1"
 }
]
}

The signature property goes through all of the Merkle proofs required to validate a hash against a Merkle root

hash on a blockchain. For more information on this procedure, visit the MerkleProof2017 spec.

Issuer

Most of the properties in issuer come directly from the Open Badges spec. An example of a Blockcerts' "Issuer

Profle" can be seen below:

{
 "@context": [
 "https://w3id.org/openbadges/v2",
 "https://w3id.org/blockcerts/v2"
],
 "type": "Profile",
 "id": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json",
 "name": "University of Learning",
 "url": "https://www.issuer.org",
 "introductionURL": "https://www.issuer.org/intro/",
 "publicKey": [
 {
 "id": "ecdsa-koblitz-pubkey:msBCHdwaQ7N2ypBYupkp6uNxtr9Pg76imj",
 "created": "2017-06-29T14:48:03.814936+00:00"
 }
],
 "revocationList": "https://www.blockcerts.org/samples/2.0/revocation-list-
testnet.json",
 "image": "...",
 "email": "contact@issuer.org"
}

When verifying a Blockcert, the Issuer is checked to ensure that its public key anchored the Blockcert to the block-

chain. After this check, the revocationList is checked to ensure that the issuer has not revoked their credential.

2019-11-19 Blockcerts V3 Proposal 1.0 8

https://w3c-dvcg.github.io/lds-merkleproof2017/

IntroductionURL

IntroductionURL is a feld that was added to Blockcerts which was not present in Open Badge Issuer schema.

It's used for a client (e.g., Blockcerts Wallet) to do a POST API call to transmit their public key to the issuer, so

that they can include the key in the RecipientProfile of a Blockcerts.

More information about the exact schema being used for Blockcerts can be found here, with general information

here.

This URL-based "Issuer Profle" will be improved by using DIDs for issuers. More on this in Issue Profle.

BLOCKCERTS AS VC IMPLEMENTATION

Focusing on the Blockcerts specifc additions to Open Badges (recipientProfile, verification, and

signature), we can make the following mappings to a Verifable Credential (VC).

recipientProfile

The Blockcerts recipientProfile could essentially be replaced with credentialSubject.id and

credentialSubject.name.

"recipientProfile": {
 "type": [
 "RecipientProfile",
 "Extension"
],
 "publicKey": "ecdsa-koblitz-pubkey:mtr98kany9G1XYNU74pRnfBQmaCg2FZLmc",
 "name": "Eularia Landroth"
 }
can become:

 "credentialSubject": {
 "id": "ecdsa-koblitz-pubkey:mtr98kany9G1XYNU74pRnfBQmaCg2FZLmc",
 "name": "Eularia Landroth",
 "alumniOf": {
 "id": "did:example:c276e12ec21ebfeb1f712ebc6f1",
 "name": [{
 "value": "Example University",
 "lang": "en"
 }, {
 "value": "Exemple d'Université",
 "lang": "fr"
 }]
 }
 }

2019-11-19 Blockcerts V3 Proposal 1.0 9

https://github.com/blockchain-certificates/cert-schema/blob/master/docs/schema-2.md
https://www.blockcerts.org/schema/2.0/context.json

Blockcerts currently uses a ecdsa-koblitz-pubkey for the recipient. Since this is a valid URI, it can be also

be used for Verifable Credentials. Ideally, a DID is used instead, for better support throughout the VC/DID

ecosystem.

verification

As specifed in "BC V2 Schema & Examples" above, Blockcerts verification is used to verify that the public

key of the issuer matches the public key used to issue the transaction to a blockchain.

This might be considered a redundant property since a Verifable Credential has a proof property that verifes

immutability as well, the "issuer profle" already specifes their keys used for issuing, and the key used for issuing

will be known when resolving the blockchain transaction.

Unless there's a strong reason to keep this property in Blockcerts as it moves to the VC schema, we suggest

removing verification in V3.

Signature / Proof Proposal

Verifable Credentials require a proof property, which is used for to verify the immutability of a VC and to

prove that a certain issuer signed the VC. Before VC, Blockcerts used signature to prove immutability. What

role does signature provide if we are already required to implement proof?

Time stamping is an important property that proof methods do not provide along with typical signing keys. A

created date could be applied to proof, but since that can be created with any date, we cannot prove it

existed at a certain time. Using a blockchain can be benefcial here, as it proves that the document existed with a

high degree of certainty at the time of the transaction (collisions technically can still occur due to hashing, though

improvable).

To be Verifable Credential compliant, we need to use a diferent signature proof. Currently, MerkleProof2019

is being spec'd out and will be compliant with VCs.

While multiple signatures are allowable in a VC, the Blockcerts spec should only specify that a blockchain proof is

required. There may be benefts to supplying both an RSA signature (as an example) and a MerkleProof2019

signature so that there may be better interoperability for verifers that might not support MerkleProof2019

yet.

2019-11-19 Blockcerts V3 Proposal 1.0 10

https://w3c-dvcg.github.io/lds-merkle-proof-2019/

Example:

...
[Cert Data Hash]
...
 "proof": {
 "type": "MerkleProof2019",
 "creator": "did:example:abcdefghij0123456789",
 "created": "2017-09-23T20:21:34Z",
 "domain": "example.org",
 "nonce": "2bbgh3dgjg2302d-d2b3gi423d42",
 "proofValue":
"z76WGJzY2rXtSiZ8BDwU4VgcLqcMEm2dXdgVVS1QCZQUptZ5P8n5YCcnbuMUASYhVNihae7m8VeYvfViYf
2KqTMVEH1B"
 }

Note: in the new MerkleProof2019, proofValue is a CBOR encoding of the JSON that would have been

present in MerkleProof2017.

The above is decoded to:

{
 "merkleRoot":
 "3c9ee831b8705f2fbe09f8b3a92247eed88cdc90418c024924be668fdc92e781",
 "targetHash":
 "c65c6184e3d5a945ddb5437e93ea312411fd33aa1def22b0746d6ecd4aa30f20",
 "path": [{
 "right": "51b4e22ed024ec7f38dc68b0bf78c87eda525ab0896b75d2064bdb9fc60b2698"
 }, {
 "right": "61c56cca660b2e616d0bd62775e728f50275ae44adf12d1bfb9b9c507a14766b"
 }],
 "anchors": [{
 "sourceId":
 "582733d7cef8035d87cecc9ebbe13b3a2f6cc52583fbcd2b9709f20a6b8b56b3",
 "type": "BTCOpReturn"
 }]
}

Issuer Key Revocations

In addition to proof of existence, using a Blockchain can create additional benefts when factoring in revocation

use cases. Consider a case where a non-blockchain based VC was signed with an RSA key. The Signature Proof

has a createdDate associated with the signature, but we cannot prove that date is correct in actuality, only

that the person or process signing the key claimed that as the time they signed.

In most cases, the issuer signing with keys they own should be signing with the correct time. However, in

2019-11-19 Blockcerts V3 Proposal 1.0 11

situations where the signing key was stolen, the thief might want to issue a credential in the past to make it

appear as though they, for instance, graduated with a degree at a college when they frst started issuing VCs.

The college realizes their key was stolen or compromised, or they simply practice good key rotation hygiene. In

any of these cases, the true issuer now revokes that key with an expiration date set to a day before the known

theft.

Since credential dates can not be trusted, we can not determine which credentials fall within the createdDate &

revocationDate range for a given key. Every single credential issued with a key that was stolen NEEDS to fail

(or at least to warn) for signing key verifcation problems during the credential verifcation process. One bad

credential issued with a stolen key can afect the status of every single recipient that received a credential from

that issuer with that specifc signing key. This is not satisfactory when it comes to life-long credentials.

Therefore, by utilizing the trusted timestamps of a blockchain, we can calculate the true issuance date and

determine that if an issuer revoked/expired a signing key for a specifc date, every credential that has an anchor

on a blockchain before that date is unafected by key revocations.

Additional Fields

In addition to the existing felds specifed above, there are several felds in Blockcerts V2 that have had non-

standard support in the ecosystem and so could beneft from being standardized.

display

In Blockcerts V2, we've been unofcially building a lot of support for displayHtml. This has occurred in mobile

wallets, verifers, etc. as well as third-party libraries.

In proposing changes for V3, it would be great if we can throw in ofcial support for displays. Extending past

displayHtml, we should allow support for any type of display. Some may not want to use html but instead use

pdf, an image, etc.

Option 1

The schema can simply use type and data properties.

Example:

"display": {
 "type": "html",
 "data": "<p>hello world</p>"
}

2019-11-19 Blockcerts V3 Proposal 1.0 12

Option 2

Alternatively, we can use DATA URLs instead.

"display": "data:text/html,%3Ch1%3EHello%2C%20World!%3C%2Fh1%3E"

In the beginning, the ofcial Blockcerts Universal Verifer might only support HTML ofcially, but it would allow

others to create valid Blockcerts with diferent display types. The ofcial verifer should fall back to a default

display when it does not understand a Data URL, like it does today when displayHtml is missing.

metadata

Similar to the issues with display/displayHtml, we do not currently have an ofcial standard around the use

of the metadatajson property. Nonetheless, we have unofcial support in both the mobile app and verifer for

displaying some metadata information to the viewer.

Option 1

We could add this to the standard, but allow for diferent types of metadata format, such as XSD as an example.

This would allow issuers to take advantage of diferent formats and continue to support them ofcially in some of

the Blockcerts ecosystems.

The implementation could be similar to display, adding type and data:

"metadata": {
 "type": "json",
 "data": "{\"test\": true}"
}

Option 2

We could remove metadatajson completely. Metadata could instead be grabbed by the credentialSubject

feld. The VC spec does not have requirements about the types of information that can be mentioned in

credentialSubject; because this is where the "holder" and "subject" properties live, it makes sense that any

sort of additional metadata would live here. This will be consistent and interoperable with other Verifable

Credentials that are not Blockcerts and with other Verifable Credential wallets.

Option 3

We could leave it as is. It is not a requirement that we change this at all. Going with option 2 would remove the

need to have some possibly duplicate information, but leaving as is would allow issuers to make explicit the

metadata information they want to be displayed to a user and parsed by systems.

2019-11-19 Blockcerts V3 Proposal 1.0 13

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs

Note that leaving metadataJson or changing it to metadata will more than likely be specifc to Blockcerts and

not understood by the wider VC ecosystem.

The recommended approach would be to just pull additional metadata information from credentialSubject

(option 2).

EXAMPLE BLOCKCERTS V3

Credential:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/blockcerts/v3"
],
 "id": "urn:uuid:bbba8553-8ec1-445f-82c9-a57251dd731c",
 "type": ["VerifiableCredential", "BlockcertsCredential"],
 "issuer": "did:example:23adb1f712ebc6f1c276eba4dfa",
 "issuanceDate": "2010-01-01T19:73:24Z",
 "credentialSubject": {
 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
 "holds": {
 "id": "https://example.com/badgeclasses/123",
 "type": "BadgeClass",
 "name": "Certificate of Accomplishment",
 "image": "data:image/png;base64,...",
 "description": "A badge describing great accomplishments",
 "criteria": {
 "narrative": "Perform tasks of valor and wit."
 },
 "issuer": {
 "type": "Profile",
 "id": "did:example:23adb1f712ebc6f1c276eba4dfa",
 "name": "Example Issuer",
 "url": "http://example.com",
 "email": "test@example.com"
 }
 }
 },
 "evidence": {
 "id": "https://example.org/portfolios/25",
 "name": "Bob's Portfolio",
 "narrative": "Bob worked hard to develop a good portfolio",
 "genre": "ePortfolio"
 },

2019-11-19 Blockcerts V3 Proposal 1.0 14

 "metadata": {
 "type": "json",
 "data": "{\"class\": \"2019\"}"
 },
 "display": {
 "type": "html",
 "data": "<p>This subject has received this Certificate of Accomplishment</p>"
 },
 "verification": {
 "type": [
 "MerkleProofVerification2017",
 "Extension"
],
 "publicKey": "ecdsa-koblitz-pubkey:1AwdUWQzJgfDDjeKtpPzMfYMHejFBrxZfo"
 },
 "proof": {
 "type": "MerkleProof2019",
 "creator": "did:example:abcdefghij0123456789",
 "created": "2017-09-23T20:21:34Z",
 "domain": "example.org",
 "nonce": "2bbgh3dgjg2302d-d2b3gi423d42",
 "proofValue":

"z76WGJzY2rXtSiZ8BDwU4VgcLqcMEm2dXdgVVS1QCZQUptZ5P8n5YCcnbuMUASYhVNihae7m8VeYvfViYf
2KqTMVEH1B"
 }
}

There were several options outlined above. This specifc example used metadata as an object, display as an

object, holds and evidence for OB-like credentialSubject types, and MerkleProof2019 as the new

signature/proof. This is just an example and not necessarily a "recommended" route for Blockcerts V3.

ISSUER PROFILE

As an Open Badge extension (and while VCs & DIDs were still getting standardized), we had a requirement that

Issuer Profles had to be resolvable via https for information such as public key, revocation lists, and even

metadata such as name and image to be gathered when verifying a certifcate. By moving to a Verifable

Credential standard that is capable of utilizing Decentralized Identifers, we no longer have to rely upon URLs

inside certifcates for this information.

The Verifable Credential spec does not require that VCs be issued using DIDs, so it's proposed that we do not

make this a requirement, simply a new option. We may want to continue supporting URL-based issuer profles as

well, though we might need to make some changes to support specifc key links.

2019-11-19 Blockcerts V3 Proposal 1.0 15

Issuer Profle as a DID

There are a few things we may need outside of a normal DID resolution to provide the same UX we have today in

Blockcerts V2.

Here's an example of a DID when resolved:

{
 "@context": "https://www.w3.org/2019/did/v1",
 "id": "did:example:123456789abcdefghi",
 "publicKeys": [{
 "id": "did:example:123456789abcdefghi#keys-1",
 "type": "RsaVerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyPem": "-----BEGIN PUBLIC KEY...END PUBLIC KEY-----\r\n"
 }],
 "service": [{
 "id":"did:example:123456789abcdefghi#vcs",
 "type": "VerifiableCredentialService",
 "serviceEndpoint": "https://example.com/vc/"
 }]
}

One of the main requirements to verify the integrity of a certifcate and to prove that a certain issuer did indeed

issue it is to look at the #key feld in the publicKeys property of a DID.

One can link a signing key by referencing the DID and property: did:example:123456789abcdefghi#keys-

1.

However, at minimum, there are a few other things we need to carry over to a DID profle.

• Name

• URL

• introductionURL

• revocationList

• image

• email

We are proposing a service endpoint for BlockcertsIssuer that contains some of this metadata, as well as a

BlockcertsRevocation URL to handle certifcate revocations.

2019-11-19 Blockcerts V3 Proposal 1.0 16

BlockcertsIssuerService

"service": [{
 "id": "did:example:123456789abcdefghi#BlockcertsIssuer",
 "type": "BlockcertsIssuerService",
 "name": "University of Example,
 "URL": "https://example.com",
 "imageURL": "https://example.com/img.png",
 "email": "test@example.com",
 "serviceEndpoint": "https://example.com/introductionURL"
}]

When resolving the issuer DID did:example:123456789abcdefghi, we can then look for types that relate to

BlockcertsIssuerService in order to check for metadata and to allow recipients to post their own

DIDs/public keys to the issuer, much like we do today for URL-based Issuer Profles.

BlockcertsRevocationService

It's possible that we can include BlockcertsRevocationService as a feld in the

BlockcertsIssuerService instead of a standalone ServiceEndpoint. We may need to research best practice

among ServiceEndpoints. If we were to separate it into its own feld, it could look like the below.

Option 1: Check revocation for a single ID at a time.

"service": [{
 "id": "did:example:123456789abcdefghi#BlockcertsRevocation",
 "type": "BlockcertsRevocationService",
 "serviceEndpoint": "https://example.com/revocationEndpoint"
}]

If an issuer wants the ability to revoke any of their issued certifcates, they can add

BlockcertsRevocationService to their list of DID services.

This will allow a Blockcerts verifer to check the revocation status of a certifcate by making a GET call to

https://example.com/revocationEndpoint/{certId}.

Option 2 Check a revocation list for the ID.

An alternative method for creating this BlockcertsRevocationService would be to make it a

BlockcertsRevocationListService instead, similar to how we do revocationList today.

"service": [{
 "id": "did:example:123456789abcdefghi#BlockcertsRevocationList",
 "type": "BlockcertsRevocationListService",
 "serviceEndpoint": "https://example.com/revocationListEndpoint"
}]

2019-11-19 Blockcerts V3 Proposal 1.0 17

There are pros and cons to both options.

Option 1 allows a verifer to only obtain and see the revocation status of a single certifcate. A verifer would not

be able to see the revocation status of certifcates that they do not possess. A standard practice for making UUID-

based certifcate IDs should prohibit verifers from guessing another certifcate ID.

However, option 1 allows the issuer to see, log, monitor (etc.) a specifc certifcate. They would be able to see

what IP address, origin, etc. was trying to verify a specifc individual's certifcate and then infer certain things.

Option 2 pulls an entire list of revocation events, which means that it does not reveal to the issuer who is getting

verifed, but it does reveal to verifers every revocation event they have ever made and why. In the case of a large

revocation list, the verifer may have to wait for all of the revocations to get processed and retrieved.

There has not been a very good consensus yet on what method of revocation/status lists should be used for

Verifable Credentials, and thus there are no standards yet. Ideally, there is a generic RevocationServiceEndpoint

for all Verifable Credential revocations. In the meantime, we suggest that we label this as a Blockcerts-specifc

revocation endpoint.

Instead of the Blockcerts standard picking one of these two options, we may support both and allow issuers to

decide for themselves which makes better sense for their organization.

Example

Here is an example of what an issuer DID might look like when resolved, picking option 2 as an example for

revocations:

{
 "@context": "https://www.w3.org/2019/did/v1",
 "id": "did:example:123456789abcdefghi",
 "publicKeys": [{
 "id": "did:example:123456789abcdefghi#keys-1",
 "type": "Ed25519VerificationKey2018",
 "controller": "did:example:123456789abcdefghi",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }],
 "service": [{
 "id": "did:example:123456789abcdefghi#BlockcertsIssuer",
 "type": "BlockcertsIssuerService",
 "name": "University of Example,
 "URL": "https://example.com",
 "imageURL": "https://example.com/img.png",
 "email": "test@example.com",
 "serviceEndpoint": "https://example.com/introductionURL"
 }, {

2019-11-19 Blockcerts V3 Proposal 1.0 18

 "id": "did:example:123456789abcdefghi#BlockcertsRevocationList",
 "type": "BlockcertsRevocationListService",
 "serviceEndpoint": "https://example.com/revocationListEndpoint"
 }]
}

Issuer Profle as a URL in V3

Here is an example of an Issuer Profle in Blockcerts V2:

{
 "@context": [
 "https://w3id.org/openbadges/v2",
 "https://w3id.org/blockcerts/v2"
],
 "type": "Profile",
 "id": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json",
 "name": "University of Learning",
 "url": "https://www.issuer.org",
 "introductionURL": "https://www.issuer.org/intro/",
 "publicKey": [
 {
 "id": "ecdsa-koblitz-pubkey:msBCHdwaQ7N2ypBYupkp6uNxtr9Pg76imj",
 "created": "2017-06-29T14:48:03.814936+00:00"
 }
],
 "revocationList": "https://www.blockcerts.org/samples/2.0/revocation-list-
testnet.json",
 "image": "...",
 "email": "contact@issuer.org"
}

Comparing that to the example issuer DID above, the only thing that needs to be changed is how publicKey is

handled.

{
 "@context": [
 "https://w3id.org/openbadges/v2",
 "https://w3id.org/blockcerts/v2"
],
 "type": "Profile",
 "id": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json",
 "name": "University of Learning",
 "url": "https://www.issuer.org",
 "introductionURL": "https://www.issuer.org/intro/",
 "publicKey": [{
 "id": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json#keys-1",
 "type": "Ed25519VerificationKey2018",

2019-11-19 Blockcerts V3 Proposal 1.0 19

 "controller": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }],
 "revocationList": "https://www.blockcerts.org/samples/2.0/revocation-list-
testnet.json",
 "image": "...",
 "email": "contact@issuer.org"
}

This will allow us to link directly to a specifc key used for signing a Verifable Credential, which is a standard

way of fnding the key, instead of using the current Blockcerts model of checking the blockchain issuing key

against all public keys for which an issuer claims ownership.

Unfortunately, because publicKey has the same property name in V2, this change will make URL-based Issuer

Profles a bit tricky to deal with. Either we make URL-based Issuer Profles incapable of handling both V2 and V3

Blockcerts or we allow both V2 and V3 public keys in there. For example:

 "publicKey": [
 {
 "id": "ecdsa-koblitz-pubkey:msBCHdwaQ7N2ypBYupkp6uNxtr9Pg76imj",
 "created": "2017-06-29T14:48:03.814936+00:00"
 },
 {
 "id": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json#keys-1",
 "type": "Ed25519VerificationKey2018",
 "controller": "https://www.blockcerts.org/samples/2.0/issuer-testnet.json",
 "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
 }
]

For V2, we may need to update verifcation to ignore cases where id is a did: or http:/https: URI. For V3,

we may need to do the reverse or to ignore cases where id does not end with an #, as it should in the VC/DID

model.

CONSIDERATIONS

Backwards Compatibility

All aspects of V2 shall continue to operate as it does today, such as accepting an organization as a recipient,

displaying metadata and HTML, verifying a credential, etc.

Programmatic decisions as to how to accept an issuer, what information to display and how to display it, etc.

shall be made based on the Blockcerts version outlined in @context:

2019-11-19 Blockcerts V3 Proposal 1.0 20

"@context": [
 "https://w3id.org/openbadges/v2",
 "https://w3id.org/blockcerts/v2"
]

In cases where the issuer profle is a DID instead of a URL, universal DID resolvers shall exist throughout the

ecosystem that will resolve it down to a profle, in which case Blockcerts version can then be checked.

Existing V2 / Open Badges extension support

While Blockcerts adopts the Verifable Credential standard and moves of of the Open Badges standard directly,

there may be a desire for organizations to continue issuing recognized Open Badges extensions. Blockcerts V2

credential creation and issuing can still be maintained via versioning. Any critical changes necessary can be made

and published as a new Python Package under the V2 versioning (e.g., v2.0.33). This can be done out of good

faith by the community, but we would make no guarantees for how long this might be done. We would love to

invite anyone wishing to make critical update changes for V2 to make code contributions that we can merge into

the ofcial V2 branch that will be created.

Blockcerts V3 and embedded compliant Open Badges

It will be up to IMS Global and the Open Badges community to support Verifable Credential-based Open Badges

through the schema changes outlined in Open Badges are Verifable Credentials and/or the ofcial Open Badges

verifers. There are several ways to issue Open Badges like this through Blockcerts, which may include the

introduction of holds into the standard or extracting a full badge from a Verifable Credential. Note that issuing

a full badge inside of a Verifable Credential is not a standard/recommended way to use VCs, though it is

technically still a VC.

Breaking Changes Summary

There are a few breaking changes that are necessary as we move to Verifable Credentials and several optional

things that may be breaking changes if we wish to implement them. As mentioned, V2 will continue to behave as

is, but to issue V3 credentials and to support V2 and V3 URL-based issuer profles, please review the changes

below.

Issuer Profle

Existing Issuer Profles could continue to operate but issuing V3 credentials may require a new Issuer Profle

(either URL- or DID-based). As mentioned above in Issuer Profle, the publicKey property needs to change in

V3. We have two options: support having a mix of V2 & V3 publicKey models in a single Issuer Profle or

require that a V3 issuer have a seperate Issuer Profle.

For DID-based Issuer Profles, it's understood that you would be creating a new issuer profle and would need to

continue to maintain your URL-based profle for every credential you've issued (unless you reactively issue V3 for

every V2 credential you've ever issued). DID issuer profles will act similar in nature to URL-based Issuer Profles

2019-11-19 Blockcerts V3 Proposal 1.0 21

https://github.com/WebOfTrustInfo/rwot6-santabarbara/blob/master/final-documents/open-badges-are-verifiable-credentials.md

but under the DID-document schema model. See issuer profle as a did for a summary of these changes and

options.

Data Model

The data model will change for V3, so if you've previously created a template using the open-source cert-tools

project, you'd need to create a new one that is a valid Verifable Credential. Please review blockcerts as VC

implementation to see how V2 will map to V3 and some of the proposed options that Blockcerts V3 could use. We

will more than likely have some sample V3 credentials in the cert-tools project as we start implementing V3.

If you wish, you could continue issuing a badge-like credential by utilizing hold & evidence as described in

Open Badges are Verifable Credentials to minimize the data changes required. Otherwise, you're free to create a

new Verifable Credential type.

There are a few optional changes that may break your existing templates as well. Please click the in-page links to

jump to the summaries above:

• display

• metadata

These felds have not been standardized before, but we do have the opportunity to make these improvements

while moving to a new major version number. If it interests you, please give any feedback you might have. It may

be advisable to implement these features in the future to minimize the scope of work and breaking changes for V3.

Note: While these changes were identifed as needed changes early on, there may still be other breaking changes

that are made known during the development of Blockcerts V3.

SUMMARY

The current Blockcerts V2 standard and the Verifable Credentials standard has a lot of similarities that easily

map to each other in many ways. Blockcerts can achieve much of the same functionality and more by utilizing the

Verifable Credential and Decentralized Identifers standards. There are many options for how to map specifc

properties, but in the end Blockchain Proofs, Issuer Profles/Identities, Recipient Ownership, and the aspects of

life-long credentials are better supported/standardized, giving options for doing so in a more decentralized way.

From here, we incredibly value community feedback and support. Based on the conversations and decisions

preferred by the community, we can work on an ofcial specifcation for Blockcerts V3.

2019-11-19 Blockcerts V3 Proposal 1.0 22

https://github.com/WebOfTrustInfo/rwot6-santabarbara/blob/master/final-documents/open-badges-are-verifiable-credentials.md
https://github.com/blockchain-certificates/cert-tools
https://github.com/blockchain-certificates/cert-tools

Additional Credits

Lead Author: Anthony Ronning aronning@learningmachine.com (Learning Machine)

Authors: Wong Wai Chung waichung@nextid.com (NextID)

Contributors: Matthieu Collé (@raiseandfall)

Sample APA Citation:

Chung, W., and Ronning, A. (2019). Blockcerts Proposal V3. Rebooting the Web of Trust IX. Retrieved from

https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/fnal-documents/BlockcertsV3.pdf.

This paper is licensed under CC-BY-4.0.

About Rebooting the Web of Trust

This paper was produced as part of the Rebooting the Web of Trust IX design workshop. On September 3rd to 6th,

2019, over 60 tech visionaries came together in Prague, The Czech Republic to talk about the future of

decentralized trust on the internet with the goal of writing at least 5 white papers and specs. This is one of them.

RWOT Board of Directors: Christopher Allen, Joe Andrieu, Kim Hamilton Dufy

Members of the Organizing Committee: Dan Burnett, Dmitri Zagidulin

Sponsors: Digital Contract Design (Gold), Protocol Labs (Silver), Digital Bazaar (Ongoing Sustaining), Jolocom

Community Sponsors: Blockchain Commons, Consensys, Learning Machine, Legendary Requirements

Workshop Credits: Christopher Allen (Founder, Co-Producer), Joe Andrieu (Co-Producer and Facilitator), and

Shannon Appelcline (Editor-in-chief).

Thanks to our other contributors and sponsors!

Thanks also to Paralelní Polis and the Institute for CryptoAnarchy in Prague.

What’s Next?

The design workshop and this paper are just starting points for Rebooting the Web of Trust. If you have any

comments, thoughts, or expansions on this paper, please post them to our GitHub issues page:

https://github.com/WebOfTrustInfo/rwot9/issues

The tenth Rebooting the Web of Trust design workshop is scheduled for early 2020. If you’d like to be involved or

would like to help sponsor the event, email:

rwot-leadership@googlegroups.com

2019-11-19 Blockcerts V3 Proposal 1.0 23

https://github.com/WebOfTrustInfo/rwot9-prague/blob/master/final-documents/BlockcertsV3.pdf
https://twitter.com/raiseandfall
mailto:waichung@nextid.com
mailto:aronning@learningmachine.com
mailto:rwot-leadership@googlegroups.com
https://github.com/WebOfTrustInfo/rwot9/issues
https://github.com/WebOfTrustInfo/rwot9-prague
https://creativecommons.org/licenses/by/4.0/

	Abstract
	Verifiable Credential Schema
	Open Badges & Blockcerts Schema
	Open Badges
	Blockcerts
	RecipientProfile
	Verification
	Signature
	Issuer
	IntroductionURL

	Blockcerts as VC Implementation
	recipientProfile
	verification
	Signature / Proof Proposal
	Issuer Key Revocations

	Additional Fields
	display
	metadata

	Example Blockcerts V3
	Issuer Profile
	Issuer Profile as a DID
	BlockcertsIssuerService
	BlockcertsRevocationService
	Example

	Issuer Profile as a URL in V3

	Considerations
	Backwards Compatibility
	Existing V2 / Open Badges extension support
	Blockcerts V3 and embedded compliant Open Badges
	Breaking Changes Summary
	Issuer Profile
	Data Model

	Summary
	About Rebooting the Web of Trust
	What’s Next?

