
LD Signature Format Alignment

An Abstract from Rebooting the Web of Trust IV Design Workshop

By Kim Hamilton Dufy, Rodolphe Marques, Markus Sabadello, Manu Sporny

ABSTRACT

The goal of the "LD Signature Format Alignment"
Working Group at Rebooting the Web of Trust IV
was to investigate the feasibility and impact of the
proposed 2017 RSA Signature Suite spec, which
brings JSON-LD signatures into alignment with the
JOSE JSON Web Signature (JWS) standards.

The 2017 RSA Signature Suite is based on RFC
7797, the JSON Web Signature (JWS) Unencoded
Payload Option specifcation.

This approach avoids past concerns about JWT
raised in the LD signature adopters, including:

• Increased space consumption associated with
base-64 encoding.

• Difculty of nesting or chaining signatures,
leading to data duplication.

• Use of a format that is not a JSON object,

preventing ability to rely exclusively on a
JSON document-based storage engine (while
preserving the signature).

Using unencoded payloads with detached content, as
described in the introduction of RFC 7797, addresses
these concerns and helps in cases in which "...the
payload may be very large and where means are
already in place to enable the payload to be
communicated between the parties without
modifcations." This avoids unnecessary copying and
transformations which can result "signifcant space
and time improvements" when working with large
payloads.

Our working group had two primary questions about
the proposed 2017 RSA Signature Suite:

1. Is the specifcation sufciently clear for
implementors?

2. Is there a negative usability impact to LD
signature implementations using this
signature suite?

https://w3c-dvcg.github.io/lds-rsa2017/
https://tools.ietf.org/html/rfc7797
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-fall2016/blob/master/topics-and-advance-readings/blockchain-extensions-for-linked-data-signatures.md
https://tools.ietf.org/html/rfc7797
https://tools.ietf.org/html/rfc7797

To answer these questions, we developed prototypes
for the suite in several key programming languages
to assess:

• Availability of library support for JWS
unencoded payload options

• Impact to existing LD signature
implementations, e.g. jsonld-signatures
library

• Impact to usability of Verifable Claims (and
others) using JSON-LD signatures with this
signature suite.

STATUS

We accomplished our goals as follows:

1. We delivered prototypes for the 2017 RSA
Signature Suite that provided sufcient
confdence to move forward with the
proposed aligned signature approach.

2. We verifed that there was no signifcant
impact to existing LD signature
implementations and usability in general.
Specifcally, unencoded payloads with
detached content allows LD signatures to be
compatible with JWS while avoiding the
concerns raised in the summary of past
concerns described above.

The major obstacle we encountered while performing
this work was the lack of JSON Web Signature
library support for unencoded payloads, which is
addressed in "Next Steps".

Implementations of LD JWS signing

The following prototypes were developed:

• For Javascript/Node.js: https://github.com/
WebOfTrustInfo/ld-signatures-js (this is a
fork of JSON-LD signatures ofcial library)

• For Python: https://github.com/
WebOfTrustInfo/ld-signatures-python

• For Java: https://github.com/
WebOfTrustInfo/ld-signatures-java

JSON-LD JWS Implementation Guidance (cross-
platform)

A white paper, which follows, describes the precise
diferences between existing LD signatures and the
new approach.

NEXT STEPS

The primary gap in developing these prototypes,
which accounted for most of our development work,
was lack of library support for JWS unencoded
payloads. To work around this limitation, our
implementations mirrored the only implementation
we found, available in the JOSE PHP library.

A cleaner solution that we propose is to recraft our
prototypes as JWS unencoded payload libraries.
Such a library would expose simple sign-and-verify
APIs, for example:

signature = sign(headers: JSON,
payload: STRING);

In this example, payload is assumed to be a
detached payload, as described in RFC 7797.

This library would facilitate minimal changes to
existing JSON-LD signature implementations.

Detailed List of Next Steps

• Determine how to address problem that
JWS implementations lack support for RFC
7797:

• Recraft prototypes as JWS unencoded-
signature libraries to provide a RFC 7797
implementation (with a least RS256) to
either be merged into ofcial JWS libraries
or to act as standalone bridges until ofcial
support is provided.

• Double-check end-to-end samples with
RS256 algorithm (not provided in RFC 7797
or PHP tests).

• Add 2017 RSA Signature suite to JSON-LD
signature libraries, consuming JWS
unencoded payload implementation.

https://github.com/WebOfTrustInfo/ld-signatures-java
https://github.com/WebOfTrustInfo/ld-signatures-java
https://github.com/WebOfTrustInfo/ld-signatures-python
https://github.com/WebOfTrustInfo/ld-signatures-python
https://github.com/WebOfTrustInfo/ld-signatures-js
https://github.com/WebOfTrustInfo/ld-signatures-js
https://tools.ietf.org/html/rfc7797
https://github.com/Spomky-Labs/josePHP
https://github.com/digitalbazaar/jsonld-signatures
https://github.com/digitalbazaar/jsonld-signatures
https://github.com/digitalbazaar/jsonld-signatures

Implementing the 2017 RSA Signature Suite in
a LD Signature Library

A White Paper from Rebooting the Web of Trust IV Design Workshop

By Kim Hamilton Dufy, Rodolphe Marques, Markus Sabadello

This document describes specifc steps and issues
with implementing the 2017 RSA Signature Suite in
an existing LD signature library.

SOURCE OF TRUTH

RFC 7797 does not include an RS256 example, so we
obtained a source of truth using the JOSE library,
which is the only library we located implementing

the RFC 7797 spec. We used the test
testCompactJSONWithUnencodedDetachedPayload
from tests/Functional/SignerTest.php, which uses
the algorithm HMAC-SHA256, as the basis for a
new test using the RSA-SHA256 algorithm.

The resulting unit test is shown in the included
testCompactJSONWithUnencodedDetachedPayload
RS256.

public function testCompactJSONWithUnencodedDetachedPayloadRS256()
{
 $payload = '$.02';
 $protected_header = [
 'alg' => 'RS256',
 'b64' => false,
 'crit' => ['b64'],
];

 $key = JWKFactory::createFromKeyFile(
 __DIR__.'/../Unit/Keys/RSA/private.encrypted.key',
 'tests', // password for key
 [
 'kid' => 'My Private RSA key',
 'use' => 'sig',
] // these options do not affect outcome of this test
);

 $jws = JWSFactory::createJWSWithDetachedPayloadToCompactJSON($payload, $key,
$protected_header);
$this->assertEquals('eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..f
ZRkjTTrcXdUovHjghM6JvlMhJuR1s8X1F4Uy_F4oMhZ9KtF2Zp78lYSOI7OxB5uoTu8FpQHvy-dz3N4n
LhoSWAi2_HrxZG_2DyctUUB_8pRKYBmIdIgpOlEMjIreOvXyM6A32gR-PdbzoQq14yQbbfxk12jyZSwc
aNu29gXnW_uO7ku1GSV_juWE5E_yIstvEB1GG8ApUGIuzRJDrAAa8KBkHN7Rdfhc8rJMOeSZI0dc_A-Y
7t0M0RtrgvV_FhzM40K1pwr1YUZ5y1N4QV13M5u5qJ_lBK40WtWYL5MbJ58Qqk_-Q8l1dp6OCmoMvwdc
7FmMsPigmyklqo46uyjjw', $jws);

 $loader = new Loader();
 $loaded = $loader->loadAndVerifySignatureUsingKeyAndDetachedPayload(
 $jws,

 $key,
 ['RS256'],
 $payload,
 $index
);

 $this->assertInstanceOf(JWSInterface::class, $loaded);
 $this->assertEquals(0, $index);
 $this->assertEquals($protected_header, $loaded->getSignature(0)-
>getProtectedHeaders());
}

Note this test uses the {"alg":"RS256","b64":false,"crit":["b64"]} header and $.02 as the
unencoded payload.

The test asserts that the input to the signing function, including the protected headers, should match:

eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19.$.02

And the resulting signature should match:

eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..fZRkjTTrcXdUovHjghM6Jv
lMhJuR1s8X1F4Uy_F4oMhZ9KtF2Zp78lYSOI7OxB5uoTu8FpQHvy-dz3N4nLhoSWAi2_HrxZG_2DyctU
UB_8pRKYBmIdIgpOlEMjIreOvXyM6A32gR-PdbzoQq14yQbbfxk12jyZSwcaNu29gXnW_uO7ku1GSV_j
uWE5E_yIstvEB1GG8ApUGIuzRJDrAAa8KBkHN7Rdfhc8rJMOeSZI0dc_A-Y7t0M0RtrgvV_FhzM40K1p
wr1YUZ5y1N4QV13M5u5qJ_lBK40WtWYL5MbJ58Qqk_-Q8l1dp6OCmoMvwdc7FmMsPigmyklqo46uyjjw

Our prototypes successfully matched this testcase, and matched results on JSON-LD claim inputs.

LD SIGNATURE FLOW

Overview

The signing fow for the 2017 RSA Signature Suite is
identical to other signature suites in the JSON-LD
signature library; the processing required to
implement 2017 RSA Signatures is confned to step
#5 bolded below (all other steps are unchanged). A
new algorithm, RsaSignature2017, was added to
implement this signature suite.

The LD signature algorithm works as follows:

Inputs: - JSON-LD headers (nonce, created,
creator, ...) same as before, algorithm should be
RsaSignature2017 - JSON-LD document

JSON-LD Signing Algorithm:

1. Ensure algorithm is in accepted set

2. Add created date of now, if not supplied
3. Canonicalize using the GCA2015 algorithm,

as specifed in the 2017 RSA Signature Suite
specifcation (NOTE: GCA2015 was formerly
called URDNA2015)

4. Prepend the JSON-LD signature options
date, domain, nonce to the input to sign,
as implemented in the _getDataToHash
method of the JSON-LD signature library

5. Sign with the 2017 RSA Signature Suite
(details in next section)

6. Compact the signature

Outputs: - JSON-LD document with the signature
block added

We'll refer to steps 2-4 of the JSON-LD signing
algorithm as the "JSON-LD canonicalized form" of
the JSON-LD document.

https://github.com/digitalbazaar/jsonld-signatures
https://github.com/digitalbazaar/jsonld-signatures

Signing with the 2017 RSA Signature Suite

This section drills into step #5 above.

To extend the JSON-LD signature library to support
the 2017 RSA Signature Suite, we added a new
algorithm type -- RsaSignature2017 -- and a new
processing case for this type in the function
createSignature.

First, suppose a JWS library with unencoded
payload support were available. If so, then the steps
would be:

1. Form the JWS Headers

Per RFC 7797, creating a JWS signature using the
unencoded payload option requires the JWS Header
parameters "b64":false and "crit":["b64"].
In addition to these parameters,
RsaSignature2017 specifes using RSA Signatures
with SHA-256. This corresponds to a JWS signing
algorithm of RS256.

In sum the complete set of JWS headers used for a
2017 RSA Signature is:

{
 "alg":"RS256",
 "b64":false,
 "crit":["b64"]
}

2. Call the JWS library with headers from #1
(parameter 1: headers) and the JSON-LD
canonicalized payload (parameter 2: payload)

result = sign(headers: JSON,
payload: STRING);

3. Update the LD signature block to contain
signatureValue=<result>

Implementing JWS unencoded payload signing

In step #2 above, we assumed the availability of a
JWS library supporting unencoded payloads.
Because we only found a PHP library supporting

unencoded payloads, we needed to implement those
steps in the language we chose.

Per RFC 7797, when the b64 header parameter is
used, it must be integrity protected. Therefore it
must occur within the JWS Protected Header
(meaning it is part of the input that is signed). Also,
per RFC7797, the expected input to sign is
formatted as follows:

ASCII(BASE64URL(UTF8(JWS Protected
Header)) || '.' || JWS Payload

In our case, JWS Payload is the JSON-LD
canonicalized form.

This yields the following steps:

 1. Format the input to sign:
 a) Stringify the JWS headers, sorting the

keys.
• Note: sorting the header parameters

is an implementation choice to allow
predictability in the sorting order of
the protected headers. Since the
original JWS header can be obtained
from the JWS signature prefx,
verifcation could simply ensure it
encodes the JWS headers in the
same order.

 b)Encode the stringifed header, referred to
as <header> below, as follows:

• utf-8 encode
• base64 url encode
• ascii encode

 c) Form the JWS input to sign as <header>
+ "." + <payload>, where <payload>
is the JSON-LD canonicalized form.

• The critical distinction here is that
payload is not base64 encoded, per
the b64=false argument.

 2. Sign:
 a) RSASHA256-sign the JWS input
 b)base64-url-encode the signature value

 3. Return the signature result <header> + ".."
+ <base64Signature>:

 a) The .. indicates a JWS detached payload.

https://tools.ietf.org/html/rfc7797
https://tools.ietf.org/html/rfc7797
https://github.com/digitalbazaar/jsonld-signatures

Note that typically in JWS, the encoded
payload is between the middle 2 dots.

STEPS TO VERIFY

The verifcation algorithm uses the following steps:

1. Record the 'signatureValue' feld from the
'signature' section of the JSON-LD
document, then remove the entire 'signature'
section. Recall the signature value is the
'base64Signature' portion of the JWS
signature, i.e. excluding "<header>.." in:
<header> + ".." + <base64Signature>

2. Follow the same steps as in signing listed in
"1. Format the input to sign", yielding the
JWS input.

3. Using a RSA256 signature library, call its
"verify" method with the JWS input and the
expected signature from step 1. This returns
a boolean indicating whether the signature
matches.

PROBLEMS ENCOUNTERED

Lack of JWS detached payload library support

As described above, the only library we found that
supports detached payloads was the PHP JOSE
library.

Inconsistent ordering of JWS headers

To our knowledge the JOSE specs do not specify
how JSON headers should be ordered. In our
implementations, we ensured consistent
lexicographical sorting of JWS headers. This is not
critical since the encoded header is included in the
signature, but our goal was to produce consistent
signatures (similar to what's done in
_getDataToHash.

Specifying the sorting of the keys, the separators and
the encoding should be enough for any
implementation to be able to produce the same
signature.

Example in python:

import json

header = {'alg': 'RS256', 'b64': False, 'crit': ['b64']}

stringify json
there are no guarantees about the ordering of the keys and the separators use
a whitespace between the keys
json.dumps(header)
'{"crit": ["b64"], "alg": "RS256", "b64": false}'

we can specify the separators. In this case we say we don't want whitespaces
json.dumps(header, separators=(',', ':'))
'{"crit":["b64"],"alg":"RS256","b64":false}'

and we can specify the ordering of the keys
json.dumps(header, separators=(',', ':'), sort_keys=True)
'{"alg":"RS256","b64":false,"crit":["b64"]}'

ultimately we can specify the encoding to use and return a bytestring that
can then be used to base64 encode / sign / hash
json.dumps(header, separators=(',', ':'), sort_keys=True).encode('utf-8')
b'{"alg":"RS256","b64":false,"crit":["b64"]}'

https://github.com/Spomky-Labs/jose

REFERENCE: MODIFICATIONS TO
JAVASCRIPT JSON-LD SIGNATURE LIBRARY
TO SUPPORT 2017 RSA SIGNATURE SUITE

The ld-signatures-js repo contains the 2017 RSA
Signature Suite prototype

The modifcations are: - Add new algorithm type
RsaSignature2017 - Add new paths to
_createSignature to support

RsaSignature2017 (Node.js and Javascript
environments) - Add new paths to
_verifySignature to support
RsaSignature2017 (Node.js and Javascript
environments)

For example, the inlined implementation of
_createSignature with algorithm
RsaSignature2017 (Node.js environment) is:

var crypto = api.use('crypto');
var signer = crypto.createSign('RSA-SHA256');

// detached signature headers for JWS
var protectedHeader = {"alg":"RS256","b64":false,"crit":["b64"]};

var stringifiedHeader = JSON.stringify(protectedHeader,
Object.keys(protectedHeader).sort());
var b64UrlEncodedHeader = base64url.encode(stringifiedHeader);

// jws input to sign
var to_sign = b64UrlEncodedHeader + "." + _getDataToHash(input, options);

// sign
signer.update(to_sign, 'utf-8');
var signaturePart = signer.sign(options.privateKeyPem, 'base64');

// JWS signature for unencoded payload is: <b64UrlEncodedHeader> + '..' +
<signaturePath>
var signature = b64UrlEncodedHeader + ".." + signaturePart;

Reminder: This inlined version is to demonstrate the
computations performed. It includes steps that
should be performed by a JWS library supporting
unencoded payloads. The ld-signatures-js repo

factors these parts out as separate functions, but
should ultimately be replaced by a proper JWS
library supporting unencoded payloads, when a
javascript implementation exists.

ADDITIONAL CREDITS

Abstract Authors: Kim Hamilton Dufy, Rodolphe Marques, Markus Sabadello, Manu Sporny

White Paper Authors: Kim Hamilton Dufy, Rodolphe Marques, Markus Sabadello

Lead Editor: Kim Hamilton Dufy

Related Papers: Signature Format Alignment

https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2017/blob/master/topics-and-advance-readings/SignatureFormatAlignment.md
https://github.com/WebOfTrustInfo/ld-signatures-js
https://github.com/WebOfTrustInfo/ld-signatures-js

About Rebooting the Web of Trust

This paper was produced as part of the Rebooting the Web of Trust IV design workshop. On April 19th through

April 21st, 2017, over 40 tech visionaries came together in Paris, France to talk about the future of decentralized
trust on the internet with the goal of writing 3-5 white papers and specs. This is one of them.

Workshop Sponsors: Ævatar, Blockstream, Digital Contract Design, Microsoft, Protocol Labs, U Change

Workshop Producer: Christopher Allen

Workshop Facilitators: Christopher Allen and Betty Dhamers, graphic recording by Benoit Pacaud, additional
paper editorial & layout by Shannon Appelcline.

What’s Next?

The design workshop and this paper are just starting points for Rebooting the Web of Trust. If you have any
comments, thoughts, or expansions on this paper, please post them to our GitHub issues page:

https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2017/issues

The next Rebooting the Web of Trust design workshop is scheduled for Fall 2017 in Boston, Massachusetts. If
you’d like to be involved or would like to help sponsor these events, email:

ChristopherA@LifeWithAlacrity.com

mailto:ChristopherA@LifeWithAlacrity.com
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2017/issues
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2017

	Abstract
	Status
	Implementations of LD JWS signing
	JSON-LD JWS Implementation Guidance (cross-platform)

	Next Steps
	Detailed List of Next Steps

	Source of Truth
	LD signature flow
	Overview
	Signing with the 2017 RSA Signature Suite
	Implementing JWS unencoded payload signing

	Steps to Verify
	Problems Encountered
	Lack of JWS detached payload library support
	Inconsistent ordering of JWS headers
	Example in python:

	Reference: Modifications to javascript JSON-LD signature library to support 2017 RSA Signature Suite
	Additional Credits
	About Rebooting the Web of Trust
	What’s Next?

