In [ ]:

```
from sympy import *
init_printing()
```

For each exercise, fill in the function according to its docstring.

In [ ]:

```
a, b, c, d, x, y, z, t = symbols('a b c d x y z t')
f, g, h = symbols('f g h', cls=Function)
```

Write a function that computes the quadratic equation.

In [ ]:

```
def quadratic():
return solve(a*x**2 + b*x + c, x)
quadratic()
```

Write a function that computes the general solution to the cubic $x^3 + ax^2 + bx + c$.

In [ ]:

```
def cubic():
return solve(x**3 + a*x**2 + b*x + c, x)
cubic()
```

A population that grows without bound is modeled by the differential equation

$$f'(t)=af(t)$$Solve this differential equation using SymPy.

In [ ]:

```
dsolve(f(t).diff(t) - a*f(t), f(t))
```

If the population growth is bounded, it is modeled by

$$f'(t) = f(t)(1 - f(t))$$Solve this differential equation using SymPy.

In [ ]:

```
dsolve(f(t).diff(t) - f(t)*(1 - f(t)), f(t))
```