
From Estimation to Sampling for Bayesian Linear Regression with
Spike-and-Slab Prior∗

Qijia Jiang†

Abstract. We consider Bayesian linear regression with sparsity-inducing prior and design efficient sampling
algorithms leveraging posterior contraction properties. A quasi-likelihood with Gaussian spike-and-
slab (that is favorable both statistically and computationally) is investigated and two algorithms
based on Gibbs sampling and Stochastic Localization are analyzed, both under the same (quite
natural) statistical assumptions that also enable valid inference on the sparse planted signal. The
benefit of the Stochastic Localization sampler is particularly prominent for data matrix that is not
well-designed.

Key words. Gibbs Sampler, Spike-and-Slab Sparse Linear Regression, Stochastic Localization, Posterior Con-
traction of Frequentist Bayesian procedure

MSC codes. 65C60, 68W40, 62C10

1. Introduction. In this work we study posterior sampling arising from high-dimensional
Bayesian variable selection – our focus is on sampling from the full posterior for uncertainty
quantification purpose as opposed to computing aspect of it (e.g., point estimators). Given
design matrix X ∈ Rn×p and response y ∈ Rn, the linear regression model with Spike-and-Slab
prior has posterior

(1.1) π(β|y,X) ∝ L(y|X,β)Pprior(β) ∝ exp(− 1

2σ2
∥y −Xβ∥22)(⊗

p
i=1(1− z)G0(βi) + zG1(βi))

for some z ∈ (0, 1), where G0 has density more concentrated around 0 than G1. What
makes the Bayesian methodology attractive is that it comes with credible sets instead of a
single summary statistics; however, we emphasize that we will study Bayesian guarantee in a
frequentist framework in this paper, where we assume there is a planted (and fixed) k-sparse
signal β∗ for which data is generated from, i.e., y = Xβ∗ + ϵ for ϵ ∼ N (0, σ2I). This prior
can be viewed as a regularized least squares / penalized likelihood if one draws parallel to the
frequentist perspective, where Lasso (ℓ1 penalty) corresponds to the posterior mode of i.i.d
Laplace(λ) prior with density λ

2 exp(−λ|β|):

β̂Lasso ← argmin
β
∥y −Xβ∥22 + λ

p∑
i=1

|βi| .

Lasso, however, isn’t fully Bayesian in the sense credible interval building upon the posterior
distribution does not provide valid coverage guarantee [7, Theorem 7] for β∗. Therefore
good performance of posterior mode doesn’t automatically translate to good performance
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of the full posterior. This is, in some sense, not surprising since it has to balance between
the task of selection and prediction (i.e., shrinkage and bias). Spike and Slab prior, on the
other hand, by explicitly introducing two scales/groups, is better at dealing with this tension.
Indeed, favorable statistical properties can be established on the posterior for inference on the
unknown sparse β∗ – in what follows, we will design sampling procedures under statistical
assumptions for the model and will be mostly concerned with the scaling with p when it
comes to computational methods. We note that for the purpose of recovering the sparse β∗,
classical BvM says that data will eventually wash out the influence of the prior choice, however
mismatch between the prior and the truth will be reflected in the slow posterior contraction
rate of πn(β|yn)→ δβ∗ in terms of statistical efficiency. Another way to see this manifested is
through the variational inequality

− logEprior(β)Ly,X(β) = min
ρ≪Pprior(β)

{−Eρ[logLy,X(β)] + KL(ρ||Pprior(β))}

and the minimizer ρ∗ is precisely (1.1) when Ly,X(β) is the likelihood function, therefore the
posterior will concentrate on maximizers of the likelihood in presence of the evidence from
data, while staying faithful to the prior knowledge one may have.

1.1. Related Literature. Statistical properties of (1.1) have been studied by [7, 17, 24]
with different choices for G0, G1, z, σ. On a closely related prior, computational-statistical
guarantees given by [27] highlight that sharp concentration of the high-dimensional posterior
distribution (i.e., πn(z

∗|y) ≳ 1− p−1 with probability at least 1− p−c assuming smallest non-
zero element of β∗ ≳ σ2 log p/n) need not lead to polynomial mixing of MCMC algorithm.
Unless one restricts the size of the state space the prior is supported on 1{∥z∥0 ≤ u}, the
authors show that the gradient-free Metropolis-Hastings algorithm (also known as Add-Delete-
Swap in this context) can have mixing time scaling exponentially with p. However, this upper
bound u depends on quantities unknown in practice. Gibbs sampler is widely used for spike-
and-slab models, and its convergence is analyzed in [2] with numerical speedup investigated
in [5]. Various approximate schemes exist, where in [22] mean-field variational inference ideas
are used (i.e., reduce model search space from 2p to p assuming coordinates are independent)
to show posterior contraction but since the objective to be optimized is non-convex, guarantee
for convergence to global optima is hard to establish (in fact it was empirically observed that
the result can be sensitive to initialization). Some previous attempts also focus on designing
efficient algorithms for computing point estimators such as posterior modes using e.g., EM
algorithms for priors with continuous support [23].

The philosophy we adopt for sampling from the non-log-concave spike-and-slab posterior
(1.1) is close in spirit to (1)[3], where posterior converges to a normal limit as both the
sample size n and parameter dimension p grow to infinity at appropriate rate (reminiscent of
Bernstein-von-Mises theorem which states the posterior approach a Gaussian centered at MLE
with Fisher information covariance under appropriate assumptions), and show polynomial
time mixing in p – an assumption on the starting point for the algorithm that falls in the
approximate support of the posterior, i.e., where CLT applies, is also imposed; (2) A line of
investigation on Bayesian nonlinear inverse problem [19] also crucially hinges on warm start
into the locally convex region where most of the posterior mass concentrates for polynomial-
time convergence of the MCMC algorithm they design. On the other hand, standard off-
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the-shelf gradient-based HMC, MALA samplers typically struggle for potentials deviating
significantly from log-concavity beyond functional inequalities – one could check that the Log-
Sobolev constant (therefore mixing time) scales exponentially with the separation between
the peaks, in addition to already expensive gradient calculation, without the possible help
of parallel tempering/replica exchange that avoids being trapped in separated modes. In
fact, these are not surprising in light of the asymptotic posterior shape characterization in [7,
Theorem 6] where they are shown to be well-approximated by random (i.e., data-dependent)
mixture of Gaussians.

1.2. Notation & Outline. (In)equalities with ≲,≳,≍ hold up to absolute constants. For
two models z, z′ ∈ {0, 1}p, z ⊂ z′ means that the active components of z is a subset of that
of z′, and ∥z∥0 counts the number of non-zeros/active elements. We write j /∈ z to indicate
zj = 0. Total-variation distance is defined as ∥µ − ν∥TV = supA∈B |µ(A) − ν(A)| ∈ [0, 1],
and Wasserstein-2 distance is defined as W2(µ, ν) = infx∼µ,y∼ν E[∥x− y∥2]1/2, which satisfies
triangle inequality. Moreover, we use on(1) to specify a quantity tending to 0 as n→∞, and

Op(a) for the usual stochastic boundedness. Both Xn
P−→ X and p- limn→∞Xn = X denote

convergence in probability. In what follows, Section 2 studies Gibbs sampler, Section 3 the
Stochastic Localization Sampler, both under warm start and posterior contraction assump-
tions. These statistical assumptions are justified in Section 4 for the particular quasi-likelihood
posterior with continuous spike-and-slab prior that we focus on in this work.

2. (Scalable) Gibbs Sampler. In this section, we (1) give Gibbs update and efficient
implementation for point-mass-like spike-and-slab priors, along with its random design ana-
logue for Gaussian design matrix; (2) provide mixing guarantee from a warm start. We also
highlight the bottleneck for Gibbs-based samplers for this class of posteriors.

2.1. Point-mass-like Spike-and-Slab. A popular approach of conducting Bayesian vari-
able selection in the regime p≫ n is through setting up a hierarchical model: for linear model
y = Xβ + ϵ with ϵ ∼ N (0, σ2In) for σ2 the noise variance (inverse Gamma distribution on
σ2 is sometimes considered but we will assume that it’s known here) and the sparsity prior
zj ∼ Bern(q) where βj |zj ∼ zjN (0, τ21 ) + (1− zj)δ0(βj) for all j ∈ [p], the joint posterior is

π(β, z|y) ∝ N (y;Xβ, σ2In)

p∏
j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)δ0(βj))
1−zj .

The Gibbs update, which relies on the availability of conditional probabilities, becomes

π(β|z, y) ∝ N (y;Xβ, σ2)

p∏
j=1

(δ0(βj))
1−zj · (N (βj ; 0, τ

2
1 ))

zj

∝ exp

(
− 1

2σ2
(β⊤X⊤Xβ − 2β⊤X⊤y)− β⊤D(

zj
2τ21

)β

) p∏
j=1

(δ0(βj))
1−zj

∼ N (β̄; Σ−1X̄⊤y, σ2Σ−1)

p∏
j=1

(δ0(βj))
1−zj



4 Q. JIANG

for Σ(z) = X̄⊤X̄ + 2σ2D(
zj
2τ21

), where X̄ denotes the n× ∥z∥0 sub-matrix with zj = 1, β̄ the

subvector with active coordinates, and D(·) a ∥z∥0×∥z∥0 diagonal matrix with the indicated
components. In other words,

(2.1) π(β|z, y) ∼ N
(
β̄; (X̄⊤X̄ +

σ2

τ21
I)−1X̄⊤y, σ2(X̄⊤X̄ +

σ2

τ21
I)−1

)
⊗

p∏
j=1

(δ0(βj))
1−zj

where δ0(βj) denotes Dirac delta, i.e., βj = 0 if zj = 0. The conditional distribution for z is

π(z|β, y) ∝
p∏

j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)δ0(βj))
1−zj

∼
p∏

j=1

Bern

(
zj ;

qN (βj ; 0, τ
2
1 )

(1− q)δ0(βj) + qN (βj ; 0, τ21 )

)
(2.2)

which suggests zj = 0 if βj = 0 and zj = 1 if βj ̸= 0. It might be tempting to conclude that
this is computationally favorable as (2.1) involves inversion of a lower-dimensional matrix,
as opposed to a continuous prior of the form βj |zj ∼ zjN (0, τ21 ) + (1 − zj)N (0, τ20 ), that
necessarily requires matrix inversion of size p × p. However, the updates (2.1)-(2.2) in fact
lead to a non-convergent / reducible Markov chain, i.e., the chain gets stuck whenever it
generates βj = 0, although statistically the posterior on β contracts at the near minimax-
optimal rate for the recovery of β∗. For example for a related prior where β1, . . . , βp are
i.i.d from (1 − r)δ0 + rLaplace, and r ∼ Beta(1, pu) hyper prior with u > 1, the important
work of [7] showed under kn-sparse compatibility assumption on the design matrix for the
high-dimensional setting p > n, uniformly over kn-sparse signals,

(2.3) sup
∥β∗∥0≤kn

Eβ∗

[
πn(β : ∥β − β∗∥1 ≳ kn

√
log p/∥X∥ | yn)

]
n→∞−−−→ 0 .

Note this is a remarkably strong statement about the complete posterior π(·|y), which is a
random measure over β for any fixed β∗, and not just aspect of it such as the posterior mode
/ mean as

sup
∥β∗∥0≤kn

Eβ∗

[∥∥∥∥∫ βπ(β | yn) dβ − β∗
∥∥∥∥2
]
≲ 2kn log(p/kn) ,

which the Lasso estimator β̂Lasso also verify with an appropriate choice of λ. Above kn →∞
is permitted as n→∞.

For this reason, computational strategies involving exact-sparsity inducing priors resort to
Add-Delete-Swap or shotgun stochastic search [15], which integrate out the regression coeffi-
cients from the posterior (i.e., design samplers based on P(z|y) over {0, 1}p), but falls short of
solving both the variable selection (z) and parameter estimation (β) problems simultaneously.
On the other hand, Gibbs can handle spike-and-slab prior with continuous support effortlessly,
that doesn’t have this trans-dimensionality problem, but inversion of a p × p matrix renders
the sampling procedure expensive. The quasi-likelihood approach below, which is a variant of
the classical formulation (1.1), provides a middle ground that balance between the desirable
statistical performance and computational convenience, as we will elaborate.
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Proposition 2.1. The sparsified likelihood [1] that has posterior (with τ1 ≫ τ0)

(2.4) π(β, z|y) ∝ N (y;Xzβz, σ
2In)

p∏
j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)N (βj ; 0, τ
2
0 ))

1−zj

targets a different posterior than Skinny Gibbs [18], but can also be sampled using Gibbs with
a reduced-dimensional matrix inversion operation at each iteration.

Proof. For the posterior with quasi-likelihood, we alternate between

π(β|z, y) ∝ exp

(
− 1

2σ2
(β̄⊤X̄⊤X̄β̄ − 2β̄⊤X̄⊤y)− β̄⊤D(

1

2τ21
)β̄

) p∏
j=1

(N (βj ; 0, τ
2
0 ))

1−zj

∼ N (βz; Σ
−1X̄⊤y, σ2Σ−1)

p∏
j=1

(N (βj ; 0, τ
2
0 ))

1−zj(2.5)

where Σ(z) = X̄⊤X̄ + 2σ2D(
zj
2τ21

) and for each j ∈ [p] sequentially

π(zj |β, y, z−j) ∝
p∏

j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)N (βj ; 0, τ
2
0 ))

1−zjN (y;Xzβz, σ
2)

∝ ((1− q)N (βj ; 0, τ
2
0 ))

1−zj · qzj ×N (βz; Σ
−1X̄⊤y, σ2Σ−1)

∼ Bern

(
zj ;

qN (βz; Σ
−1X̄⊤y, σ2Σ−1)

(1− q)N (βj ; 0, τ20 ) + qN (βz; Σ−1X̄⊤y, σ2Σ−1)

)
(2.6)

which although is still Bernoulli, is no longer independent across coordinates, and the update
for zj depends on not just βj . In (2.6), the normal distribution in the numerator involves
setting zj = 1 and the rest as the conditioned z\j at the current iteration. Another way to
write the update for zj conditional on the rest is

Qj :=
π(zj = 1|β, y, z−j)

π(zj = 0|β, y, z−j)
=

q

1− q

τ0
τ1
×

exp[−(βz − (X̄⊤X̄ + σ2

τ21
I)−1X̄⊤y)⊤ 1

2σ2 (X̄
⊤X̄ + σ2

τ21
I)(βz − (X̄⊤X̄ + σ2

τ21
I)−1X̄⊤y)]

exp(−β2
j /2τ

2
0 )

∝ q

1− q

τ0
τ1

exp[− 1
2σ2β

⊤
z (X̄

⊤X̄ + σ2

τ21
I)βz +

1
σ2 y

⊤X̄βz]

exp(−β2
j /2τ

2
0 )

∝ q

1− q

τ0
τ1

exp(−β2
j (1/2τ

2
1 + (X⊤X)jj/2σ

2))

exp(−β2
j /2τ

2
0 )

exp(− 1

σ2
βjX

⊤
j X̄\jβz,\j +

1

σ2
βjX

⊤
j y)

=: Πj · exp(−β2
j (X

⊤X)jj/2σ
2)

where X̄\j denotes the submatrix corresponding to the components of z\j such that zk = 1.
Note that Qj doesn’t depend on zj .
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This is slightly different from Skinny Gibbs update, which approximate the covariance
matrix (ignoring cross-correlation between active X̄ and inactive X̄c components)[

X̄⊤X̄ + σ2

τ21
I X̄⊤X̄c

X̄⊤
c X̄ X̄⊤

c X̄c +
σ2

τ20
I

]
with

[
X̄⊤X̄ + σ2

τ21
I 0

0 Diag(X̄⊤
c X̄c) +

σ2

τ20
I

]

therefore the update for βj for which zj = 0, although independent across coordinates, would
involve Diag(X̄⊤

c X̄c) for the inactive components (but the update for the active components
are the same as (2.5)), and the update for zj in this case can be shown to be Πj (c.f. (3.12)
in [25]). However Skinny Gibbs posterior [18] still enjoys strong model selection consistency
property π(z = z∗|y)→ 1 asymptotically, as pn > n both grow at a proportional ratio.

Remark 2.2. One might also consider a Hogwild asynchronous style update with all zj
drawn in parallel, using the latest z in the shared memory with possible overwriting, although
it seems hard to characterize the error introduced by this approximate MCMC scheme. If all
the updates use the z from the previous iteration, it amounts to assuming that the zj ’s are
independent.

We’d like to mention that a Metropolized-Gibbs strategy with an accept/reject implemen-
tation for the {zj}pj=1 update on (2.4) was proposed in [1], but we find the algorithm above
somewhat more natural.

Remark 2.3. Such Gibbs update based on sparsified-likelihood can also be generalized to
spike/slab distributions that admit representation as a scale-mixture of normals: for example
in the case when G0/G1 is Laplace, one could write for λ > 0

λ

2
e−λ|β| =

∫ ∞

0

1√
2πs

e−
β2

2s
λ2

2
e−λ2s/2 ds,

which is equivalent to having β|s ∼ N (0,
√
s), s ∼ Laplace(λ2), and one can alternate between

updating β, z, s; the conditional distribution of s will be an inverse-Gamma in this case.

2.1.1. Practical Matters. The update given in Proposition 2.1 requires drawing samples
from a multivariate Gaussian with covariance matrix that involves inversion of a ∥z∥0 × ∥z∥0
matrix (since the posterior is concentrated on sparse z’s as we will show in Subsection 4.2,
one can expect ∥z∥0 ≪ p). This is the more expensive step among (2.5)-(2.6). Building on
the work of [5, 4], data augmentation and pre-computation can be used to improve the (2.5)
step as follows, which cost O(max{n2∥z∥0, n3}) since forming the matrix takes O(n2∥z∥0) and
inverting takes O(n3).

Algorithm 2.1 Sample from N (β̄; Σ−1X̄⊤y, σ2Σ−1) for Σ(z) = X̄⊤X̄ + σ2/τ21 ·Dt(z) where
Dt is ∥z∥0 × ∥z∥0 diagonal and X̄ is n× ∥z∥0 consisting of active variables

Sample r ∼ N (0, D−1
t ), ζ ∼ N (0, In)

Set v = X̄r + ζ
Compute u = (In + X̄D−1

t X̄⊤)−1( 1σy − v) =: M−1
t ( 1σy − v)

return β̄ = σ(r +D−1
t X̄⊤u)
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If the number of variables switching states between consecutive iterations is small (i.e.,
∥zt − zt−1∥0 small, either due to sparse z/posterior concentration from Proposition 4.3 or
stable Markov chain), a few more ideas can be used for speeding up Algorithm 2.1:

1. Use the previous Mt ∈ Rn×n as preconditioner and solve the linear system using
conjugate gradient, which only involves matrix-vector product

2. Instead of computing M−1
t from scratch at every step, perform Sherman-Morrison on

the previous matrix Mt−1, since only a few columns are added/deleted
Per-iteration cost aside, due to the curse of dimensionality, blocked updates can also help

with mixing as illustrated by the following example. From Proposition 2.1 we know

π(zj = 1|β, y, z−j)

π(zj = 0|β, y, z−j)
∝

q

1− q

τ0
τ1

exp(−1

2
(1/τ21 − 1/τ20 )β

2
j ) exp(−

1

σ2
βjX

⊤
j X̄\jβz,\j +

1

σ2
βjX

⊤
j y − β2

j (X
⊤X)jj/2σ

2) .

Suppose half of the mass is concentrated on e1 and the rest half evenly distributed among
the remaining 2p − 1 models. We start with e1 + ep (therefore 1 false positive and no false
negatives), for a choice of τ1 > τ0, let us take the first term qτ0/(1 − q)τ1 = o(1) since it is
independent of β, the update reduces to

π(z1 = 1|β, y, z−1)

π(z1 = 0|β, y, z−1)
∼ exp(−1

2
(
1

τ21
− 1

τ20
)β2

1 +
n

2σ2
β2
1)

and for all other j ̸= 1,

π(zj = 1|β, y, z−j)

π(zj = 0|β, y, z−j)
∼ exp(−1

2
(1/τ21 − 1/τ20 )β

2
j −

1

σ2
βjX

⊤
j X̄\jβz,\j +

1

σ2
βjX

⊤
j X1β

∗
1 −nβ2

j /2σ
2)

using y = X1β
∗
1 + σϵ and assuming (X⊤X)jj = n is normalized. Additionally, we assume X1

is orthogonal to all other columns. Under this assumption we have β1 ∼ β∗
1 and β2,...,p ∼ 0

after the first β update (recall it amounts to regressing on the active components and setting
the inactive ones to ∼ 0). Therefore even though z1 will stay 1 and hence active with high
probability, the rest of the z2, . . . , zp will have almost equal probability of staying 0 or 1. The
situation will likely repeat since β2,...,p ∼ 0 will remain. What we can conclude from this
example is that the Gibbs sampler will witness (exponentially) long streaks of updates over
the 2p − 1 null models, followed by occupying the true model e1 for equally long period of
time and be very slow to move in between these two scenarios, since using Proposition 2.1

π(zj = 1|β, y, z−j)

π(zj = 0|β, y, z−j)
∼ q

1− q

τ0
τ1

exp[− 1
2σ2β

⊤
1 (X

⊤
1 X1 +

σ2

τ21
I)β1 +

1
σ2β

∗⊤
1 X⊤

1 X1β1]

exp(−β2
j /2τ

2
0 )

∼ exp[− 1

2σ2
β⊤
1 (X

⊤
1 X1 +

σ2

τ21
I)β1 +

1

σ2
β⊤
1 X

⊤
1 X1β1]

becomes very small for j ̸= 1 when we have identified the true model e1, which means zj will
stay 0 (i.e., inactive) with high probability. On the other hand, blocked updates that do not
adopt a coordinate-by-coordinate strategy will switch between the two half of the time.
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We also point out that while the updates for Gibbs sampler is simple to implement, its
mixing time is not immune to multi-modality. Consider the case when X1 and X2 are strongly
correlated and the posterior puts half of the mass on the model consisting of these two variables
only; and the other half evenly on the rest 2p−2−1+2p−2 = 2p−1−1 models (note that due to
the correlation, either both X1 and X2 are included or not included, assuming the remaining
X\{1,2} are almost orthogonal to them). Such colinearity in the data shows up as coherence of
X (defined in (2.9) below) in the mixing time analysis of the Gibbs sampler. If one initializes
with either z1 = z2 = 1 or z1 = z2 = 0, similar argument as above shows that the Gibbs
update will be very slow moving in between these two cases (even though both make up non-
negligible portion of the posterior 3/4 vs. 1/4) – this is essentially because they form two
separated peaks in the z-space.

2.1.2. Gibbs Mixing Guarantee for Posterior (2.4). We will loosely follow the approach
taken in [2] which assumes that we can initialize from a model z with no false negatives and
at most t false positives. The analysis is based on spectral gaps tailored to (finite) mixture of
log-concave measures and allows one to restrict the study of spectral gaps to sets where most
of the probability mass resides. Define for some s ≥ 0, δ > 0

Es :=
{
π(z ∈ {0, 1}p : z∗ ⊂ z, ∥z∥0 ≤ ∥z∗∥0 + s|y) ≥ 1− 4

p
δ
2
(s+1)

∩ π(z∗|y) ≥ 1/2(2.7)

∩ max
z∗⊂z,∥z∥0≤∥z∗∥0+s

max
j∈[p],j /∈z

|⟨(In + τ21 /σ
2XzX

⊤
z )−1Xj , ϵ⟩| ≤ σ

√
2(s+ 1)n log(p)

}
(2.8)

which is a high probability event over the randomness of the noise ϵ only (X and β∗ are
assumed to be fixed that satisfy certain conditions given below). Moreover, the design matrix
X has coherence for some integer k ≥ 1,

(2.9) C(k) := max
∥z∥0≤k

max
j ̸=i,j /∈z

|X⊤
j (In + τ21 /σ

2XzX
⊤
z )−1Xi| ≥ 0

and restricted eigenvalue that entails X⊤X is strongly convex in certain directions
(2.10)

ω(k) := min
z:∥z∥0≤k

min
∥v∥2=1

{
v⊤X⊤

1−z(In + τ21 /σ
2XzX

⊤
z )−1X1−zv : v ∈ Rp−∥z∥0 , ∥v∥0 ≤ k

}
≥ 0 .

In general smaller C(k) and bigger ω(k) indicate better design, which in some sense capture
the correlation between active and inactive components. Result of [27] suggests posterior
concentration such as (2.7) alone isn’t enough for efficient sampling if one allows arbitrary
initialization, but these are the bare minimum and we will justify the posterior concentration
property for the posterior (2.4) (i.e., the first two conditions in Es) in Subsection 4.2. We
additionally assume β-min condition for the true signal, i.e.,

(2.11) |β∗
z∗,j | ≳ σ

√
log(p)/n, ∥β∗

1−z∗∥2 = 0

above the detection threshold for all active coordinates j, which is unavoidable if an initial-
ization with no false negatives / contraction towards the true support is desired.

Initializing from the support of Lasso can be a viable choice for warm-start. Even in
the frequentist setup, it is popular to consider model selection with Lasso first, followed by
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regressing on the selected subset with (appropriately chosen) coordinated-weighted ℓ1-penalty
(∝ 1/|β̂init,j |) à la Adaptive Lasso [6]. Another possibility is to do a preliminary MCMC run
on the posterior π(z|y) first and hopefully identify the high-probability models.

Lemma 2.4. The last condition in Es holds with high probability and (2.9) is satisfied for
C(k) ≲ k2 log(p), (2.10) is bounded away from 0 for k ∼ n/ log(p) when e.g., the design
matrix Xij ∼ N (0, 1) for n ≳ k log(p). Moreover, with the above scaling of C(k), ω(k) and
(2.11), Lasso has false positives bounded above by O(k), i.e., sparsity level of β∗, and no false
negatives with high probability.

Proof. This is a modification of Lemma 8 and 9 of [2] so we will be brief. Since ϵ ∼
N (0, σ2I), (2.8) simply follows by observing that for Xij ∼ N (0, 1),

max
z∗⊂z,∥z∥0≤∥z∗∥0+s

max
j∈[p],zj=0

∥(In + τ21 /σ
2XzX

⊤
z )−1Xj∥ ≤ max

j
∥Xj∥ ≲

√
n

and the Gaussian deviation inequality. For the condition (2.9) and (2.10), it is known when
n ≳ k log(p), for Gaussian random matrix P(X ∈ H) ≳ 1− 1/p, where

H :=
{
X ∈ Rn×p : ∥Xj∥2 ≍

√
n ∀j ∈ [p], max

j ̸=i
|⟨Xj , Xi⟩| ≲

√
n log(p),

min
∥v∥0≤k,∥v∥2=1

v⊤(X⊤X)v ≳ n
}

therefore we condition on the event H for the rest of the argument. Now Woodbury’s identity
and Cauchy Schwarz together with H give for j ̸= i,

|X⊤
j (In + τ21 /σ

2XzX
⊤
z )−1Xi| = |X⊤

j Xi −X⊤
j Xz(

σ2

τ21
I +X⊤

z Xz)
−1X⊤

z Xi|

≤ |X⊤
j Xi|+

√
X⊤

j Xz(
σ2

τ21
I +X⊤

z Xz)−1X⊤
z Xj

√
X⊤

i Xz(
σ2

τ21
I +X⊤

z Xz)−1X⊤
z Xi

≲
√
n log(p) +

1

n
∥X⊤

j Xz∥∥X⊤
z Xi∥

≲
√
n log(p) +

k
√
n log(p)(k

√
n log(p) + n)

n
≲ k2 log(p)

for Xj /∈ Xz and ∥z∥0 = k and we used n ≳ k log(p). Similarly, for ∥z∥0 ≤ k and supp(v) ⊂
1− z, ∥v∥0 ≤ k, on event H, we have

v⊤X⊤
1−z(In + τ21 /σ

2XzX
⊤
z )−1X1−zv = ∥X1−zv∥2 − v⊤X⊤

1−zXz(
σ2

τ21
I +X⊤

z Xz)
−1X⊤

z X1−zv

≳ n∥v∥2 − ∥X
⊤
z X1−zv∥2

n

≳ n∥v∥2 − kn log(p)

n
∥v∥2 > 0

for n ≳ k log(p). The warm start guarantee of Lasso for Gaussian design under β-min condition
follows from classical results on support recovery [6].
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We will analyze a blocked variant of Gibbs with lazy updates (it is well-known that lazy
version of the Markov chain only slows down the convergence by a constant factor). To
implement, at step k we perform the following updates.

Algorithm 2.2 Blocked Gibbs sampler for posterior (2.4)

Require: βk ∈ Rp, zk ∈ {0, 1}p
Sample o ∼ Bern(1/2)
if o = 1 then

(βk+1, zk+1)← (βk, zk)
else if o = 0 then
Draw βk+1 as in (2.5) using Algorithm 2.1 for the active part, the inactive part corre-
sponding to zk[j] = 0 can be drawn independently
Sample z1,2,3,...,pk+1 |βk+1 ∼ π(z1|βk+1, y)π(z

2|z1, βk+1, y)π(z
3|z1, z2, βk+1, y) · · · where some

marginalizations need to be done analytically, which is possible in this case of linear model
with Gaussian slab

end if
return βk+1, zk+1

Written mathematically, the Markov transition kernel takes the form

K(βk, βk+1) =
∑

zk+1∈{0,1}p
π(zk+1|βk, y)

(
1

2
δβk

(βk+1) +
1

2
π(βk+1|zk+1, y)

)
.

Remark 2.5. The sampling of the zk+1|βk+1 step in Algorithm 2.2 is not particularly cheap,
but our focus is on the mixing property of the Markov chain, and in light of the discussion in
Subsection 2.1.1, blocked updates as studied here only give a stronger guarantee in terms of
mixing (there could generally be more bottlenecks in the chain).

We preface with a lemma before stating our main result for the algorithm above.

Lemma 2.6. The relative density for two models π(z2|y)
π(z1|y) where z1 ⊂ z2 can be shown to be

as (2.12)-(2.13), and given tolerance ζ0 ∈ (0, 1), assuming q/(1− q) ∼ 1/pδ+1 for some δ > 0,
∥Xj∥22 = n ∀j ∈ [p], we have

∥π0Kk − π(β|y)∥TV ≤ 2p(δ+1)t(1 +
τ21 · tn
σ2

)t/2(1− SpecGapζ(K))k/2 + ζ0/
√
2

for ζ =
ζ20
8 p

−2(δ+1)t(1 +
τ21 ·tn
σ2 )−t if we initialize with t false-positives and no false negatives.

Proof. The posterior marginal over finite state space z ∈ {0, 1}p after integrating out
β(z) = [β̄ β̄c] is (this is a special feature of conjugate priors)

π(z|y) ∝ q∥z∥0(1− q)p−∥z∥0×

τ
∥z∥0−p
0

τ
∥z∥0
1

∫
Rp

exp

(
− 1

2σ2
(β̄⊤X̄⊤X̄β̄ − 2β̄⊤X̄⊤y)− β̄⊤D(

1

2τ21
)β̄ − β̄⊤

c D(
1

2τ20
)β̄c

)
dβ
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∝ q∥z∥0(1− q)p−∥z∥0(
τ0
τ1
)∥z∥0(τ20 )

(p−∥z∥0)/2 exp(
1

2σ4 y
⊤X̄( 1

σ2 X̄
⊤X̄ + 1/τ21 · I)−1X̄⊤y)√

det( 1
σ2 X̄⊤X̄ + 1/τ21 · I)

∝ q∥z∥0(1− q)p−∥z∥0(
τ0
τ1
)∥z∥0(τ20 )

(p−∥z∥0)/2 exp(
1

2σ4 y
⊤X̄( 1

σ2 X̄
⊤X̄ + 1/τ21 · I)−1X̄⊤y)√

det(In + τ21 /σ
2X̄X̄⊤)

(τ21 )
∥z∥0/2

∝ (
q

1− q
)∥z∥0(

τ0
τ1
)∥z∥0(

τ1
τ0
)∥z∥0

exp( 1
2σ4 y

⊤X̄(τ21 · I − τ41 X̄
⊤(σ2I + τ21 X̄X̄⊤)−1X̄)X̄⊤y)√

det(In + τ21 /σ
2X̄X̄⊤)

∝ (
q

1− q
)∥z∥0

exp(− 1
2σ2 y

⊤(In + τ21 /σ
2XzX

⊤
z )−1y)√

det(In + τ21 /σ
2XzX⊤

z )

where we used (1) Gaussian integral
∫
Rk exp(−1

2x
⊤Σ−1x)dx = (2π)k/2 det(Σ)1/2 and comple-

tion of squares; (2) matrix determinant lemma det(A+UV ⊤) = det(A) det(I+V ⊤A−1U); (3)
Woodbury identity (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 and the fact that

y⊤(X̄X̄⊤ − τ21 X̄X̄⊤(σ2I + τ21 X̄X̄⊤)−1X̄X̄⊤)y

= σ2y⊤X̄X̄⊤(σ2I + τ21 X̄X̄⊤)−1y = σ2y⊤X̄(τ21 X̄
⊤X̄ + σ2I)−1X̄⊤y

=
σ2

τ21
y⊤(I − σ2(σ2I + τ21 X̄X̄⊤)−1)y

for the last step. Now if we want to look at the change in posterior for two models z1 and z2
where z1 ⊂ z2, since both numerator and denominator involve

In + τ21 /σ
2Xz2X

⊤
z2 = In + τ21 /σ

2Xz1X
⊤
z1 + τ21 /σ

2
∑

j : z1,j=0,z2,j=1

XjX
⊤
j ,

matrix determinant lemma and Woodbury identity will again let us compute the ratio

π(z2|y)
π(z1|y)

= (
q

1− q
)∥z2∥0−∥z1∥0 × 1√

det(I +
τ21
σ2X

⊤
z2−z1A

−1Xz2−z1)

(2.12)

× exp

(
1

2σ2
y⊤A−1Xz2−z1(

σ2

τ21
I +X⊤

z2−z1A
−1Xz2−z1)

−1X⊤
z2−z1A

−1y

)
,(2.13)

where A = In + τ21 /σ
2Xz1X

⊤
z1 ⪰ In and Xz2−z1 denotes columns of X for which z1,j = 0 and

z2,j = 1. Let us denote the initial model as z0, and define

f0(β) :=
π(β|z0, y)
π(β|y)

≤ 1

π(z0|y)
≤ 2π(z∗|y)

π(z0|y)

since π(z∗|y) ≥ 1/2 on the event Es. This implies using (2.12)-(2.13) that since z∗ ⊂ z0,
denoting the number of initial false positives as t, and using the assumptions

∥f0∥π,∞ := ess sup |f0(β)| w.r.t π(dβ)

≤ 2p(δ+1)t

√
det(It +

τ21
σ2

X⊤
z0−z∗A

−1Xz0−z∗) ≤ 2p(δ+1)t(1 +
τ21 · tn
σ2

)t/2 .
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Using Lemma 1 from [2] we have for all iterations k ≥ 1 and initial π0(dβ) = π(β|z0, y),

∥π0Kk − π(β|y)∥2TV

≤ max

{∫
|f0(β)−

∫
f0(β)π(dβ)|2π(dβ), ζ∥f0∥2π,∞

}
(1− SpecGapζ(K))k + ζ∥f0∥2π,∞

≤ ∥f0∥2π,∞(1− SpecGapζ(K))k + ζ20/2

if setting ζ =
ζ20
8 p

−2(δ+1)t(1 +
τ21 ·tn
σ2 )−t for some ζ0 ∈ (0, 1) the desired accuracy.

With these preparations, it only remains to bound the approximate spectral gap from
Lemma 2.6 to conclude, for which we leverage the framework developed in [2]. At a high level it
states that if when constrained on a subset of models z̄ where the posterior mass concentrates,
the marginal densities π(β|z1, y), π(β|z2, y) overlap sufficiently for z1, z2 on this set that are
somewhat close to each other, ζ-spectral gap can be much larger than the classically defined
spectral gap without such a restriction (hence tighter resulting bounds).

Assumption 2.7. We assume for some δ > 0, q/(1 − q) ∼ 1/pδ+1, τ1 ∼ σp/
√
n, τ0 ∼

σ/
√
n, ∥Xj∥22 = n for all j ∈ [p]. Throughout the paper we consider q ∈ (0, 1) to be fixed, i.e.,

non-data-adaptive as opposed to empirical Bayes approaches in the literature.

Proposition 2.8 (Convergence Rate for Gibbs Sampler). Under the event Es, condition
(2.9),(2.10),(2.11), Assumption 2.7 and warm start with number of false positives t ≥ 0
bounded above as

(
1

p
)2(1+δ)t(

1

1 + tp2
)t ≥ 20

p
δ
2
(s+1)ζ20

,

after

k ≳ (s+ 1)p(1+δ)t(1 + tp2)t/2 exp

(
ns2

σ2
η2 +

2
√
n log(p)

σ
η +

n

2σ2
η2

)
log

(
1

ζ0

)
steps of Algorithm 2.2, we have ∥π0Kk − π(β|y)∥TV ≤ ζ0. In particular, if s = 0, δ = 1, the
iteration complexity is

k ≳ p2t(1 + tp2)t/2 exp

(( √
n√

ω(k)
∨ n2

ω2(k)

)
log(p) +

(
kC(k)
ω(k)

∨ k2C2(k)
ω2(k)

)
log(p)

)
log

(
1

ζ0

)
.

Each iteration implemented with Algorithm 2.1 costs at least O(max{n2k, n3}).

Proof. On the event Es, we have that the posterior puts at least 1− ζ
10 = 1− ζ20

80p
−2(δ+1)t(1+

τ21 ·tn
σ2 )−t fraction of the mass on the set

(2.14) π(z ∈ {0, 1}p : z∗ ⊂ z, ∥z∥0 ≤ ∥z∗∥0 + s|y) ≥ 1− 4

p
δ
2
(s+1)

if picking the initial false positives t small enough such that given s ≥ 0, ζ0 ∈ (0, 1), δ > 0

(2.15) (
1

p
)2(1+δ)t(

1

1 + tτ21n/σ
2
)t ≥ 20

p
δ
2
(s+1)ζ20

,
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so the statement of Theorem 3 from [2] applies (picking m = ∞, Bi = Rp) and we need to
find κ > 0 such that ∀z1, z2 belonging to the set (2.14) = I0 that differs in 1 element (so both
z1, z2 have at most s false positives),

(2.16)

∫
Rp

min{π(β|z1, y), π(β|z2, y)}dβ ≥ κ .

Suppose w.l.o.g z1 ⊂ z2 where z1,j = 0 and z2,j = 1, using Lemma 2.6, (2.4) we have for
A = In + τ21 /σ

2Xz1X
⊤
z1 ⪰ In and under Assumption 2.7,

π(β|z1, y)
π(β|z2, y)

=
π(β, z1|y)
π(z1|y)

π(z2|y)
π(β, z2|y)

=
q

1− q

1√
1 +

τ21
σ2X

⊤
j A−1Xj

exp

 1

2σ2

(y⊤A−1Xj)
2

σ2

τ21
+X⊤

j A−1Xj

 1− q

q

τ1
τ0

exp(
β2
j

2
(1/τ21 − 1/τ20 ))

× exp

(
− 1

σ2
y⊤Xjβj +

n

2σ2
β2
j +

βjX
⊤
j Xz1βz1
σ2

)

≥ p√
1 +

τ21
σ2n

exp

 1

2σ2

(y⊤A−1Xj)
2

σ2

τ21
+X⊤

j A−1Xj

−
β2
j

2

1

τ20
+

βjX
⊤
j (Xz1βz1 − y)

σ2


≥ exp

(
− n

2σ2
β2
j −
|βjX⊤

j (Xz1βz1 − y)|
σ2

)
.

Since both z1, z2 contain z∗, it must be the case j /∈ z∗ = supp(β∗) with |supp(β∗)| = k, and
as Xj is not part of z1, under event Es and Assumption 2.7,

1

σ2
|βjX⊤

j (Xβ∗ + ϵ−Xz1βz1)|

≤ 1

σ2
(|βjX⊤

j Xsβs|+ |βjX⊤
j ϵ|)

≤ ns

σ2
|βj |∥βs∥1 +

2

σ
|βj |
√
n log(p)

where Xs is the n-by-at-most-s matrix composed of columns of X that are in the z1 model
(and therefore z2) but not in z∗ (these are false positives). Now take any j that is not in z∗

but is in z2, we know from Proposition 2.1 the marginal distribution π(βj |z2, y) is Gaussian
with absolute value of the mean bounded as (using the definition of (2.9),(2.10))∣∣∣∣∣∣e⊤1

[
X⊤

j Xj + σ2/τ21 X⊤
j Xz2\j

X⊤
z2\jXj X⊤

z2\jXz2\j + σ2/τ21 · I

]−1 [
X⊤

j y

X⊤
z2\jy

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
X⊤

j y −X⊤
j Xz2\j(X

⊤
z2\jXz2\j + σ2/τ21 · I)−1X⊤

z2\jy

σ2

τ21
+X⊤

j (I + τ21 /σ
2 ·Xz2\jX

⊤
z2\j)

−1Xj

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
X⊤

j (I + τ21 /σ
2 ·Xz2\jX

⊤
z2\j)

−1(Xβ∗ + ϵ)

σ2

τ21
+X⊤

j (I + τ21 /σ
2 ·Xz2\jX

⊤
z2\j)

−1Xj

∣∣∣∣∣∣ ≤ σ
√

2(s+ 1)n log(p) + ∥β∗∥1C(k + s)

ω(k + s)

by Hölder and triangle inequality and variance

σ2[(X⊤
z2Xz2 + σ2/τ21 I)

−1]jj

=
σ2

X⊤
j Xj +

σ2

τ21
−X⊤

j Xz2\j(X
⊤
z2\jXz2\j + σ2/τ21 · I)−1X⊤

z2\jXj

=
σ2

σ2

τ21
+X⊤

j (I + τ21 /σ
2 ·Xz2\jX

⊤
z2\j)

−1Xj

≤ σ2

ω(k + s)

where we used matrix block inversion and Woodbury identity. Noting that since these two
expressions are independent of the choice of j, which in particular means that the upper bound
holds for any such j, we can write βj = µj + σjz for z ∼ N (0, 1), and∫

Rp

min{π(β|z1, y), π(β|z2, y)}dβ = Eπ(β|z2,y)

[
min{π(β|z1, y)

π(β|z2, y)
, 1}
]

≥ Eβs

[
Eβj

[
exp

(
− n

2σ2
β2
j −

ns

σ2
|βj |∥βs∥1 −

2

σ
|βj |
√
n log(p)

)
|βs
]]

≥ 1

2
Eβs

[
exp

(
−ns

σ2
(|uj |+ σj)∥βs∥1 −

2
√
n log(p)

σ
(|uj |+ σj)−

n

2σ2
(|uj |+ σj)

2

)]

≥ 1

2
exp

(
−ns

σ2
(|uj |+ σj)E[∥βs∥1]−

2
√
n log(p)

σ
(|uj |+ σj)−

n

2σ2
(|uj |+ σj)

2

)

≥ 1

2
exp

(
−ns2

σ2
η2 −

2
√
n log(p)

σ
η − n

2σ2
η2

)

where we used that (1) for any non-negative function g, E[g(z)] ≥ P(|z| ≤ 1)minz:|z|≤1 g(z);
(2) Jensen’s inequality; (3) for any coordinate j of βs,

E[|βs[j]|] ≤
√

E[βs[j]2] ≤

√√√√ σ2

ω(k + s)
+

(
σ
√
2(s+ 1)n log(p) + ∥β∗∥1C(k + s)

ω(k + s)

)2

≤ σ√
ω(k + s)

+
σ
√
2(s+ 1)n log(p) + ∥β∗∥1C(k + s)

ω(k + s)
=: η ,

(4) it holds that |µj |+ σj ≤ η. Therefore one can invoke Theorem 3 with

κ =
1

2
exp

(
−ns2

σ2
η2 −

2
√
n log(p)

σ
η − n

2σ2
η2

)
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for (2.16). Using that the diameter of the graph constructed on I0 (where z1, z2 ∈ I0 differing
in 1 element) is bounded above by 2s, we reach

SpecGapζ(K) ≥ κ

4s
min

z:z∗⊂z,∥z∥0≤∥z∗∥0+s
π(z|y)

≳
1

sζ0pδ(s+1)/4
exp

(
−ns2

σ2
η2 −

2
√
n log(p)

σ
η − n

2σ2
η2

)

where we used the relative ratio from Lemma 2.6, for any z with at most s false positives,

π(z|y) ≥ 1

2

π(z|y)
π(z∗|y)

≥ 1

2ps(δ+1)
(1 +

τ21ns

σ2
)−s/2 ≥ 1

2ps(δ+1)
(1 + p2s)−s/2 ≳ p−

δ(s+1)
4 ζ−1

0 .

Putting together with Lemma 2.6 and (2.15) now yields ∥π0Kk − π(β|y)∥TV ≤ ζ0 when

k ≳ (s+ 1)ζ0p
δ(s+1)

4 exp

(
ns2

σ2
η2 +

2
√

n log(p)

σ
η +

n

2σ2
η2

)
log

(
p(δ+1)t(1 + p2t)t/2

ζ0

)

≳ (s+ 1)p(1+δ)t(1 + tp2)t/2 exp

(
ns2

σ2
η2 +

2
√
n log(p)

σ
η +

n

2σ2
η2

)
log(

1

ζ0
) ,

where we hide a poly-logarithmic factor in p. In the case of s = 0, δ = 1, the posterior puts
most of the mass on z∗, and we have

k ≳ p2t(1 + tp2)t/2 exp

(( √
n√

ω(k)
∨ n2

ω2(k)

)
log(p) +

(
kC(k)
ω(k)

∨ k2C2(k)
ω2(k)

)
log(p)

)
log(

1

ζ0
) ,

where we used the separation condition on the signal (2.11) to estimate ∥β∗∥1 ≥ kσ
√
log(p)/n.

Proposition 2.8 therefore implies that warm-start (made possible by frequentist estimators)
is one way of getting around the hardness result of [27]. Other than the less-than-ideal scaling
with the number of false positives t (which capture the bottleneck moving in between lower
and higher density regions), we’d like to note the exponential dependence of the mixing time
on the coherence C(k) and restricted eigenvalue parameter ω(k) of the design matrix X –
these won’t be present if not due to spectral gap considerations, and it shows up even with
warm start.

2.2. Spike-and-Slab for Random Design. We consider a slightly different task in this
section where the goal is to sample from a posterior π(β|y) of the following form: given y and
assume Xi,j ∼ N (0, 1) independently,

π(β|y) ∝
∑

z∈{0,1}p

∫
X∈Rn×p

exp(− 1

2σ2
∥y −Xβ∥22)µG(dX) ·

p∏
j=1

((1− q)G0(βj))
1−zj (qG1(βj))

zj

with spike-and-slab prior on the parameter β ∈ Rp. This is closer to random design setup
where y = Xβ + ϵ for both X, y a random sample as opposed to just y, and one could be
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interested in the performance of β̂ ∼ π(β|y) on future pairs of (X, y) from the same model. The
Gaussian i.i.d entry assumption of course hardly holds in practice but it may serve as a good
proxy for some class of design matrix. The posterior, shown below in Lemma 2.9, is only a
function of y (therefore no expensive matrix inversion involved in the algorithm), and if q = 0,
the density only depends on the magnitude ∥β∥ which means that it’s rotationally invariant
(i.e., equal probability over sphere of fixed radius). For q ̸= 0, due to the combinatorial
nature of the mixture it introduces challenge for high-dimensional sampling – näıvely it could
be exponential in p.

Lemma 2.9. The posterior with continuous Gaussian Spike-and-Slab prior under random
design takes the form (with τ1 ≫ τ0)

π(β, z|y) ∝

σn

(∥β∥2 + σ2)n/2
exp(∥y∥2 ∥β∥2

2σ4 + 2σ2∥β∥2
)

p∏
j=1

[
1− q

τ0
exp(−β2

j /2τ
2
0 )]

1−zj · [ q
τ1

exp(−β2
j /2τ

2
1 )]

zj

which is non-log-concave, but it is amenable to Gibbs updates (that is known to be reversible).

Proof. We calculate, since the entries of X are assumed to be independent,∫
X
exp

(
− 1

2σ2
∥y −Xβ∥22

)
µG(dX)

∝
n∏

i=1

[∫
Rp

exp(
1

σ2
yix

⊤
i β −

1

2σ2
β⊤xix

⊤
i β −

1

2
∥xi∥22) dxi

]

=
n∏

i=1

[∫
Rp

exp(
1

σ2
yiβ

⊤xi −
1

2σ2
x⊤i (ββ

⊤ + σ2I)xi) dxi

]

=
n∏

i=1

exp(
1

2σ2
y2i β

⊤(ββ⊤ + σ2I)−1β)×∫
Rp

exp(− 1

2σ2
[xi − yi(ββ

⊤ + σ2I)−1β]⊤(ββ⊤ + σ2I)[xi − yi(ββ
⊤ + σ2I)−1β])dxi

∝
n∏

i=1

exp

(
y2i
2σ2
· 1/σ2∥β∥22
1 + 1/σ2∥β∥22

)√
det(σ2(ββ⊤ + σ2I)−1)

∝
n∏

i=1

exp

(
y2i
2σ2
· 1/σ2 · ∥β∥22
1 + 1/σ2 · ∥β∥22

)
σp√

∥β∥2 + σ2σ(p−1)

where we used Gaussian integral and the Sherman–Morrison formula, as claimed. Gibbs
update alternate between

π(β|z, y) ∝ σn

(∥β∥2 + σ2)n/2
exp(∥y∥2 ∥β∥2

2σ4 + 2σ2∥β∥2
)N (β; 0, D−1)

∝ σn

(∥β∥2 + σ2)n/2
exp(∥y∥2 ∥β∥2

2σ4 + 2σ2∥β∥2
− 1

2
β⊤D(z)β)(2.17)
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where D(z) := Diag(zτ−2
1 + (1p − z)τ−2

0 ) is a positive-definite diagonal matrix, and

π(z|β, y) ∝
p∏

j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)N (βj ; 0, τ
2
0 ))

1−zj

∼
p∏

j=1

Bern

(
zj ;

qN (βj ; 0, τ
2
1 )

qN (βj ; 0, τ21 ) + (1− q)N (βj ; 0, τ20 )

)

=

p∏
j=1

Q
zj
j (1−Qj)

1−zj for Qj =
1

1 + 1−q
q

τ1
τ0

exp(12(1/τ
2
1 − 1/τ20 )β

2
j )

(2.18)

is product of independent Bernoulli’s that can be sampled in parallel.
The marginal over β is not log-concave therefore standard off-the-shelf sampler (e.g.,

Langevin, HMC etc.) doesn’t come with efficiency guarantee, even in continuous time. To see
this, we simply calculate the Hessian for the negative log density in (2.17),

−∇ log π(β|z, y) = n

∥β∥2 + σ2
β − ∥y∥2( 1

σ4 + σ2∥β∥2
− ∥β∥2

(σ3 + σ∥β∥2)2
)β +D(z)β

for some 1
τ21
I ⪯ D(z) ⪯ 1

τ20
I. And

−∇2 log π(β|z, y) =
(

n

∥β∥2 + σ2
− ∥y∥2

σ4 + σ2∥β∥2
+

∥y∥2∥β∥2

(σ3 + σ∥β∥2)2

)
I +D(z)

−
(
2σ∥β∥2∥y∥2 − 2σ3∥y∥2

(σ3 + σ∥β∥2)3
− 2∥y∥2

(σ3 + σ∥β∥2)2
+

2n

(∥β∥2 + σ2)2

)
ββ⊤

which we can see is not always positive semi-definite on the entire domain of β, e.g., for a
counter-example one could consider σ2 ≪ ∥β∥2, ∥y∥2/σ2 ≪ n, τ20 ≫ ∥β∥2/n. Therefore the
posterior π(β|y) in this case is in fact a mixture of non-log-concave measures, unlike the fixed
design case in Proposition 2.1.

2.2.1. Inner Step Implementation of (2.17) for Gibbs. As it turns out target that has a
density with respect to the Gaussian measure is somewhat easy to sample from. Consider the
problem of sampling from the un-normalized density π(x) ∝ f(x)N (0, γI) for f > 0, where
one can think of the prior as being Gaussian, and is performing controlled diffusion/measure
transport from N (0, γI) to π in the space of probability measures. Schrödinger bridge admits
closed-form expression as an SDE if starting at the origin at t = 0. It is known from [26, 21]
that

Qπ := arg min
Q∈Mπ

KL(Q||P )

where Mπ = {Q : Q0 = δ0, Q1 = π} the set of distributions with the two time marginals
pinned at t = 0 and t = 1 end points and P the reference Wiener measure associated with the
process

dXt =
√
γdWt, X0 ∼ δ0 ,
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is governed by an SDE with time-varying Föllmer drift (i.e., depends on both Xt and t, unlike
Langevin):

(2.19) dXt = ∇X logEZ [f(Xt +
√
1− tZ)]dt+

√
γdWt, X0 = 0, t ∈ [0, 1]

for Z ∼ N (0, γI). Using Stein’s lemma (i.e., Gaussian integration by parts) this is the same
as

dXt =
EZ [Z · f(Xt +

√
1− tZ)]√

1− t · EZ [f(Xt +
√
1− tZ)]

dt+
√
γdWt, X0 = 0 .

At t = 1 the backward heat semigroup/convolution kernel of (2.19) localizes, but the crucial
difference from (overdamped) Langevin dynamics is that it reaches target π in finite time,
compared to Langevin that reaches target as t → ∞ in infinite time horizon (but has ar-
bitrary initialization under ergodicity). And without the drift (i.e., the control), one gets
Brownian motion which indeed becomes N (0, γI) at time t = 1. The Fokker-Planck equation
corresponding to the SDE (2.19) is for the drift/control v(x, t) := − logEZ [f(x+

√
1− tZ)]

∂tρt(x) =
γ

2
∆ρt(x) +∇ · (ρt(x)∇v(x, t)) ,

where v(x, t) is also the solution of (2.21).
In continuous time, no convexity assumption on f is needed for convergence, thanks to the

optimal stochastic control interpretation [21]. The general problem of arbitrary endpoints with
general reference measure will involve forward-backward iterative IPFP scheme for reaching a
solution, which amounts to solving a sequence of half-bridge problems, but the particular case
under consideration has a convenient analytical form (2.19). In the case of Wiener measure
as the reference measure, the solution to the Schrödinger bridge problem is also intimately
connected to the entropy-regularized optimal transport (with quadratic cost) between the two
time marginals, through the disintegration theorem [11].

The following is a sanity check that discretization of the SDE is stable for the particular
choice of f as demanded by Lemma 2.9, therefore one could hope to simply implement the
inner step (2.17) of the Gibbs sampler via e.g., Euler-Maruyama discretization:

(2.20) Xk+1 = Xk + h
1
S

∑S
i=1 vi · f(Xk +

√
1− khvi)√

1− kh · 1S
∑S

i=1 f(Xk +
√
1− khvi)

+
√

γhZk, X0 = 0

for vi ∼ N (0, γI) and Zk ∼ N (0, I) independent. Putting things together gives the following
algorithm at iteration k.

Algorithm 2.3 Gibbs Sampler for Random Design Spike-and-Slab

Require: βk ∈ Rp, zk ∈ {0, 1}p
for j = 1 to p do
Sample zjk+1 ∼ Bern(Qj) for Qj = (1 + 1−q

q
τ1
τ0

exp(12(1/τ
2
1 − 1/τ20 )βk[j]

2))−1 in parallel
end for
Draw βk+1 by running 1/h steps of (2.20) for f(·) defined in Lemma 2.10 where D(zk+1) =
Diag(zk+1τ

−2
1 + (1p − zk+1)τ

−2
0 )

return βk+1, zk+1
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Lemma 2.10. Between t ∈ (0, 1), for any n > 2 and σ > 0

f(βt) =
σn

(∥βt∥2 + σ2)n/2
exp(∥y∥2 ∥βt∥2

2σ4 + 2σ2∥βt∥2
− 1

2
β⊤
t D(z)βt +

1

2γ
∥βt∥2)

and the drift b(βt, t) := ∇β logEZ∼N (0,γI)[f(βt+
√
1− tZ)] is Lipschitz in βt, assuming 1

τ21
I ⪯

D(z) ⪯ 1
τ20
I and γ > τ20 .

Proof. The goal is to show that ∥b(β1
t , t)− b(β2

t , t)∥ ≤ C∥β1
t −β2

t ∥ ∀β1
t , β

2
t , or equivalently,

∥∇βb(βt, t)∥op ≤ C, for any t ∈ (0, 1). We will need the following fact: if f(βt) > 0 is L-
Lipschitz, the convolved quantity g(βt) := EZ [f(βt +

√
1− tZ)] > 0 will be Lipschitz and

smooth. To see this, denote the Gaussian density with covariance γ · I as uγ , since

g(βt) =

∫
f(βt +

√
1− ty)uγ(y)dy =

∫
f(βt − y)u(1−t)γ(y)dy = f ∗ u(1−t)γ

is a positively-weighted linear combination of shifted f , it is clear that it will also be L-
Lipschitz. Now for the smoothness claim ∥∇2g(βt)∥op ≤ L/

√
(1− t)γ, we compute since

∥∇f∥ ≤ L, for any ∥v∥ = 1,

|v⊤∇2g(βt)v| = |v⊤(∇f ∗ ∇u(1−t)γ)v|

= |
∫
(v⊤∇f(y)) · ( y − β

(1− t)γ
)⊤v · u(1−t)γ(β − y) dy|

≤ L√
(1− t)γ

|
∫
(

y − β√
(1− t)γ

)⊤v · u(1−t)γ(β − y) dy|

=
L√

(1− t)γ
Ez∼N (0,1)[|z|] =

L√
(1− t)γ

√
2/π .

This in turn implies that ∥∇βb(βt, t)∥op ≤ ∥∇2g(βt)∥op
g(βt)

+ ∥∇g(βt)∥2
g(βt)2

≤ C since ∥∇2g(β)∥op and

∥∇g(β)∥ is bounded from above and g(β) bounded from below. It remains to check that f is
Lipschitz to conclude. Write f(βt) =

σn

(∥βt∥2+σ2)n/2α where α is shorthand for the exp(·) term,

we have

∥∇f(βt)∥ ≤
ασn∥βt∥

(∥βt∥2 + σ2)n/2

(
∥y∥2

σ4 + σ2∥βt∥2
+

∥βt∥2

(σ3 + σ∥βt∥2)2
− n

∥βt∥2 + σ2

)
+ (

1

γ
−D(z))∥βt∥

and it is easy to see that it is always bounded from above on the domain of β.

Through the optimal control perspective, the value function corresponds to the solution
of a Hamilton-Jacobi-Bellman PDE:

(2.21)
∂

∂t
v(x, t) +

γ

2
∆v(x, t) =

1

2
∥∇v(x, t)∥2 ,

which in turn can be solved with Feynman–Kac, therefore the drift (i.e., optimal control) in
(2.19) can also be written as a conditional expectation: ∇x logE[f(X1)|Xt = x] for (Xt)t∈[0,1]
distributed as the prior Wiener process P [21]. In fact the dynamics can be viewed as Xt =
tβ + Bt for β ∼ π and one reaches target at t = 1 where Bt is the Brownian bridge on [0, 1]
(therefore B0 = B1 = 0) – this is somewhat related to the stochastic localization dynamics
(3.1), which we turn to in Section 3.
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Remark 2.11. The SDE (2.19) also shows up in proximal sampler [10] as part of the
backward heat flow interpretation of the RGO oracle (c.f. Lemma 15/ equation (21) therein),
albeit with different initialization (we are initializing from the origin, while [10] initialize from
a Gaussian-convolved version of the target). The drift essentially comes from time-reversing
which results in the additional score term for the forward process that is drift-free.

2.3. Extension: Spike-and-Slab Logistic Regression. While the preceding results per-
tain only to linear regression, we sketch its possible applicability to some GLMs via data
augmentation technique. In the case of logistic regression for example, ∀i ∈ [n], yi ∈ {0, 1}
with sparse β∗,

yi|xi, β ∼ Bern

(
exp(x⊤i β)

1 + exp(x⊤i β)

)
where xi is the i-th row of the matrix X. Through the introduction of the auxiliary vari-
able ωi, one can write the quasi-likelihood as (note the resemblance to linear model after
transformation)

P(yi = 1|ωi, z, β) =
1√
2
exp

(
(yi −

1

2
)(x⊤i,zβz)−

ωi

2
(x⊤i,zβz)

2

)
for ωi ∼ PG(1, 0) the Pólya-Gamma distribution, which admits efficient sampling algorithm
[20]. This step relies on the essential integral identity that holds for all a ∈ R:

(eϕ)a

1 + eϕ
=

1

2
e(a−1/2)ϕ

∫ ∞

0
exp(−ωϕ2/2)p(ω)dω ,

where p(ω) is the pdf for PG(1, 0). Assuming a continuous Gaussian spike-and-slab prior on
the parameter β, the Bayesian logistic regression with spike and slab prior has posterior that
can be sampled with Gibbs by alternating between

π(β|z, y, ω) ∝ exp

(
−1

2
(β̄⊤X̄⊤D(ω)X̄β̄ − β̄⊤X̄⊤(y − 1

2
)− β̄⊤D(

1

2τ21
)β̄

) p∏
j=1

(N (βj ; 0, τ
2
0 ))

1−zj

∼ N (β̄; Σ−1X̄⊤(y − 1

2
),Σ−1)

p∏
j=1

(N (βj ; 0, τ
2
0 ))

1−zj(2.22)

where Σ(z) = X̄⊤D(ω)X̄ + 2D(
zj
2τ21

) and for each i ∈ [n] in parallel

(2.23) π(ωi|β, z, y) ∼ PG(1, x⊤i,zβz)

and for each j ∈ [p] sequentially

π(zj |β, y, z−j , ω) ∝
p∏

j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)N (βj ; 0, τ
2
0 ))

1−zjN

(
y − 1

2

ω
;Xzβz, D(

1

ωi
)

)
∝ (qN (βj ; 0, τ

2
1 ))

zj · ((1− q))1−zj ×N (βz; Σ
−1X̄⊤(y − 1/2),Σ−1)
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∼ Bern

(
zj ;

qN (βz; Σ
−1X̄⊤(y − 1/2),Σ−1)

(1− q)N (βj ; 0, τ20 ) + qN (βz; Σ−1X̄⊤(y − 1/2),Σ−1)

)
(2.24)

where we used completion of squares at various places. The most expensive step of the update
is (2.22), for which one can re-use similar tricks from Subsection 2.1.1 for speed-up. We leave
investigation of the mixing along with statistical property of the posterior for future work.

3. Stochastic Localization Sampler. In this section, we study Stochastic Localization
Sampler for (2.4) under similar posterior contraction assumptions with warm start as in Sub-
section 2.1.2. This class of samplers essentially takes a denoising perspective – as we already
saw, computationally sampling from the posterior is harder than statistical estimation in some
sense (even for identifying the support z as illustrated in [27]), but the approach below is not
based on MCMC – therefore not sensitive to spectral gap, isoperemetric constant etc. – and
put the two tasks on equal footing under favorable statistical conditions, at least for some
spike-and-slab models.

3.1. Preliminaries: From Denoising to Sampling. The idea of stochastic localization
came out of the analysis of functional inequalities (i.e., key ingredient behind the solution
to the KLS conjecture [9]) as a proof technique. The work of [13] initiated its algorithmic
use for sampling from the Sherrington-Kirkpatrick Gibbs measure with discrete hypercube
support {±1}n, where approximate message passing (AMP) is used for implementing the mean
estimation step, which we explain below (their guarantee holds with probability 1−on(1) over
input A ∼ GOE(n)). The crucial insight of this method is that the following two processes
have the same law [16, 13] (this is sequential revelation of information)
(3.1)
θt = tβ+Wt, β ∼ π (unknown signal where we know the prior & have Gaussian observation)

which is ideal and un-implementable since we don’t know β, and

(3.2) dθt =

[∫
Rp

β · pt,θt(β)dβ
]
dt+ dWt = E[β|θt = θ]dt+ dWt, θ0 = 0

for which (notice it only depends on the last time point)

(3.3) pt,θt(β) :=
1

Z(t, θt)
exp(θ⊤t β −

t

2
∥β∥2)π(β)

precisely describes the posterior P(β|(θs)0≤s≤t) = P(β|θt = θ) for β under (3.1). Above Z(t, θt)
is a normalizing constant. The measure pt,θt localizes to a Dirac measure δβ for a random
β ∼ π as t→∞ (this can also be seen from (3.1) since the signal part scales as O(t) and the
noise part O(

√
t)). We abbreviate pt,θt as pt below, and let at :=

∫
β · pt(β)dβ that one can

think of as a Bayes optimal estimator.
As Lemma 3.3 below will reveal, Stochastic Localization is evolving a measure pt(β) driven

by Wt that has the martingale property of p0 = π and p∞ = δβ for β ∼ π. The process can
be simulated via a SDE (3.2) which reduces the task of sampling from π to estimating the
denoising drift E[β|θt = θ] – an approximation of this is what we will output at the end after
running it for sufficiently long, and we track the (random) evolving measure for its barycenter
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at. In some sense at every fixed t, the process decomposes π into a mixture of random
measures, i.e., π = Eθt [π(·|θt)], and the variance of the component π(·|θt) decreases as t→∞.

A more general version of (3.3) can take the form pt,θt(β) =
1

Z(t,θt)
exp(θ⊤t β −

∥β∥2Gt
2 )π(β) for

Gt ≻ 0 but we will not pursue such extension here.

Remark 3.1. If π(β) has bounded second moment, a(θt, t) is Lipschitz in θt, since

∥∇θta(θt, t)∥op = ∥E[ββ⊤]− E[β]E[β]⊤∥op ≤ ∥E[ββ⊤]∥op ≤ E[∥β∥2]

will be bounded, where above the expectation is taken with respect to pt,θt(β), which means
the SDE (3.2) has a unique strong solution.

The lemma below gives quantitative convergence rate for (3.2) in continuous time.

Lemma 3.2 (Continuous time SDE convergence). We have after t = 1/ϵ2,

W2(π,Law(at)) = W2(E[pt],Law(at)) ≤
√
pϵ .

Proof. Based on covariance decay we have E[cov(µt)] ⪯ 1
t I for all t > 0 [13], which reflects

the fact that the measure localizes, therefore

E[W 2
2 (pt, δat)] ≤ E[Ept [∥x− at∥2]] ≤

p

t

by the coupling definition of W2 distance and taking trace on both sides. Now since W 2
2 is

convex (this can be seen from the dual formulation which is sup over a set of linear functions),
we can push expectation inside using Jensen’s inequality and concludeW 2

2 (E[pt],Law(at)) ≤
p
t .

Recall E[Ex∼pt [x]] = Ex∼p0 [x] = Ex∼π[x] from the martingale property, hence Law(at)→ p0 =
π as t→∞.

This rate is slower than other SDE-based algorithms, which have exponential convergence
in continuous time under strong convexity, but is nevertheless quite minimal in terms of the
assumptions made. In fact there’s a dynamics one can write for the barycenter as well, if one
can compute the covariance of pt(β). This is a drift-free, diffusion-only SDE with multiplicative
noise, which could make discretization challenging. In this regard (3.2) relies on the mean
and (3.4) relies on the covariance of the tilted measure for implementation.

Lemma 3.3 (Alternative Descriptions). We have the following barycenter representation:

(3.4) dat = At dWt =

[∫
Rp

(β − at)(β − at)
⊤pt,θt(β) dβ

]
dWt

where a∞ ∼ π. And density-valued SDE representation:

(3.5) dpt(β) = pt(β)⟨β − at, dWt⟩ .

Proof. These are known in the context of stochastic localization so we simply refer the
reader to [14] for the proof. As an immediate consequence of the martingale property, which
is evident from (3.5), we have E[

∫
f(β)pt,θt(β)dβ] =

∫
f(β)π(β)dβ remains constant for all

t ≥ 0 for any continuous function f . Therefore if π has bounded mean/second moment, (βt)t
will have similarly bounded mean/second moment in expectation throughout the localization
process.
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The density-valued SDE could potentially be used for an ensemble / interacting particle
system implementation on a fixed grid with δβ1 , δβ2 , . . . , but it will likely require a fine grid for
the localization on the continuous domain that we consider (i.e., exponential in dimension).
We will not explore it here but nevertheless establish its validity: if we start with a probability
distribution p0 =

∑
i p0(βi) = 1, the process will remain a probability measure over the discrete

set since at =
∑

i βipt(βi), for βi ∈ Rp ∀i,

d
∑

i pt(βi)

dt
=
∑
i

pt(βi)⟨βi − at, dWt⟩ = 0⇒
∑
i

pt(βi) = 1 ∀t > 0 .

The time-discretized algorithm for sampling from π using (3.2) is given below. We note that
the algorithm is in some sense gradient-free.

Algorithm 3.1 Stochastic Localization Sampler for π

Require: Blackbox T (θt) that can (approximately) compute
∫
Rp β · pt,θt(β)dβ from (3.3)

Initialize β1 = 0
for k = 1 to K do

βk+1 = βk + hT (βk) +
√
hzk for zk ∼ N (0, I) independent

end for
return T (βK+1)

3.2. Warm-up: Orthogonal Design. In the case of X = I (sequence model), since we
start with a product measure, we end up with another product measure that decouples across
coordinates, which reduces the complexity significantly. With the point-mass spike and slab
prior, the marginal posterior distribution of each coordinate is a mixture of (data-dependent,
weighted) Dirac measure at zero and a continuous convolved density, with the weights signaling
if the parameter has a higher chance coming from the spike or the slab part given the data
and a fixed q:

π(βj |yj , q) = P(zj = 1|yj , q)π(βj |yj , zj = 1) + P(zj = 0|yj , q)π(βj |yj , zj = 0)

=
(1− q)ϕσ(yj)

(1− q)ϕσ(yj) + qh(yj)
δ0(βj) +

qh(yj)

(1− q)ϕσ(yj) + qh(yj)

ϕσ(yj − βj)gτ1(βj)∫
ϕσ(yj − βj)gτ1(βj)dβj

(3.6)

where ϕσ(yj − βj) ∝ e−
1

2σ2 (yj−βj)
2

is the likelihood, h(yj) :=
∫
ϕσ(yj − βj)gτ1(βj)dβj the con-

volution and gτ1(·) the slab prior. For the choice of q ≥ 1/p, a known fact is that the posterior
median behaves similarly as a coordinate-wise hard thresholding estimator with threshold
σ
√
2 log(p), i.e., the max of p independent Gaussians with variance σ2, which capture the

level below which there is no expected signal. It has been recognized since the 90s that
shrinkage estimator can be tuned to attain minimax rates over a wide range of sparsity classes
[12]. The empirical Bayes choice of q can be performed by maximizing the log-marginal q|y
as argmaxq

∑n
j=1 log((1− q)ϕσ(yj) + qh(yj)) but we will not pursue such an extension here.

We remark that sequence model is known to be polynomial-time computable – even with
a hyper-prior on q that renders the coordinates dependent, existing exact method scales as
O(n3) using polynomial multiplication [8] for calculating various posterior point estimators.
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In what follows in this section we assume the data matrix satisfies X⊤X = Ip, n = p, i.e.,
orthogonal, since some salient features of the dynamics can be more easily seen in this simpler
case. Under point-mass spike, by definition, given t, θt, y the mean of the tilted measure is
given by

at(θt, t) =

∫
Rp

β · pt,θt(β) dβ

=
1

Z

∫
Rp

β ·
∑

z∈{0,1}p
eθ

⊤
t β− t∥β∥2

2
− 1

2σ2 ∥y−Xzβz∥22
p∏

j=1

(qN (βj ; 0, τ
2
1 ))

zj · ((1− q)δ0(βj))
1−zj dβ .

Without loss of generality we look at the first coordinate. Let xi denote the i-th column of
the matrix X, for point-mass spike whether we assume quasi-likelihood or exact likelihood
doesn’t affect the calculation in this case. Recall at,1 can be viewed as a denoiser for β∗

1 and
at,1 → δβ∗

1
for some β∗

1 ∼ π as t→∞, which we output.

at,1(θt, t) =

∫
R β1 · exp

(
(θt,1 +

1
σ2 y

⊤x1)β1 − ( t2 + 1
2σ2 )β

2
1

)
[q 1√

2πτ1
e
− β21

2τ21 + (1− q)δ0(β1)] dβ1∫
R exp

(
(θt,1 +

1
σ2 y⊤x1)β1 − ( t2 + 1

2σ2 )β
2
1

)
[q 1√

2πτ1
e
−

β21
2τ21 + (1− q)δ0(β1)] dβ1

=
q 1√

2πτ1

∫
R β1 · exp

(
(θt,1 +

1
σ2 y

⊤x1)β1 − ( t2 + 1
2σ2 + 1

2τ21
)β2

1

)
dβ1

q 1√
2πτ1

∫
R exp

(
(θt,1 +

1
σ2 y⊤x1)β1 − ( t2 + 1

2σ2 + 1
2τ21

)β2
1

)
dβ1 + (1− q)

=
θt,1 +

1
σ2 y

⊤x1

(t+ 1
σ2 + 1

τ21
) + 1−q

q (t+ 1
σ2 + 1

τ21
)3/2τ1 exp(−

(θt,1+
1
σ2 y

⊤x1)2

2(t+ 1
σ2+

1

τ21
)
)

where we used
∫∞
−∞ x exp(−ax2 + bx) dx =

√
πb

2a3/2
exp(b2/4a) and

∫∞
−∞ exp(−ax2 + bx) dx =√

π
a exp(b2/4a) for a > 0. The effect of spike is to introduce shrinkage – in particular if we

look at the denominator, it only becomes prominent when (for q ≥ 1/p)

|θt,1 +
1

σ2
y⊤x1| ≤

√
(t+ 1/σ2 + 1/τ21 ) log(τ

2
1 p

2(t+ 1/σ2 + 1/τ21 )) ,

and in the case X = I, y⊤x1 = y1. For small t, this gives the threshold for |y1| ≲

σ
√
2 log(pτ1/σ); and for large t, this becomes |θt,1| ≲

√
2t log(τ1p

√
t). For the sampling

dynamics
dβt,1 = at,1(βt, t)dt+ dWt ,

we see that initially if |y1| is above the threshold, it behaves almost like a linear SDE with time-

dependent drift
βt,1+

1
σ2 y

⊤x1

t+ 1
σ2+

1

τ21

that can be integrated exactly and βt,1 scales as ∼ t; otherwise

the Brownian motion part will take over and βt,1 roughly scales as ∼
√
t. As t→∞, with all

else holding constant (i.e., for any finite sample size n), the drift

at,1(βt, t) ≈
βt,1 +

1
σ2 y

⊤x1

t+ 1
σ2 + 1

τ21

≈ tβ∗
1 +Wt

t
→ β∗

1 ∼ π1
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if βt,1 ≳
√
t, signaling it will converge to the slab part of the posterior (3.6); otherwise if

βt,1 ≲
√
t,

at,1(βt, t) ≈
βt,1 +

1
σ2 y

⊤x1
1−q
q (t+ 1

σ2 + 1
τ21
)3/2τ1

≈ βt,1

t3/2
→ 0 .

On the other hand, with Gaussian spike and sparsified likelihood (2.4), for τ1 ≫ τ0,

at,1(θt, t) =

∫
β1 · e(θt,1+

1
σ2 y

⊤x1)β1−( t
2
+ 1

2σ2 )β
2
1q 1√

2πτ1
e
− β21

2τ21 dβ1 +
∫
β1 · eθt,1β1− t

2
β2
1 (1− q) 1√

2πτ0
e
− β21

2τ20 dβ1∫
e(θt,1+

1
σ2 y

⊤x1)β1−( t
2
+ 1

2σ2 )β
2
1q 1√

2πτ1
e
−

β21
2τ21 + eθt,1β1− t

2
β2
1 (1− q) 1√

2πτ0
e
−

β21
2τ20 dβ1

=

q
τ1

θt,1+1/σ2y⊤x1

(t+1/σ2+1/τ21 )
3/2 exp(

(θt,1+1/σ2y⊤x1)2

2t+2/σ2+2/τ21
) + 1−q

τ0

θt,1
(t+1/τ20 )

3/2 exp(
θ2t,1

2t+2/τ20
)

q
τ1

1
(t+1/σ2+1/τ21 )

1/2 exp(
(θt,1+1/σ2y⊤x1)2

2t+2/σ2+2/τ21
) + 1−q

τ0
1

(t+1/τ20 )
1/2 exp(

θ2t,1
2t+2/τ20

)

=
θt,1 + 1/σ2y⊤x1

(t+ 1/σ2 + 1/τ21 ) +
1−q
q

τ1
τ0

(t+1/σ2+1/τ21 )
3/2√

t+1/τ20
exp(

θ2t,1
2t+2/τ20

− (θt,1+1/σ2y⊤x1)2

2t+2/σ2+2/τ21
)

+
θt,1

(t+ 1/τ20 ) +
q

1−q
τ0
τ1

(t+1/τ20 )
3/2√

t+1/σ2+1/τ21
exp(

(θt,1+1/σ2y⊤x1)2

2t+2/σ2+2/τ21
− θ2t,1

2t+2/τ20
)
.

Therefore as t→∞, with all else holding constant (i.e., for any finite sample size n), one of the

above two terms will go to
θt,1

exp(t) =
tβ∗

1+Wt

exp(t) → 0 and the other go to
θt,1
t =

tβ∗
1+Wt

t → β∗
1 ∼ π1,

depending on whether

(θt,1 + 1/σ2y⊤x1)
2

t+ 1/σ2 + 1/τ21
≶

θ2t,1
t+ 1/τ20

,

if θt,1 ≳
√
t, which is the only possibility since the posterior π puts zero mass at 0 exactly (with

the first δ0(βj) term from (3.6) replaced by another convolved density ϕσ(yj − βj)gτ0(βj)).
Consequently, continuous spike-and-slab priors yield non-sparse posterior point estimators
that require thresholding for variable selection, and the alternative of selection based on
P(z|y) can be expensive generally.

For some intuition on the time discretization of the SDE, take the point-mass spike-and-
slab for example, since π is sub-Gaussian (therefore Novikov’s condition holds with a very
similar argument as below), using Girsanov’s theorem, and consider the two SDEs:

dβt = a(βt, t)dt+ dWt, same as (3.2)

dβ̂t = a(β̂kh, kh)dt+ dWt, for t ∈ [kh, (k + 1)h] an interpolation of discrete update (3.11)

where (βt)t ∼ Q, (β̂t)t ∼ P are two path measures, and one can obtain with the data processing
inequality,

KL(πKh||µKh) ≤ KL(QKh||PKh)
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≲
K∑
k=1

∫ (k+1)h

kh
EQ[∥a(βt, t)− a(βkh, kh)∥2]dt

≲ L(σ, h, τ0, τ1, y)

K∑
k=1

∫ (k+1)h

kh
EQ[∥βt − βkh∥2]dt

≲ L(σ, h, τ0, τ1, y)
K∑
k=1

∫ (k+1)h

kh
[(t− kh)2EQ[∥a(βt, t)∥2] + 2d(t− kh)]dt

which means if h and K are sufficiently small, since using Jensen’s inequality, the drift

EQ[∥a(βt, t)∥2] = EQ[∥
∫

βpt,θt(β)dβ∥2] ≤ EQ[

∫
∥β∥2pt,θt(β)dβ] =

∫
∥β∥2π(β)dβ <∞

along the dynamics as shown in Lemma 3.3, the two processes will be close to each other in
law. Above L is a constant depending on σ, h, τ0, τ1, y since each coordinate aj(βt, t) can be
written as for some c(0), c(1) > 0,

min{v(0), v(1)} ≤ v(0)c(0) + v(1)c(1)

c(0) + c(1)
≤ max{v(0), v(1)}

where v(1) = (1/σ2 + 1/τ21 + t)−1(1/σ2y⊤xi + βt,i) and v(0) = (1/τ20 + t)−1βt,i, and similarly
for aj(βkh, kh) therefore ∥a(βt, t) − a(βkh, kh)∥ can be bounded by the claimed quantities.
Notice that above we didn’t use any approximations for a(·) – since the computation scales
linearly with p instead of exponentially in this case, we didn’t rely on probabilistic arguments
/ large-scale behavior on the model for showing convergence of the time-discretized SDE (3.2)
for sampling from π (of course, for π to behave well statistically however, τ1, τ0, q will have to
be chosen carefully as we will see in Subsection 4.1).

3.3. Spike-and-Slab Linear Regression: Mean Computation. Recall from Proposition 2.1
the posterior marginal over β in this case is a discrete mixture of log-concave densities:

(3.7) π(β|y) ∝
∑

z∈{0,1}p
q∥z∥0(1− q)p−∥z∥0 × e−

1
2
β⊤D−1

z β√
det(2πDz)

× e−
1

2σ2 ∥y−Xzβz∥2

(2πσ2)n/2

where Dz is diagonal with τ21 if z = 1 and τ20 otherwise (τ1 ≫ τ0), and we will adopt the same
assumption as in Subsection 2.1.2 that the data/posterior belong to Es implying posterior
concentration with the initial number of false positives t bounded (the design matrix X is
again assumed deterministic satisfying the same “restricted isometry” conditions). We note
that the posterior (3.7) is non-convex / non-smooth so argmax (MAP) estimator is also hard
to obtain from optimization, but integration/sampling can be somewhat easier under favorable
statistical assumptions.

Lemma 3.4. For the sparsified likelihood with continuous priors (2.4), we have given fixed
t, θt, y, q ∈ (0, 1) the approximate drift

â(θt, t) =

∑
z:z∈S v(z) · c(z)∑

z:z∈S c(z)
,(3.8)
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where v(z), c(z) are defined in (3.9)-(3.10), and S is the warm start set with z∗ ⊂ z, ∥z∥0 ≤ k+
t. Recall from Lemma 2.4 that a warm-start with number of false positives t ≍ k can generally
be expected under Assumption 2.7, therefore

∑k
i=0

(
t+k
i

)
≤ (e(t + k)/k)k ≍ ((t + k)/k)k ≍ ct

number of sub-models are evaluated at each time step. Additionally, under the statistical
assumptions for Proposition 4.3, 1√

p∥â(θt, t) − a(θt, t)∥ converges to zero in probability as

n→∞, as the rest of z∗ ̸⊂ z contributes vanishingly small to the posterior.

Proof. By definition the tilted mean (as a function of the random measure π) takes the
form

a(θt, t) =
∑

z∈{0,1}p

∫
Rp

β · pt,θt(β, z) dβ =

∫
Rp

β · exp(θ⊤t β −
t∥β∥2

2
)π(β) dβ

=

∑
z∈{0,1}p q

∥z∥0(1− q)p−∥z∥0
[∫

Rp β · eθ
⊤
t β− t∥β∥2

2
− 1

2σ2 ∥y−Xzβz∥22−
1
2
β⊤D−1

z βdβ

]
1√

det(2πDz)∑
z∈{0,1}p q

∥z∥0(1− q)p−∥z∥0 ×
∫
Rp e

θ⊤t β− t∥β∥2
2 × e−

1
2β⊤D−1

z β√
det(2πDz)

× e−
1

2σ2 ∥y−Xzβz∥2dβ

=

∑
z∈{0,1}p v(z) · c(z)∑

z∈{0,1}p c(z)

for vector v(z) ∈ Rp,

(3.9) v(z)j =

[( 1
σ2X

⊤
z Xz +

1
τ21
I + tI)−1( 1

σ2X
⊤
z y + θt,z)]j if j is active

[( 1
τ20
I + tI)−1θt,1−z]j otherwise ,

furthermore the scalar

c(z) =
exp

(
1
2(

1
σ2 y

⊤Xz + θ⊤t,z)(
1
σ2X

⊤
z Xz +

1
τ21
I + tI)−1( 1

σ2X
⊤
z y + θt,z)

)
√
det( 1

σ2X⊤
z Xz +

1
τ21
I + tI)

(3.10)

×
exp(12θ

⊤
t,1−z(

1
τ20
I + tI)−1θt,1−z)√

det( 1
τ20
I + tI)

× (
qτ0

(1− q)τ1
)∥z∥0

where we used Gaussian integral and completion of squares. The approximate posterior mean
which acts as the drift of the SDE (3.2) is given by for the warm start set S := {z : z∗ ⊂
z, ∥z∥0 ≤ ∥z∗∥0 + t} with at most k + t≪ p active coordinates,

â(θt, t) =

∑
z:z∈S v(z) · c(z)∑

z:z∈S c(z)

where computing (3.9) involves solving linear systems of size ∥z∥0 × ∥z∥0 with both changing
left and right hand sides t and θt. Asymptotically as t→∞, the drift becomes z-independent
and approaches θt/t = β + Wt/t → β for some random β ∼ π, which we output. From the
denoising perspective, the task gets easier as t→∞ since the signal-to-noise ratio grows like
t/
√
t =
√
t.
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Using (4.1) as a consequence of Proposition 4.3, we have ∀ϵ > 0, recall pn →∞ as n→∞
such that pn = eo(n), since z∗ ∈ S by definition,

lim
n→∞

P(
1
√
p
∥â(θt, t)− a(θt, t)∥ ≥ ϵ)

≤ lim
n→∞

P(
1
√
p
∥â(θt, t)− a(θt, t)∥ ≥ ϵ|π(z∗|y) ≥ 1− 1/p) + lim

n→∞
P(π(z∗|y) ≤ 1− 1/p)

≤ 0 + lim
n→∞

1

p
= 0

therefore p- limn→∞ â(θt, t)j = p- limn→∞ a(θt, t)j yields the convergence in probability claim.

We can use pre-computation scheme and cache a factorization of X⊤
z Xz (generally ex-

pected to be full rank since k ≲ n) to speed up the subsequent calculation. Since the sub-
models under consideration share common features, one should also use Sherman-Morrison
for low-rank updates whenever possible.

Remark 3.5. If the integral is hard to compute analytically, one might hope to use Laplace
approximation. It may also be possible to use mode instead of mean if the posterior consists
of mixture of log-concave distributions (they can be shown to be not far apart due to measure
concentration for log-concave densities), in the case of more general slab distributions.

3.4. Spike-and-Slab Linear Regression: SDE Implementation. Recall we discretize as

(3.11) βk+1 = βk + h · â(βk, kh) +
√
h · zk, zk ∼ N (0, I) independent

and output â(βk, kh) for sufficiently large k. In line with Section 4 we consider a sequence
of problems with growing n, pn, kn → ∞, so the posterior is implicitly indexed by n, and
the probabilities are conditional on X. Here pn/n ∼ eo(n)/n, kn/n ∼ log(pn)/n ∼ o(n)/n
serve as proxies for statistical difficulty of the problem, which cannot grow too fast. This is
a more meaningful limit than the classical fixed p, large n setup. We are interested in the
regime where one has variable-selection consistency in the sense E[π(z∗|y)] ≥ 1 − 1

p2
, which

is established in Proposition 4.3 under appropriate parameter choices (the allowed scaling of
p, k will depend on X for such a guarantee to hold). We study the convergence rate of the
Stochastic Localization sampler in this setting – in fact a guarantee of both computational &
statistical nature along the lines of Eβ∗(Pn(∥â(βK) − β∗∥ ≲ M |yn)) ≥ 1 − on(1) should also
be within-reach for the output of the algorithm under such posterior contraction.

The helper lemma below on the exact drift is crucial for the stable discretization of the
SDE, where we borrow parts from [13, Lemma 4.9].

Lemma 3.6 (Lipschitz-type property of a(·)). For some constant C depending on t, the
following regularity condition on β(t) 7→ a(β(t), t) holds: for any h ≤ t ≤ T and βk, βt ∈ Rp,
with probability 1− on(1) over the data yn,

∥a(βk, t)− a(βt, t)∥ ≤ C(t)∥βk − βt∥+ on(1) .

Moreover with (k + 1)h ≤ T , for the continuous process (3.14) on β̄(t), and sufficiently small
h such that h < λmin(X

⊤
z∗Xz∗)/σ

2,

sup
t∈[kh,(k+1)h]

1
√
p
∥a(β̄(t), t)− a(β̄(kh), kh)∥ = Op(

√
h) .
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Above both are stated under the assumptions for Proposition 4.3.

Proof. Since τ1 → ∞, τ0 → 0 as n → ∞, which ensures π(z = z∗|y) → 1 as n → ∞ from
Proposition 4.3, recall we have for any given βt, t,

v(z)j =[( 1
σ2X

⊤
z Xz +

1
τ21
I + tI)−1( 1

σ2X
⊤
z y + βt,z)]j → [( 1

σ2X
⊤
z Xz + tI)−1( 1

σ2X
⊤
z y + βt,z)]j

[( 1
τ20
I + tI)−1βt,1−z]j → 0

as n→∞ and for some c(z) ≥ 0,

min
z

v(z)j ≤ a(βt, t)j =

∑
z∈{0,1}p v(z)j · c(z)∑

z∈{0,1}p c(z)
≤ max

z
v(z)j .

Now for any t ≥ h, with probability 1− on(1), since X⊤
z∗Xz∗ ≻ 0,

∥a(βk, t)− a(βt, t)∥ ≤ ∥(
1

σ2
X⊤

z∗Xz∗ + tI)−1∥op∥βt − βk∥+ on(1) ≤
1

t
∥βk − βt∥+ on(1) .

For the second part, using that for two linear systems Lu = r and L̂û = r̂ where ∥L−1(L̂ −
L)∥ < 1, the perturbed solution obeys

∥û− u∥ ≤ ∥L−1∥
1− ∥L−1(L̂− L)∥

(∥(L̂− L)u+ r̂ − r∥) ;

with probability taken over both the stochastic process (β̄(t))t and the data yn/posterior πn,
the sequence of random variables

(3.12) sup
t∈[kh,(k+1)h]

1

p
∥a(β̄(t), t)− a(β̄(kh), kh)∥2

is bounded in probability as n→∞ by

p- lim
n→∞

1

p
∥a(β̄((k + 1)h), (k + 1)h)− a(β̄(kh), kh)∥2

= lim
n→∞

1

p
E[∥a(β̄((k + 1)h), (k + 1)h)− a(β̄(kh), kh)∥2]

(3.13)

≤ lim
n→∞

1

p

(
∥( 1

σ2X
⊤
z Xz + khI)−1∥

1− ∥( 1
σ2X⊤

z Xz + khI)−1hI∥

)2

E[∥ha(β̄(kh), kh) + β̄((k + 1)h)z − β̄(kh)z∥2]

≲ lim
n→∞

1

p

(
∥( 1

σ2X
⊤
z Xz + khI)−1∥

1− h∥( 1
σ2X⊤

z Xz + khI)−1∥

)2

E[h2∥a(β̄(kh), kh)∥2 + ∥β̄((k + 1)h)− β̄(kh)∥2]

≲ lim
n→∞

1

p
(h2E[∥a(β̄(kh), kh)∥2] + h

∫ (k+1)h

kh
E[∥a(β̄(t), t)∥2]dt+ ph)
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≲ lim
n→∞

1

p
(h2 max

t∈[kh,(k+1)h]
E[∥a(β̄(t), t)∥2] + ph) ≲ h

for h sufficiently small such that h < λmin(X
⊤
z∗Xz∗)/σ

2, where we used (1) the update (3.14)
and Cauchy-Schwarz; (2) a(·)j is bounded almost surely through the localization process as
shown in Lemma 3.3; (3) dominated convergence theorem to exchange limit and expectation
together with π(z = z∗|y) → 1 as n → ∞. Above ≲ hides constant independent of the
dimension p.

The reduction in the first step (3.12) where we go from sup over t ∈ [kh, (k + 1)h] to
t = (k + 1)h follows since t→ a(β̄(t), t) is a bounded martingale according to Lemma 3.3 for
any a(·) constructed with the localization process, therefore 1√

p∥a(β̄(t), t) − a(β̄(kh), kh)∥ is
a positive bounded sub-martingale for t ≥ kh by Jensen’s inequality. Then Doob’s maximal
inequality gives for a fixed c > 0,

lim
n→∞

P( sup
t∈[kh,(k+1)h]

1
√
p
∥a(β̄(t), t)− a(β̄(kh), kh)∥ ≥ c)

≤ 1

c
lim
n→∞

1
√
p
E[∥a(β̄((k + 1)h), (k + 1)h)− a(β̄(kh), kh)∥]

≤ 1

c
lim
n→∞

1
√
p
E[∥a(β̄((k + 1)h), (k + 1)h)− a(β̄(kh), kh)∥2]1/2 .

Therefore using (3.13) we can choose c ≳
√
h/ϵ deterministically large enough such that the

probability above is smaller than ϵ. This in turn implies

p- lim
n→∞

sup
t∈[kh,(k+1)h]

1
√
p
∥a(β̄(t), t)− a(β̄(kh), kh)∥ ≲

√
h ,

as claimed.

Putting everything together, the theorem below is our main result for the Stochastic
Localization sampler.

Theorem 3.7 (Convergence Guarantee for Stochastic Localization Sampler). Under the as-
sumptions for Proposition 4.3, with probability at least 1 − on(1) over the data and the ran-
domness of the algorithm, for all kh ≤ T , we have the following recursion for the errors:

1
√
p
∥â(βk, kh)− a(β̄(kh), kh)∥ ≲ 1

kh
√
p
∥βk − β̄(kh)∥+ on(1) ≲ eckh

√
h+ on(1) .

Moreover, there is a constant K independent of the dimension such that after K many steps of
Algorithm 3.1 where T is implemented with Lemma 3.4, we have W2(π,Law(â(βK))) ≤ √pζ
for any desired tolerance ζ with probability at least 1 − on(1). The total complexity of the
algorithm is Op(c

tn2k) ≲ Op(c
kp3) for some constant c if we focus on the scaling with p for

warm-start with at most t ≍ k false positives.

Proof. We couple the continuous β̄(kh) and discrete βk processes (3.11) with the same
Brownian increment, i.e.,

(3.14) β̄((k + 1)h) = β̄(kh) +

∫ (k+1)h

kh
a(β̄(t), t)dt+

∫ (k+1)h

kh
dW (t)
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where
√
hzk =

∫ (k+1)h
kh dW (t) with same initial condition β0 = β̄(0) = 0 and a(β0, 0) =

a(β̄(0), 0). Here a(·) denotes the exact drift from Lemma 3.4 and â(·) the approximate one
from (3.8). Therefore we have for any (k + 1)h ≤ T , with probability 1− on(1),

1
√
p
∥β̄((k + 1)h)− βk+1∥

≤ 1
√
p
∥β̄(kh)− βk∥+

1
√
p

∫ (k+1)h

kh
∥a(β̄(t), t)− â(βk, kh)∥dt

≤ 1
√
p
∥β̄(kh)− βk∥+

h
√
p
∥a(β̄(kh), kh)− â(βk, kh)∥+

h
√
p

sup
t∈[kh,(k+1)h]

∥a(β̄(t), t)− a(β̄(kh), kh)∥

≲
1
√
p
∥β̄(kh)− βk∥+

h
√
p
∥a(β̄(kh), kh)− â(βk, kh)∥+ h3/2

where we used the regularity property from Lemma 3.6 in the last step. Due to the posterior
concentration assumption, using Markov’s inequality, with probability 1 − on(1), for any k,
1√
p∥â(βk) − a(βk)∥ ≤ δ(n) where limn→∞ δ(n) = 0 is a non-negative deterministic sequence.

Together with Lemma 3.6 give that with probability 1− on(1),

1
√
p
∥â(βk+1, (k + 1)h)− a(β̄((k + 1)h), (k + 1)h)∥

≤ 1
√
p
∥â(βk+1, (k + 1)h)− a(βk+1, (k + 1)h)∥+ 1

√
p
∥a(βk+1, (k + 1)h)− a(β̄((k + 1)h), (k + 1)h)∥

≤ δ(n) +
1

(k + 1)h
√
p
∥βk+1 − β̄((k + 1)h)∥ .

Now putting the last two displays together, and inducting over k, we conclude that with high
probability

1
√
p
∥β̄((k + 1)h)− βk+1∥ ≲ ec(k+1)h(k + 1)h3/2 + δ(n) ,

1
√
p
∥â(βk, kh)− a(β̄(kh), kh)∥ ≲ 1

kh
(eckhkh3/2 + δ(n)) + δ(n) ,

since it verifies the recursion

1
√
p
∥β̄((k + 1)h)− βk+1∥ ≲ ekhkh3/2 + δ(n) +

h

kh
(eckhkh3/2 + δ(n)) + hδ(n) + h3/2

≲ eckhh3/2(k + 1) + h3/2 + δ(n)

≲ ec(k+1)h(k + 1)h3/2 + δ(n) ,

finishing the first part of the statement.
This in turn implies using the continuous time convergence rate from Lemma 3.2 and the

coupling definition of the W2 distance, for K = T/h,

1
√
p
W2(π,Law(â(βK))) ≤ 1

√
p
W2(π,Law(a(β̄(T )))) +

1
√
p
W2(Law(a(β̄(T ))),Law(â(βK)))
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≤ 1/
√
T + C(T )h1/2 + δ(n)

therefore for n sufficiently large, when T is sufficiently large and h suitably small (both are
independent of the dimension), we have W2(π,Law(â(βK))) ≤ √pζ, for any desired ζ >
0, which holds with probability 1 − on(1) w.r.t randomness in y such that (4.1) holds (X
deterministically verifies restricted eigenvalue properties). The complexity of the algorithm
now follows by putting together with Lemma 3.4.

The main benefit of the Stochastic Localization sampler lies in its obliviousness to the “ill-
design” of the data matrix X (e.g., if there are strong correlation between some columns of
X), where we see from Proposition 2.8 that even under warm-start and posterior contraction
(s = 0), such terms still show up and scale with the mixing time exponentially. The guarantee
of Theorem 3.7 is in W2 distance and not TV, but both have

√
p scaling with dimension.

In both cases the scaling with the number of initial false positives t is less than ideal, but a
warm-start is essentially necessary for efficiently simulating from such a mixture posterior.

4. (Frequentist) Statistical Properties of Posterior (2.4). In this section, we justify
the posterior concentration assumption made on the sparsified likelihood model (2.4). We
highlight the importance of diffusing and shrinking priors for this class of posteriors as in
[17] (i.e., allowing the prior parameters to depend on n), which is required for strong model

selection consistency π(z = z∗|y) P−→ 1 as n → ∞ in high-dimensional setting where p is
allowed to grow with n exponentially, i.e., pn = eo(n). This choice can in some sense be seen
as adjusting for multiplicity.

4.1. Warm-up: Sparse Normal Means Model. Let us motivate the choice of τ0, τ1, q by
considering the setup X⊤X = nIp where pn ≤ n, and study under what conditions on the
priors do the corresponding posteriors confer model selection consistency.

Lemma 4.1. With a sparsified likelihood, the model selection consistency requirement is the
same for point-mass spike and Gaussian spike under orthogonal design, which is satisfied by
the choice in Assumption 2.7 under β-min condition (2.11).

Proof. The posterior for z is (define β̂j := y⊤Xz∗,j/n)

P(z = z∗|y)

∝
∫
Rp

exp(− 1

2σ2
∥y −Xz∗βz∗∥2)

p∏
j=1

(
1− q

τ0
exp(−

β2
j

2τ20
))1−z∗j (

q

τ1
exp(−

β2
j

2τ21
))z

∗
j dβ

∝
∏
z∗j=0

∫
R
(
1− q

τ0
exp(−

β2
j

2τ20
))1−z∗j dβj

∏
z∗j=1

∫
R
exp(− n

2σ2
(βj − β̂j)

2)(
q

τ1
exp(−

β2
j

2τ21
))z

∗
j dβj

=
∏
z∗j=1

Eβj∼N (β̂j ,σ2/n)[exp(−β
2
j /2τ

2
1 )] ·

q
τ1

exp( 1
2σ2n

y⊤Xz∗,jX
⊤
z∗,jy)

Eβj∼N (β̂j ,σ2/n)[exp(−β
2
j /2τ

2
1 )] ·

q
τ1

exp( 1
2σ2n

y⊤Xz∗,jX⊤
z∗,jy) + 1− q

×

∏
z∗j=0

1− q

Eβj∼N (β̂j ,σ2/n)[exp(−β
2
j /2τ

2
1 )] ·

q
τ1

exp( 1
2σ2n

y⊤Xz∗,jX⊤
z∗,jy) + 1− q
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=:
∏
z∗j=1

aj
∏
z∗j=0

bj

One can show for each of the k terms corresponding to z∗j = 1 using completion of squares,

rj :=
q

τ1
Eβj∼N (β̂j ,σ2/n)[exp(−β

2
j /2τ

2
1 )] exp(

1

2σ2n
y⊤Xz∗,jX

⊤
z∗,jy)

=
q√

1 +
nτ21
σ2

exp(
1

2
(
1

τ21
+

n

σ2
)−1

β̂2
jn

2

σ4
−

β̂2
jn

2σ2
) exp(

β̂2
jn

2σ2
)

=
q√

1 +
nτ21
σ2

exp(
1

2
(
1

τ21
+

n

σ2
)−1 (y

⊤Xz∗,j)
2

σ4
)

where we recall y = Xz∗β
∗
z∗ + ϵ and we require for j such that z∗j = 1, |β̂j |2 > cσ2 log(p)

n for a
large enough c, and ∥z∗∥0 = kn < pn ≤ n.

To have P(z = z∗|y) P−→ 1, a sufficient condition is to have
∑p

j=1 P(zj ̸= z∗j |y)
P−→ 0, or

equivalently, minj∈[p] P(zj = z∗j |y) ≥ 1 − η
p for a sufficiently small η; but generally requiring

minj∈[p] P(zj = z∗j |y)
P−→ 1 is a weaker consistency result. We begin with the first term, for

the product of k terms to go to 1 as n→∞, we see that using Bernoulli’s inequality,

1←
∏
z∗j=1

aj ≥ (min
z∗j=1

aj)
kn ≥ (1−max

z∗j=1
P(zj = 0|y))kn ≥ 1− kn ·max

z∗j=1
P(zj = 0|y)

therefore we need kn ·maxz∗j=1 P(zj = 0|y)→ 0, which means it suffices for |β̂j |2 ≍ σ2 log(p)
n

1− q

rj
=

1− q

q

√
1 +

nτ21
σ2

exp(−1

2
(
1

τ21
+

n

σ2
)−1

β̂2
jn

2

σ4
)≪ 1

kn
.

Similarly for the second term,

1←
∏
z∗j=0

bj ≥ (min
z∗j=0

bj)
p ≥ (1−max

z∗j=0
P(zj = 1|y))p ≥ 1− p ·max

z∗j=0
P(zj = 1|y) .

which implies since z∗j = 0, the exp(·) term from rj vanishes using (2.11),

q

(1− q)

√
1 +

nτ21
σ2

≪ 1

p
.

In both cases, it suffices to impose (1 − q)/q ∼ p, τ1 ∼ σp/
√
n, and it is crucial for them to

scale with (n, p) to achieve model selection consistency. In this particular case τ0 doesn’t play
a role, e.g., whether we pick point-mass spike or Gaussian spike.

Variable selection is generally considered a harder problem than parameter estimation /
prediction [6], therefore one should expect good performance with respect to those criteria as
well from these choices, which is indeed the case as shown next in the regression setting.
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4.2. Posterior Contraction. We show that posterior contraction conditions in Es are sta-
tistically grounded in this section. From an information-theoretic perspective, one generally
needs some identifiability assumptions on the design matrix for statistical estimation / pos-
terior consistency, and these will show up here as follows.

Assumption 4.2. For all u ∈ Rp such that ∥z∗,c(u − β∗)∥1 ≤ 7∥z∗(u − β∗)∥1, there exist
R > 0 where for ∥β∗∥0 = k,

1

n
(u− β∗)⊤(X⊤X)(u− β∗) ≥ R · ∥z∗(u− β∗)∥22 ,

which is closely related to (2.10), but slightly relaxed so the restricted eigenvalue direction
can be not exactly sparse, rather take small values off support of z∗. We also assume a
general condition for k′ ≍ k, the exact-sparsity restricted eigenvalue min∥v∥0≤k′ v

⊤(X⊤X)v ≥
ω(k′)n∥v∥2 is bounded away from 0 by a small constant ω(k′). Additionally, ∥β∗∥∞ = O(1)
doesn’t grow with n.

We consider a sequence of problems with n, p→∞ where n = o(p) and demonstrate that for
s = 0, condition

π(z ∈ {0, 1}p : z∗ ⊂ z, ∥z∥0 ≤ ∥z∗∥0 + s|y) ≥ 1− 4

p
δ
2
(s+1)

from Subsection 2.1.2 holds with δ = 2, which implies π(z∗|y) ≥ 1/2 for p > 9 with probability
at least 1− on(1) over the data, since using (3) from Proposition 4.3 and Markov’s inequality

(4.1) P((1− π(z∗|y)) ≥ 1/p) ≤ E[1− π(z∗|y)]
1/p

≤ 1/p2

1/p
=

1

p
.

We characterize the large scale behavior of the posterior (2.4) below.

Proposition 4.3 (Frequentist Guarantee on the Posterior). Under the parameter choice
q/(1 − q) ∼ 1/pδ+1 for some constant δ > 0, τ1 ∼ σp/

√
n, ∥Xj∥22 = n from Assumption 2.7,

in addition to the β-min condition (2.11) and Assumption 4.2 above, it holds in the regime
pn = eo(n) that

1. E [π(z : ∥z∥0 ≳ k(1 + 1/δ)|y)] ≤ 2
p2

2. E[π(Bc|y)] ≲ 1/p2 for B = ∪z:∥z∥0≲k {β : ∥βz − β∗∥ ≲ σ
√

k log(p)√
nω(k)

, ∥βz − β∥ ≲ τ0
√
p}

3. E[π(z∗|y)] ≳ 1− 1
p2

where in the above expectation is taken with respect to the noise ϵ only and X deterministically
satisfy the stated assumptions. Moreover, for Assumption 4.2 to hold with probability tending
to one as n → ∞, for example with a Gaussian design matrix Xij ∼ N (0, 1), it entails
n ≳ k log(p) and k ≲ log(p) for the sample size and sparsity level respectively. In general n, k
will scale with the “ill-design-ness” of the matrix X.

Proof. We build upon the result in [1] and verify the conditions stated there. In our case,
ℓ(βz, y) =

1
2σ2 ∥y −Xzβz∥2, therefore with probability at least 1− 2/p2 since ϵ ∼ N (0, σ2I),

(4.2) ∥∇ℓ(β∗; y)∥∞ = ∥ − 1

σ2
X⊤(y −Xβ∗)∥∞ =

1

σ2
∥X⊤ϵ∥∞ ≤

√
n

σ

√
2 log(p) =:

ρ̄

2
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and for β, β∗ ∈ Rp where β has the same support as β∗, since X⊤
z Xz ⪯ ∥Xz∥2F · I,

Lβ∗(β; y) = − 1

2σ2
(β − β∗)⊤(X⊤X)(β − β∗) ≥ − nk

2σ2
∥β − β∗∥22 =: − κ̄

2
∥β − β∗∥22

which means H1 is satisfied. For H2, it suffices to check pδ/2 ≳ e2n/σ
2p2 , which holds under

p = eo(n) as we assume. Starting from Theorem 2 therein, we check equation (2), picking E
as the intersection of (4.2) and Assumption 4.2, we have on this event using the Gaussian
moment-generating function,

E[eLβ∗ (β;y)+(1− ρ1
ρ̄
)⟨∇ℓ(β∗;y),β−β∗⟩

] = E[e−
1

2σ2 (β−β∗)⊤(X⊤X)(β−β∗)− 1−ρ1/ρ̄

σ2 (β−β∗)⊤X⊤ϵ]

= E[e−
1

2σ2 (1−(1−ρ1/ρ̄)2)(β−β∗)⊤(X⊤X)(β−β∗)]

≤ e−
Rn(1−(1−ρ1/ρ̄)

2)

2σ2 ∥β−β∗∥22

therefore we can pick the rate function r0(x) =
Rn(1−(1−ρ1/ρ̄)2)

σ2 x2 for such β’s. Since ρ1 in our

context is 1/τ21 , it is clear that ρ1 < ρ̄, therefore r0(x) ≥ Rn
σ2τ21 ρ̄

x2, x ≥ 0, which means since

neither R nor σ scales with n,

a0 := −min
x>0

{
r0(x)−

4

τ21

√
kx

}
≲

k
√
n log(p)

Rσp2

is bounded above by an absolute constant. It can then be checked that condition (3):

k(
1

2
+

2

τ21
) +

k

2
log(1 + κ̄τ21 ) +

a0
2

+
2

τ21
∥β∗∥22 ≤ c0k log(p)

holds with an absolute constant c0 with the specified τ1 and ∥β∗∥∞. Therefore Theorem 2
concludes for k′ := k(1 + 1

δ ) > k, picking j = 4/δ,

(4.3) E
[
π(z : ∥z∥0 ≳ k′|y)

]
≤ 2

p2
.

For the second part, again using Assumption 4.2, for all β with at most k′ active coordinates,

Lβ∗(β; y) = − 1

2σ2
(β − β∗)⊤(X⊤X)(β − β∗) ≤ −1

2

n

σ2
ω(k + k′)∥β − β∗∥22 =: −1

2
r(∥β − β∗∥2)

therefore we are on the event E1(k′) with the above rate function. Take the contraction radius

ζ := inf

{
l > 0 :

n

σ2
ω(k + k′)x2 − 4

√
k + k′

√
n log(p2)

σ
x ≥ 0 ∀x ≥ l

}

≍
σ
√
(k′ + k) log(p2)√
nω(k + k′)

≍
σ
√

k log(p)√
nω(k)
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Note this contraction rate is largely comparable to the “ideal” near-minimax benchmark in
(2.3) assuming ω(k) is a constant. Now we check that equation (8)

C

√
n log(p2)

σ

√
k + k′

σ
√
(k′ + k) log(p2)√
nω(k + k′)

≳ max{k′ log(p), (1 + δ)k log(p+ p3k)}

holds with an absolute constant C since we assume both ω(k + k′) and δ to be constants.
Applying Theorem 3, together with (4.3) gives the contraction rate

E[π(Bc|y)] ≤ 2

p2
+ 8e−

√
n log(p2)

σ

√
k+k′ζ + 2e−p ≲

1

p2
(4.4)

where we define the set

B := ∪z:∥z∥0≤k′ {β : ∥βz − β∗∥ ≲ ζ, ∥βz − β∥ ≲ τ0
√
p} ,

which describes the set of β’s that have most of the mass concentrated on k′-sparse sub-vector
and on the support is close to β∗.

Now for the (perfect) model selection, on event E2(k′) we have

∩k′−k
j=1 Uj := ∩

k′−k
j=1

{
max

z∗⊂z,∥z∥0=k+j

1

2σ2
(∥y −Xβz∥22 − ∥y −Xβz∗∥22) ≤

jδ

2
log(p)

}
,

which happens with high probability since by union bound and ∥y−Xβz∥2 = ∥(I −Pz)y∥2 =
∥y∥2 − ∥Pzy∥2,

k′−k∑
j=1

P(Uc
j ) =

k′−k∑
j=1

P
(

max
z∗⊂z,∥z∥0=k+j

y⊤(Pz∗ − Pz)y ≥ jδσ2 log(p)

)(4.5)

=
k′−k∑
j=1

P
(

max
z∗⊂z,∥z∥0=k+j

χ2(dof = ∥z∥0 − ∥z∗∥0,non-central = (Xβ∗)⊤(Pz∗ − Pz)Xβ∗) ≥ jδσ2 log(p)

)

≲
k′−k∑
j=1

p−
σ2δj

4 ≲
1

p2

where we used the concentration inequality for the central χ2 distribution since y = Xβ∗+ϵ ∼
N (Xβ∗, σ2I), the above non-centrality parameter is in fact 0 and Pz ∈ Rn×n denotes the
orthogonal projector onto the column span of Xz (idempotent of rank ∥z∥0), and similarly for
Pz∗ . We also used that z∗ ⊂ z above.

We can also deduce that κ̄ = nk
σ2 , κ = nω(k+k′)

σ2 , i.e., the matrix Xz is full-column rank
(restricted strong-convexity) and restricted smooth on the event E1(k′) (since Hessian is con-
stant, the inner inf and sup in the definition of (12) and (13) are immaterial here). Invoking
Theorem 5 by setting j = 0 with a2 = 0 since ℓ is quadratic, with the β-min condition (2.11)
yields

E
[
1{∩k′−k

j=1 Uj}(1− π(z∗|y))
]
≲ e

√
k′ζ
τ21

√
1

τ21κp
δ
+

1

p2
≲

1

p2
,
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where we used (4.4) and κpδ ≳ 1/τ21 that is satisfied by our choice. Now to remove the
conditional event inside, putting together with (4.5) gives the desired result

E[π(z∗|y)] ≳ 1− 1

p2
,

since

E [1− π(z∗|y)] ≤ E[1{∩k′−k
j=1 Uj}(1− π(z∗|y))] + P({∩k′−k

j=1 Uj}
c)

≤ E[1{∩k′−k
j=1 Uj}(1− π(z∗|y))] +

k′−k∑
j=1

P(Uc
j ),

and the last required condition ζ
√
κ ≳
√
k also checks out.

The last claim about the scaling of n, k for the Gaussian design to hold with high prob-
ability follows from well-known results in high-dimensional statistics [6] – the condition on
ω(k′) is already used in the proof of Lemma 2.4.

This result implies that in the high-dimensional regime n = o(p) and for well-chosen
parameters, one has with high probability (1) sparse support; (2) contraction towards β∗;
(3) model selection consistency for the posterior π(·|y). We remark that the result does not
in fact depend crucially on the scaling of τ0 (the prior for the spike), other than it should
decrease with n. Both the posterior contraction rate and the dependence of prior parameters
on n, p also bear resemblance with another family of continuous priors [24, Theorem 6.4] with
heavier-tailed Laplace spike and slab, assuming q fixed (i.e., non-hierarchical prior).

Remark 4.4. In fact, the relative density ratio expression from (2.12)-(2.13) also hint at
a connection to ℓ0-penalty if we look at the posterior mode. Since we have τ1 → ∞ and
q/(1− q) ∼ 1/p,

argmax
z∈Es

log

(
π(z|y)
π(z∗|y)

)

= argmax
z∈Es

log

 ( q
1−q )

∥z∥0−∥z∗∥0√
det(I +

τ21
σ2X

⊤
z−z∗(I +

τ21
σ2Xz∗X⊤

z∗)
−1Xz−z∗)

exp(− τ21
2σ2 y

⊤Xz(τ
2
1X

⊤
z Xz + σ2I)−1X⊤

z y)

exp(− τ21
2σ2 y⊤Xz∗(τ21X

⊤
z∗Xz∗ + σ2I)−1X⊤

z∗y)


≈ argmin

z∈Es
(∥z∥0 − ∥z∗∥0) log(p) +

1

2σ2
(∥Xβz − y∥2 − ∥Xβz∗ − y∥2)

+ log

(√
det(I +X⊤

z−z∗(Xz∗X⊤
z∗)

−1Xz−z∗)

)
≈ argmin

z∈Es
(∥z∥0 − k) log(p) +

1

2σ2
∥Xβz − y∥2 ,

which means that asymptotically when the posterior concentrates on z ∈ Es with ≤ s false
positives, since (2.10) implies the det(·) is uniformly bounded away from 0 on this set, the
posterior mode is approximately imposing a ℓ0-penalty on the model size while trading off
with data fitting.
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The following is an immediate corollary that shows the posterior spread can quantify the
remaining uncertainty for inferring β∗ based on the observed data yn. Note Cn(yn) below is
random since it’s constructed using the data yn. We omit the proof as it is straightforward.

Corollary 4.5. Given the conditions that allow consistent model selection π(z = z∗|y) P−→ 1,
credible sets for individual parameters βj building upon the posterior are valid asymptotic

confidence sets: πn(Cn|yn) = 1 − α ⇒ Pβ∗(β∗
j ∈ Cn)

n→∞−−−→ 1 − α by virtue of the BvM
distributional approximation from [1, Theorem 7] and equation (15) therein.

We also mention in passing that the fact we assumed ϵ ∼ N (0, σ2I) should not be consid-
ered a limitation for the statistical guarantee stated above. For example, for ϵ with subgaus-
sian tails, concentration inequality for the quadratic form (4.5) and (4.2) are readily available.
Therefore the posterior (2.4), which would be slightly mis-specified in this case, is still a
meaningful object for inference and design sampling procedures for.

5. Discussion. Our work contributes to the ongoing effort of understanding statistical /
computational trade-offs arising from contemporary data science problems. The continuous
spike-and-slab priors with quasi-likelihood we study strike good balance between these two
goals. While the number of submodels scales as 2p, natural statistical considerations indicate
that it is not necessary to explore the entire state space to get a good approximate sample
from the posterior for inference purpose. Moreover, under the same (1) posterior concentration
on the parameter; and (2) warm start conditions (possibly implemented using a frequentist
point estimator) that enable efficient sampling with a Gibbs sampler, we propose an improved
method, based on Stochastic Localization, that is oblivious to the well-posedness of the design
matrix.

Much like the flurry of work on non-convex optimization which demonstrate that, under
various mild statistical assumptions on the data/model and with possibly good initializa-
tion, simple gradient-based method can be shown to find good local/global minima efficiently;
what we observe in this work is similar in spirit for the sampling analogue that exploit prob-
lem structure to avoid worst-case scenarios for sampling from non-log-concave distributions.
Beyond spike-and-slab models, the Stochastic Localization sampler can be more broadly ap-
plicable whenever an estimate of the denoising drift E[β|θt = θ] is available (not necessarily
in closed-form, an output from an efficient algorithm is also an option) for the Gaussian
estimation problem (3.1), which can be especially useful when the posterior arising from in-
teresting Bayesian statistical models exhibit multi-modal structure – they pose challenge for
MCMC-based method but seem to be quite prevalent in practice.
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