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Abstract

In this note we prove that all even Schwartz functions f : R → R are uniquely determined
by their values at {|f̂(±

√
n)|, f(±

√
n/2)} for n ≥ 0 indexing the non-negative integers.

1 Introduction

Our motivation comes from phase retrieval type problems in signal processing [8], where in several
imaging applications one can only measure the magnitude of the Fourier transform and not its phase
(recall in general the Fourier transform of a function is complex-valued). Since we are dealing with
1D even signal on the real line f(−x) = f(x) where f : R → R, its Fourier transform

f̂(s) =

∫ ∞

−∞
f(x)e−2πisx dx

is purely real and has even symmetry as well, therefore phase ambiguity reduces to the sign ambiguity
of f̂(s). The question we address in this note is: how many samples does one have to take on its
function value f and its Fourier magnitude |f̂ | such that any even Schwartz function is uniquely
determined from these measurements? We will discuss implications for recovery, but it is not our
intention to give explicit reconstruction formula, rather we focus on well-posedness here.

For band-limited signal where supp(f̂(s)) ⊂ [−w/2, w/2], Shannon interpolation [7] prescribes
a reconstruction formula on the integer grid with sinc basis:

f(x) =
∑
n∈Z

f(n/w) · sinc(wx− n) ,

which gives the famous Nyquist rate from sampling theory. Put mathematically, the restriction map
f 7→ (f |A, f̂ |B) is injective for the discrete set A = Z/w and the continuous set B = R\(−w/2, w/2)
when f is band-limited. Before proceeding, we record a definition. As a remark, the conclusion in
the note is expected to apply to odd real-valued functions f(−x) = −f(x) as well that have purely
imaginary spectrum.

Definition 1. We call a function f : R → R a Schwartz function if f ∈ C∞(R) and

sup
x∈R

|xαf (β)(x)| < ∞ ∀α, β ≥ 0 .

In words, Schwartz function is infinitely differentiable where the function itself and all its derivatives
decay faster than any inverse power of x. The Fourier transform of a Schwartz function is also a
Schwartz function.
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For general radial Schwartz functions with unbounded Fourier support, the equispaced values at

{f(n), f ′(n), f̂(n), f̂ ′(n)}n≥0

simply aren’t enough to uniquely determine the signal, as manifested by the following example.

Example 1. The function and its Fourier pair

f(x) = sin2(πx) · (g(x+ 1)− 2g(x) + g(x− 1))

f̂(s) = sin2(πs) · (ĝ(s+ 1)− 2ĝ(s) + ĝ(s− 1))

vanish at all integer nodes to first order but one can choose two different even Schwartz functions
g1, g2, for example g1(x) = exp(−αx2), g2(x) = exp(−βx2) which give two functions that do not
agree everywhere on the real line.

Our starting point is the following mesmerizing interpolation formula on {
√
n}n≥0 lattices due

to Radchenko-Viazovska [5], which also played an important role in the construction of the “magic
function" (a sort of dual certificate in signal processing language) of the linear programming bound
for the densest sphere packing problem.

Theorem 1. There exists a collection of even Schwartz functions an : R → R with the property that
for any even Schwartz function f : R → R and any x ∈ R we have

f(x) =
∞∑
n=0

an(x)f(
√
n) +

∞∑
n=0

ân(x)f̂(
√
n) (1)

where the right-hand side converges absolutely. In particular, if a function and its Fourier transform
vanish at all {

√
n}n≥0 indices, the function f is identically zero.

A stronger isomorphic result can also be established: given any set of {g(
√
n), ĝ(

√
n)}n≥0, if

they satisfy the Poisson summation formula∑
n∈Z

g(n) =
∑
n∈Z

ĝ(n) ,

there must exist a corresponding even Schwartz function g. Theorem 1 therefore says that the
Fourier pairs f, f̂ , which obey certain uncertainty principle, are perfectly constrained on these
discrete sets. We emphasize that both sets A and B are discrete here – the situation when one
is continuous and the other discrete is not particularly interesting from a sampling perspective
(readers interested in such results can find them in e.g., [3]). Compared to Shannon’s classical
result, the spacing is non-uniform and the gap between consecutive nodes decreases as n increases
as

√
n+ 1 −

√
n = 1√

n+1+
√
n
∼ 1

2
√
n
, and there are roughly n2 number of sampled points over an

interval [0, n]. From [5] one could also deduce that {f(
√
n)}n≥0, {f̂(

√
n)}n≥1 is tight for Fourier

interpolation. The fact that f̂(0) is redundant can be seen from the Poisson summation formula
but deleting more nodes will lose the uniqueness guarantee.

We also mention in passing that there exists Fourier interpolation formula [1, Theorem 1.7] for
radial function in dimension 8 and 24 – this is the analogue of even/odd function in 1D where the
function f is parameterized by f(∥x∥) – using values at {f(

√
2n), f ′(

√
2n), f̂(

√
2n), f̂ ′(

√
2n)} that

collects twice as more information at each queried index but is spaced twice further apart. Such
interpolation formulas are conjectured to exist for even more dimensions, although they will most
likely not lend a helping hand for making progress on the sphere packing problem [4].
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2 Why isn’t
√
n radii enough?

It has to do with the interpolation basis ân(x), an(x) constructed in (1), which can be shown to be
sparse on {

√
n} grid (in fact, Dirac delta’s). We begin by stating a lemma proved in [5].

Lemma 1. We have ân(x) = b+n (x)−b−n (x)
2 , an(x) = b+n (x)+b−n (x)

2 , where bϵm : R → R is an even
Schwartz function satisfying

bϵm(
√
n) = δn,m, n ≥ 1,m ≥ 0, ϵ = ±

and b+m(0) = δm,0, b−0 (x) = 0. Moreover b−m(0) = −2 if m ≥ 1 is a square and = 0 otherwise.

With this property of the interpolation basis on hand, it is not hard to come up with counter-
examples. In fact, the argument below also gives explicit ways to construct functions in the “equiv-
alent class". We note that we haven’t specified an properly but Lemma 1 suffices in all that follow.

Theorem 2. Not all even Schwartz functions f are uniquely determined by their values at {f(
√
n), |f̂(

√
n)|}n≥0.

Proof. Take two real-valued even Schwartz functions f(x) ̸= g(x), suppose they differ at one Fourier
frequency f̂(

√
k) = −ĝ(

√
k) ̸= 0 but agree on all other points. Using Theorem 1, we can write

f(x) =

∞∑
n=0

an(x)f(
√
n) +

∞∑
n=0

ân(x)f̂(
√
n)

g(x) =

∞∑
n=0

an(x)f(
√
n) +

∑
n ̸=k

ân(x)f̂(
√
n)− âk(x)f̂(

√
k)

which means f(x)− g(x), as a function that vanishes at all
√
n indices, has representation

f(x)− g(x) = 2âk(x)f̂(
√
k)

for some f̂(
√
k) ̸= 0, which implies there must exists a k such that âk(

√
n) vanishes for all n ∈ Z,

but âk(x) as a function on the real line, of course doesn’t vanish identically. This is possible by just
picking for example k = 2 using Lemma 1. The Fourier transform of f(x)− g(x) is given by

f̂(s)− ĝ(s) = 2f̂(
√
k)ak(s)

and also vanishes at all {
√
n} except at s =

√
2, where it is equal to 2f̂(

√
2), which also holds from

Lemma 1 since a2(
√
2) = 1 and it is equal to 0 everywhere else on the {

√
n} grid.

Before seeking ways for obtaining extra information, let us generalize the previous argument a
little bit. We see that if we have sign dis-agreements at frequencies (k1, k2, · · · , kt), we require the
following linear system to be satisfied for f̂(

√
k1), . . . , f̂(

√
kt) ̸= 0: âk1(0) âk2(0) · · · âkt(0)

...
... · · ·

...
âk1(

√
n) âk2(

√
n) · · · âkt(

√
n)


2f̂(

√
k1)

...
2f̂(

√
kt)

 = 0 . (2)

This is true if for example k1 = 0, k2 = 1 and we impose f̂(0) = −2f̂(1) on the signal; or if
k1 = 5, k2 = 6. We can see from Lemma 1 that (1) â0(x) is 1-sparse with â0(0) = 1/2; (2) âk(x)
is 1-sparse if k ≥ 1 is a square with âk(0) = 1; (3) all other k’s vanish entirely on the {

√
n}

grid. Therefore the sparsity of the âk(
√
n) is the culprit for the abundance of signals satisfying

such constraints. One could check that (2) implies the correct constraint on the Fourier coefficients
f̂(s)− ĝ(s) at {

√
n} as well.
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3 Oversampling can make up for the loss in phase

We will have to look at finer grids on ân(x), an(x) – one can see from Figure 1 below that they
are much denser on {

√
n/2} lattice. In some sense we lose 1 bit of information from each Fourier

measurement, but may hope to make up the loss from better resolution on the sampled function
value f . For example the counter-example in Theorem 2

f(x)− g(x) = 2âk(x)f̂(
√
k)

will have to vanish at all x =
√
n/2 points as well. In fact, only one more sample at point x =

√
1/2

will resolve the ambiguity in this case. Consequently it suffices to study when does the matrix

M :=


âk1(

√
1/2) âk2(

√
1/2) · · · âkt(

√
1/2)

âk1(
√

3/2) âk2(
√
3/2) · · · âkt(

√
3/2)

...
... · · ·

...
âk1(

√
(2n+ 1)/2) âk2(

√
(2n+ 1)/2) · · · âkt(

√
(2n+ 1)/2)

 (3)

has a trivial kernel, in the worst case when t = n+1. Above k1, · · · , kt take values from 0, 1, 2, · · · , n.

Figure 1: Plots of the first few an, ân taken from [5]. Note that â0 = a0.

The lemma below is the key observation behind our theorem.

Lemma 2. The square matrix M defined in (3) is invertible, i.e., full-rank.

Proof. Since the basis an : R → R are themselves even Schwartz functions as stated in Theorem 1,
and from Lemma 3 below an(

√
2x) are also even Schwartz functions, they admit the expansion

ak(
√
2x) =

∞∑
n=0

an(x)ak(
√
2n) +

∞∑
n=0

ân(x)
1√
2
âk(

√
n/2) (4)
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where we used that if h(x) = f(ax), the Fourier transform ĥ(s) = 1
|a| f̂(s/a).

Now for any k = 1, 3, 5, 7, 9, · · · 2n + 1, using Lemma 1, the left hand side of (4) at x =√
1/2,

√
3/2,

√
5/2,

√
7/2, · · ·

√
(2n+ 1)/2 becomes the identity matrix (n + 1 terms altogether).

For these set of k’s, the first term on the right hand side of (4) disappears since ak(
√
2n) is 0 with

n ranging over the positive integers, except we pick up ak(0) = −1 when k is a square at n = 0,
but these together with the second term yield a0(x)(

1√
2
− 1) since âk(0) = 1 at these points and

â0(x) = a0(x), as shown in Lemma 4 below.
This allows us to rewrite the right hand side as (incorporating the extra a0(x)(

1√
2
− 1) term

when k is a square, which is the same as a rank-1 outer product ( 1√
2
− 1)â0(x)âk(0)

⊤)
â0(

√
1/2) â1(

√
1/2) â2(

√
1/2) · · · ân(

√
1/2)

â0(
√
3/2) â1(

√
3/2) â2(

√
3/2) · · · ân(

√
3/2)

...
...

... · · ·
...

â0(
√
(2n+ 1)/2) â1(

√
(2n+ 1)/2) â2(

√
(2n+ 1)/2) · · · ân(

√
(2n+ 1)/2)

×

1√
2
×


(1−

√
2)â1(

√
0/2) (1−

√
2)â3(

√
0/2) (1−

√
2)â5(

√
0/2) · · · (1−

√
2)â2n+1(

√
0/2)

â1(
√

1/2) â3(
√

1/2) â5(
√
1/2) · · · â2n+1(

√
1/2)

â1(
√
2/2) â3(

√
2/2) â5(

√
2/2) · · · â2n+1(

√
2/2)

...
... · · ·

...
...

â1(
√
n/2) â3(

√
n/2) â5(

√
n/2) · · · â2n+1(

√
n/2)


The first matrix above is exactly the M we are after and we have therefore found its inverse. Since
for two square matrices, MB = I implies BM = I therefore M is invertible with inverse B.

Theorem 3. All even Schwartz functions f : R → R are uniquely determined by their values at
{|f̂(

√
n)|, f(

√
n/2)}n≥0.

Proof. We have proved in Lemma 2 that the square matrix M is invertible. Since this is the hardest
case – the case with less sign flips will correspond to an over-constrained tall and skinny matrix and
will also have full column rank. This means that two different even Schwartz functions that agree on
{f(

√
n), |f̂(

√
n)|} must disagree on at least one point from the set {f(

√
1/2), . . . , f(

√
n/2)}. Oth-

erwise if they agree on {|f̂(
√
n)|, f(

√
n/2)}n≥0, the two signals must agree everywhere by Theorem

1 since they take the same values at {f(
√
n), f̂(

√
n)}n≥0.

We see that we never had to explicitly write out the analytical expressions for b+n and b−n , since
these are quite complicated objects and defining them with modular forms, theta group etc. will
take us too far afield, we simply refer the reader to [5]. With the following technical lemmas, our
proof is finished.

Lemma 3. If f(x) is even and Schwartz, f(
√
2x) is an even Schwartz function as well.

Proof. Since f is even and Schwartz, time re-scaling won’t change its symmetry or differentiabil-
ity, and for all x ∈ R, ∀α, β ≥ 0, |xαf (β)(x)| < ∞. Define h(x) := f(

√
2x), we need to show

|xαh(β)(x)| < ∞ similarly holds. But it is evident since

|xαh(β)(x)| = |xα(2)β/2f (β)(
√
2x)|

and |(
√
2x)αf (β)(

√
2x)| < ∞ for all α, β ≥ 0.

Lemma 4. It holds that â0(s) = a0(x).
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Proof. It is known from [5] that the closed form expression for a0 is

a0(x) =
1

4

∫ 1

−1
θ3(z)eiπzx

2
dz for θ(z) =

∑
n∈Z

exp(iπn2z) .

Using that Fourier transform of Gaussian F(e−ax2
)(s) =

√
π/a ·e−π2s2/a, and θ(−1/z) =

√
−izθ(z)

which can be seen from the complex Gaussian Fourier pair
√
−iz ·êz(s) = e−1/z(s) for ez(x) = eiπx

2z,
we calculate

â0(s) =
1

4

∫ 1

−1
θ3(z) ·

√
i

z
e−

iπs2

z dz

=
1

4

∫ −1

1
θ3(−1

y
)
√

−iyeiπs
2yy−2 dy

=
1

4

∫ −1

1
(
√

−iy)3
√

−iyθ3(y)eiπs
2yy−2 dy

=
1

4

∫ 1

−1
θ3(y)eiπs

2y dy

where we performed a change of variable.

Remark. One possible reconstruction strategy (although an inefficient one) is to loop over all the
sign configurations, form the candidate function f̃ using the interpolation formula with sampled
points on {

√
n} lattice, and check if its value at {

√
n/2} agrees with the provided information on f ,

for signal with compact support say. Or perhaps some variant of the Gerchberg-Saxton algorithm
[2] that alternatively projects onto the two sets of constraints.

4 Is it possible to oversample a bit less?

It is very natural to ask what if instead of extra information from the function value on a finer grid,
we have additional information on the Fourier magnitude available. The answer, and the argument,
turns out to be almost symmetric to those given in the previous section. The term f̂(s) − ĝ(s) at
s =

√
1/2,

√
3/2, . . . ,

√
(2n+ 1)/2 can be written as

ak1(
√
1/2) ak2(

√
1/2) · · · akt(

√
1/2)

ak1(
√
3/2) ak2(

√
3/2) · · · akt(

√
3/2)

...
... · · ·

...
ak1(

√
(2n+ 1)/2) ak2(

√
(2n+ 1)/2) · · · akt(

√
(2n+ 1)/2)


2f̂(

√
k1)

...
2f̂(

√
kt)

 =: M1b (5)

which can take value either 2f̂(
√

s/2) or 0 for each element, where s = 1, 3, 5, . . . , 2n+1. The goal
is to show that whichever these two values each entry takes, when put into a vector c, either b must
be 0 for the equality M1b = c to hold, in which case there is no sign ambiguity to resolve in the first
place; or the set k1, . . . , kt must be empty, implying that the two signals f and g agree on {

√
n}

lattice in terms of both function value and Fourier transform, which taken together with Theorem
1 concludes that f = g everywhere.

Theorem 4. The values at {|f̂(
√

n/2)|, f(
√
n)}n≥0 are not sufficient to completely specify all even

Schwartz functions f : R → R.
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Proof. Argument largely similar to Lemma 2 by expanding on

ak(x/
√
2) =

∞∑
n=0

an(x)ak(
√

n/2) +

∞∑
n=0

ân(x)
√
2âk(

√
2n)

shows that M−1
1 exists and is full-rank. Therefore the only way for b = M−1

1 c = 0 is when c = 0,
which will introduce additional ambiguity in the recovery. In other words, there exists c ̸= 0, which
can be consistent with the |f̂(

√
n/2)| = |ĝ(

√
n/2)| constraint, that can lead to b not identically 0,

therefore disagreements on the f̂(
√
n) lattice remain.

5 Discussion

Several further questions come out of this investigation: (1) Do we have some flexibility in the
location where we place the nodes? This is already studied to some degree in the context of Fourier
interpolation [6]. (2) What is the minimum number of measurements one could afford (with possibly
random choices)? Our result seems to suggest a sparse spectrum may entail less oversampling. (3)
We focused on identifiability, but an explicit reconstruction recipe is also a worthy attempt.
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A Additional details on Example 1

Using trigonometric identity, we have

sin2(πx) =
1− cos(2πx)

2
=

1− 1/2 · (exp(−i2πx) + exp(i2πx))

2
.

Its Fourier spectrum is 3-sparse, with coefficient 1/2,−1/4,−1/4 at s = 0, 1,−1.
Moreover, time translation results in extra phase factor when taking Fourier transform, therefore

F(g(x+ 1)− 2g(x) + g(x− 1))(s) = (exp(i2πs) + exp(−i2πs)− 2)ĝ(s) = −4 sin2(πs)ĝ(s) .

Now since multiplication in time domain corresponds to convolution in frequency domain, and
convolution with Dirac delta shifts the function

f̂(s) = −4 sin2(πs)(−1/4ĝ(s− 1)− 1/4ĝ(s+ 1) + 1/2ĝ(s)) = sin2(πs) · (ĝ(s+ 1)− 2ĝ(s) + ĝ(s− 1))

as claimed. Since both f(x) and f̂(s) have a multiplicative sin2(πx) term (resp. sin2(πs)), it
is clear that they have double roots at equispaced integers x, s ∈ Z and vanish to first order
at these points. In fact, this example also highlights the importance of the non-uniform grid
{0,±

√
1,±

√
2,±

√
3, . . . } used in [5].
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