Strand displacement gate

The reaction pathway is depicted in Figure 1. Target test tubes are depicted in Figure 2 based on the specification of (Wolfe et al., J Am Chem Soc, 2017; Supplementary Section S2.2) with the following definitions. The total number of target test tubes is $|\Omega|=\sum_{n=1, \ldots, N}\{\text { Step 0, Step } 1\}_{n}+$ Crosstalk $=$ $2 N+1$; the target test tubes in the multistate test tube ensemble, Ω, are indexed by $h=1, \ldots, 2 N+1$. $L_{\max }=2$ for all tubes.

Reactants for system n

- Target: X_{n}
- Gate: $\{\mathrm{A} \cdot \mathrm{B}\}_{n}$

Elementary step tubes for system n

- Step $0_{n}: \Psi_{0_{n}}^{\text {products }} \equiv\{\mathrm{X}, \mathrm{A} \cdot \mathrm{B}\}_{n} ; \Psi_{0_{n}}^{\text {reactants }} \equiv\{\mathrm{A}, \mathrm{B}\}_{n} ; \Psi_{0_{n}}^{\text {exclude }} \equiv\{\mathrm{X} \cdot \mathrm{A}\}$
- Step $1_{n}: \Psi_{1_{n}}^{\text {products }} \equiv\{\mathrm{X} \cdot \mathrm{A}, \mathrm{B}\}_{n} ; \Psi_{1_{n}}^{\text {reactants }} \equiv\{\mathrm{X}, \mathrm{A} \cdot \mathrm{B}\}_{n} ; \Psi_{1_{n}}^{\text {exclude }} \equiv \emptyset$

Crosstalk tube

- Crosstalk tube: $\Psi_{\text {global }}^{\text {reactive }} \equiv \cup_{n=1, \ldots, N}\left\{\lambda_{n}^{\text {reactive }}\right\} ; \Psi_{\text {global }}^{\text {crosstalk }} \equiv \Psi_{\text {global }}^{L \leq L_{\text {max }}}-\cup_{n=1, \ldots, N}\left\{\lambda_{n}^{\text {cognate }}\right\}$

The reactive species and cognate products for system n are:

- $\lambda_{n}^{\text {simple }}=\{\mathrm{A} \cdot \mathrm{B}\}_{n}$
- $\lambda_{n}^{\text {ss-out }}=\{\mathrm{X}, \mathrm{B}\}_{n}$
- $\lambda_{n}^{\text {ss-in }}=\left\{\mathrm{A}^{\text {toe }}\right\}_{n}$
- $\lambda_{n}^{\text {reactive }}=\left\{\mathrm{A} \cdot \mathrm{B}, \mathrm{X}, \mathrm{B}, \mathrm{A}^{\text {toe }}\right\}_{n}$
- $\lambda_{n}^{\text {cognate }}=\left\{\mathrm{X} \cdot \mathrm{A}, \mathrm{X} \cdot \mathrm{A}^{\text {toe }}\right\}_{n}$
based on the definitions (listed 5^{\prime} to 3^{\prime} using the sequence domain notation of Figure 1):
- $\mathrm{A} \equiv \mathrm{b}^{*}-\mathrm{a}^{*}$
- $\mathrm{A}^{\text {toe }} \equiv \mathrm{b}^{*}$
- $\mathrm{B} \equiv \mathrm{a}$
- $\mathrm{X} \equiv \mathrm{a}-\mathrm{b}$

Step	Reaction	Function	Mechanism
1	$\mathrm{X}+\mathrm{A} \cdot \mathrm{B} \rightarrow \mathrm{X} \cdot \mathrm{A}+\mathrm{B}$	detect target X (sequence ' $\mathrm{a}-\mathrm{b}$ ')	toehold/toehold nucleation, 3-way branch migration

Figure 1: Reaction pathway for strand displacement gate. A•B detects target X (comprising sequence 'a-b-c'), generating unstructured output B. Top: Reaction pathway schematic. Bottom: Elementary step details.

Tube	On-targets $\left(\Psi_{h}^{\text {on }}\right)$	Off-targets $\left(\Psi_{h}^{\text {off }}\right)$
Step 0_{n}	$\{\mathrm{X}, \mathrm{A} \cdot \mathrm{B}\}_{n}$	$\{\mathrm{~A}, \mathrm{~B}\}_{n} \cup \Psi_{0_{n}}^{L \leq L_{\text {max }}}-\{\mathrm{X} \cdot \mathrm{A}\}$
Step 1_{n}	$\{\mathrm{X} \cdot \mathrm{A}, \mathrm{B}\}_{n}$	$\{\mathrm{X}, \mathrm{A} \cdot \mathrm{B}\}_{n} \cup \Psi_{1_{n}}^{L \leq L_{\text {max }}}$
Crosstalk	$\cup_{n=1, \ldots, N}\left\{\lambda_{n}^{\text {reactive }}\right\}$	$\Psi_{\text {global }}^{L \leq L_{\max }}-\cup_{n=1, \ldots, N}\left\{\lambda_{n}^{\text {cognate }}\right\}$

Figure 2: Target test tubes for strand displacement gate. Top: Target test tube schematics. Bottom: Target test tube details. Each target test tube contains the depicted on-target complexes (each with the depicted target structure and a target concentration of 10 nM) and the off-target complexes listed in the table (each with vanishing target concentration). To simultaneously design N orthogonal systems, the total number of target test tubes is $|\Omega|=2 N+1 . L_{\max }=2$ for all tubes. Design conditions: RNA in $1 \mathrm{M} \mathrm{Na}^{+}$at 23 ${ }^{\circ} \mathrm{C}$.

