## Strand displacement gate

The reaction pathway is depicted in Figure 1. Target test tubes are depicted in Figure 2 based on the specification of (Wolfe et al., J Am Chem Soc, 2017; Supplementary Section S2.2) with the following definitions. The total number of target test tubes is  $|\Omega| = \sum_{n=1,...,N} \{\text{Step 0, Step 1}\}_n + \text{Crosstalk} = 2N+1$ ; the target test tubes in the multistate test tube ensemble,  $\Omega$ , are indexed by  $h=1,\ldots,2N+1$ .  $L_{\max}=2$  for all tubes.

## Reactants for system n

- Target:  $X_n$
- Gate:  $\{A \cdot B\}_n$

## Elementary step tubes for system n

- $\bullet \ \, \mathrm{Step} \,\, 0_n \colon \, \Psi_{0_n}^{\mathrm{products}} \equiv \{\mathrm{X}, \, \mathrm{A} \cdot \mathrm{B}\}_n; \, \Psi_{0_n}^{\mathrm{reactants}} \equiv \{\mathrm{A}, \, \mathrm{B}\}_n; \, \Psi_{0_n}^{\mathrm{exclude}} \equiv \{\mathrm{X} \cdot \mathrm{A}\}$
- Step  $1_n$ :  $\Psi_{1_n}^{\text{products}} \equiv \{X \cdot A, B\}_n$ ;  $\Psi_{1_n}^{\text{reactants}} \equiv \{X, A \cdot B\}_n$ ;  $\Psi_{1_n}^{\text{exclude}} \equiv \emptyset$

## Crosstalk tube

 $\bullet \ \, \text{Crosstalk tube:} \ \, \Psi_{\text{global}}^{\text{reactive}} \equiv \cup_{n=1,\dots,N} \{ \lambda_n^{\text{reactive}} \}; \ \, \Psi_{\text{global}}^{\text{crosstalk}} \equiv \Psi_{\text{global}}^{L \leq L_{\text{max}}} - \cup_{n=1,\dots,N} \{ \lambda_n^{\text{cognate}} \}$ 

The reactive species and cognate products for system n are:

- $\lambda_n^{\text{simple}} = \{A \cdot B\}_n$
- $\lambda_n^{\text{ss-out}} = \{X, B\}_n$
- $\lambda_n^{\text{ss-in}} = \{A^{\text{toe}}\}_n$
- $\lambda_n^{\text{reactive}} = \{A \cdot B, X, B, A^{\text{toe}}\}_n$
- $\lambda_n^{\text{cognate}} = \{X \cdot A, X \cdot A^{\text{toe}}\}_n$

based on the definitions (listed 5' to 3' using the sequence domain notation of Figure 1):

- $A \equiv b^* a^*$
- $A^{toe} \equiv b^*$
- $B \equiv a$
- $X \equiv a-b$



| Step | Reaction                          | Function                         | Mechanism                                          |
|------|-----------------------------------|----------------------------------|----------------------------------------------------|
| 1    | $X + A \cdot B \to X \cdot A + B$ | detect target X (sequence 'a-b') | toehold/toehold nucleation, 3-way branch migration |

Figure 1: Reaction pathway for strand displacement gate. A·B detects target X (comprising sequence 'a-b-c'), generating unstructured output B. Top: Reaction pathway schematic. Bottom: Elementary step details.



| Tube       | On-targets $(\Psi_h^{\text{on}})$               | Off-targets $(\Psi_h^{\text{off}})$                                                                 |
|------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Step $0_n$ | $\{X, A \cdot B\}_n$                            | $\{A, B\}_n \cup \Psi_{0_n}^{L \le L_{\max}} - \{X \cdot A\}$                                       |
| Step $1_n$ | $\{X \cdot A, B\}_n$                            | $\{\mathbf{X},  \mathbf{A} \cdot \mathbf{B}\}_n  \cup  \Psi_{1_n}^{L \leq L_{\max}}$                |
| Crosstalk  | $\cup_{n=1,,N} \{\lambda_n^{\text{reactive}}\}$ | $\Psi_{\mathrm{global}}^{L \leq L_{\mathrm{max}}} - \cup_{n=1,,N} \{\lambda_n^{\mathrm{cognate}}\}$ |

Figure 2: Target test tubes for strand displacement gate. Top: Target test tube schematics. Bottom: Target test tube details. Each target test tube contains the depicted on-target complexes (each with the depicted target structure and a target concentration of 10 nM) and the off-target complexes listed in the table (each with vanishing target concentration). To simultaneously design N orthogonal systems, the total number of target test tubes is  $|\Omega| = 2N + 1$ .  $L_{\text{max}} = 2$  for all tubes. Design conditions: RNA in 1 M Na<sup>+</sup> at 23 °C.