import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import folium # for leaflet maps
from IPython.display import HTML
HTML('''<script>
code_show=true;
function code_toggle() {
if (code_show){
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click to show/unshow codes."></form>''')
Kevin Siswandi. Last updated 29/03/2020.
Note: This analysis was originally made at the end of February 2020, when China (Hubei) was the epicentre of the outbreak. Therefore, I made separate analysis for China and the rest of the world.
Public data are provided by JHU. Latest data are available from https://github.com/CSSEGISandData/COVID-19
# read data
full_table = pd.read_csv('covid_19_clean_complete.csv', parse_dates=['Date'])
# combine china and mainland china
full_table['Country/Region'].replace({'China':'Mainland China'},inplace=True)
countries = full_table['Country/Region'].unique().tolist()
# filling missing values
full_table[['Province/State']] = full_table[['Province/State']].fillna('--')
print("\nTotal countries affected by CoVID-19 thus far: ",len(countries))
print("\nLatest daily case reports included in the notebook: ", str(max(full_table['Date']))[:10])
Total countries affected by CoVID-19 thus far: 188 Latest daily case reports included in the notebook: 2020-05-16
# cases in the Diamond Princess cruise ship
ship = full_table[full_table['Province/State']=='Diamond Princess cruise ship']
full_table = full_table[full_table['Province/State']!='Diamond Princess cruise ship']
# cases in china vs outside china
china = full_table[full_table['Country/Region']=='Mainland China']
row = full_table[full_table['Country/Region']!='Mainland China']
# latest numbers (cumulative)
full_latest = full_table[full_table['Date'] == max(full_table['Date'])].reset_index()
china_latest = full_latest[full_latest['Country/Region']=='Mainland China']
row_latest = full_latest[full_latest['Country/Region']!='Mainland China']
full_latest_grouped = full_latest.groupby('Country/Region')['Confirmed', 'Deaths', 'Recovered'].sum().reset_index()
china_latest_grouped = china_latest.groupby('Province/State')['Confirmed', 'Deaths', 'Recovered'].sum().reset_index()
row_latest_grouped = row_latest.groupby('Country/Region')['Confirmed', 'Deaths', 'Recovered'].sum().reset_index()
For the dashboard by JHU see https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
rl = row_latest.groupby('Country/Region')['Confirmed', 'Deaths', 'Recovered'].sum()
rl = rl.reset_index().sort_values(by='Confirmed', ascending=False).reset_index(drop=True)
ncl = rl.copy()[:20]
ncl['Affected'] = ncl['Confirmed'] - ncl['Deaths'] - ncl['Recovered']
ncl = ncl.melt(id_vars="Country/Region", value_vars=['Affected', 'Recovered', 'Deaths'])
fig = px.bar(ncl.sort_values(['variable', 'value']),
x="value", y="Country/Region", color='variable', orientation='h', height=800,
# height=600, width=1000,
title='Number of cases for the 20 most affected countries (excluding China)')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.show()
# ------------------------------------------
cl = china_latest.groupby('Province/State')['Confirmed', 'Deaths', 'Recovered'].sum()
cl = cl.reset_index().sort_values(by='Confirmed', ascending=False).reset_index(drop=True)
# cl.head().style.background_gradient(cmap='rainbow')
ncl = cl.copy()
ncl['Affected'] = ncl['Confirmed'] - ncl['Deaths'] - ncl['Recovered']
ncl = ncl.melt(id_vars="Province/State", value_vars=['Affected', 'Recovered', 'Deaths'])
fig = px.bar(ncl.sort_values(['variable', 'value']),
y="value", x="Province/State", color='variable', orientation='v', height=800,
# height=600, width=1000,
title='Number of cases in China')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.show()
full_latest = full_latest[full_latest['Province/State'] != 'Diamond Princess']
# map of reported cases worldwide
m = folium.Map(location=[10, -20], tiles='openstreetmap',
min_zoom=1, max_zoom=4, zoom_start=2.3)
for i in range(0, len(full_latest)):
folium.CircleMarker(
location=[full_latest.iloc[i]['Lat'], full_latest.iloc[i]['Long']],
color='crimson',
tooltip = '<li><bold>Country : '+str(full_latest.iloc[i]['Country/Region'])+
'<li><bold>Province : '+str(full_latest.iloc[i]['Province/State'])+
'<li><bold>Confirmed : '+str(full_latest.iloc[i]['Confirmed'])+
'<li><bold>Deaths : '+str(full_latest.iloc[i]['Deaths'])+
'<li><bold>Recovered : '+str(full_latest.iloc[i]['Recovered']),
radius=int(full_latest.iloc[i]['Confirmed']**0.2 + 1),
fill_color='red',
fill_opacity=0.7).add_to(m)
m
Play with the interactive map below to visualize the progression of number of cases over time (from 22/1/2020). Note that the spread outside China only started to happen much later.
china_map = china.groupby(['Date', 'Province/State'])['Confirmed', 'Deaths', 'Recovered',
'Lat', 'Long'].max()
china_map = china_map.reset_index()
china_map['size'] = china_map['Confirmed'].pow(0.5)
china_map['Date'] = pd.to_datetime(china_map['Date'])
china_map['Date'] = china_map['Date'].dt.strftime('%m/%d/%Y')
china_map.head()
fig = px.scatter_geo(china_map, lat='Lat', lon='Long', scope='asia',
color="size", size='size', hover_name='Province/State',
hover_data=['Confirmed', 'Deaths', 'Recovered'],
projection="natural earth", animation_frame="Date",
title='Spread in China over time')
fig.update(layout_coloraxis_showscale=False)
fig.show()
# -----------------------------------------------------------------------------------
formated_gdf = row.groupby(['Date', 'Country/Region'])['Confirmed', 'Deaths', 'Recovered'].max()
formated_gdf = formated_gdf.reset_index()
formated_gdf = formated_gdf[formated_gdf['Country/Region']!='Mainland China']
formated_gdf['Date'] = pd.to_datetime(formated_gdf['Date'])
formated_gdf['Date'] = formated_gdf['Date'].dt.strftime('%m/%d/%Y')
fig = px.scatter_geo(formated_gdf[formated_gdf['Country/Region']!='China'],
locations="Country/Region", locationmode='country names',
color="Confirmed", size='Confirmed', hover_name="Country/Region",
range_color= [0, max(formated_gdf['Confirmed'])+2],
projection="natural earth", animation_frame="Date",
title='Spread outside China over time')
fig.update(layout_coloraxis_showscale=False)
fig.show()
# countries by highest deaths
temp_flg = full_latest_grouped[['Country/Region', 'Deaths']]
temp_flg = temp_flg.sort_values(by='Deaths', ascending=False)
temp_flg = temp_flg.reset_index(drop=True)
temp_flg = temp_flg[temp_flg['Deaths']>0]
temp_flg.style.background_gradient(cmap='Pastel1_r')
Country/Region | Deaths | |
---|---|---|
0 | US | 88754 |
1 | United Kingdom | 34546 |
2 | Italy | 31763 |
3 | Spain | 27563 |
4 | France | 27532 |
5 | Brazil | 15662 |
6 | Belgium | 9005 |
7 | Germany | 7938 |
8 | Iran | 6937 |
9 | Canada | 5800 |
10 | Netherlands | 5689 |
11 | Mexico | 5045 |
12 | Mainland China | 4638 |
13 | Turkey | 4096 |
14 | Sweden | 3674 |
15 | India | 2871 |
16 | Ecuador | 2688 |
17 | Russia | 2537 |
18 | Peru | 2523 |
19 | Switzerland | 1879 |
20 | Ireland | 1533 |
21 | Portugal | 1203 |
22 | Romania | 1094 |
23 | Indonesia | 1089 |
24 | Poland | 915 |
25 | Pakistan | 834 |
26 | Philippines | 817 |
27 | Japan | 725 |
28 | Austria | 629 |
29 | Egypt | 612 |
30 | Colombia | 562 |
31 | Denmark | 543 |
32 | Algeria | 542 |
33 | Ukraine | 497 |
34 | Hungary | 448 |
35 | Dominican Republic | 428 |
36 | Chile | 421 |
37 | Argentina | 363 |
38 | Bangladesh | 314 |
39 | Saudi Arabia | 302 |
40 | Finland | 297 |
41 | Czechia | 296 |
42 | Panama | 269 |
43 | Israel | 268 |
44 | South Korea | 262 |
45 | South Africa | 261 |
46 | Norway | 232 |
47 | Serbia | 228 |
48 | United Arab Emirates | 214 |
49 | Moldova | 207 |
50 | Morocco | 192 |
51 | Nigeria | 176 |
52 | Afghanistan | 168 |
53 | Bolivia | 165 |
54 | Greece | 162 |
55 | Belarus | 160 |
56 | Cameroon | 140 |
57 | Honduras | 138 |
58 | Bosnia and Herzegovina | 129 |
59 | Iraq | 121 |
60 | Malaysia | 113 |
61 | Kuwait | 107 |
62 | Bulgaria | 105 |
63 | Luxembourg | 104 |
64 | Slovenia | 103 |
65 | North Macedonia | 98 |
66 | Australia | 98 |
67 | Sudan | 97 |
68 | Croatia | 95 |
69 | Cuba | 79 |
70 | Estonia | 63 |
71 | Congo (Kinshasa) | 61 |
72 | Thailand | 56 |
73 | Lithuania | 55 |
74 | Armenia | 55 |
75 | Somalia | 55 |
76 | Burkina Faso | 51 |
77 | Niger | 51 |
78 | Andorra | 51 |
79 | Chad | 50 |
80 | Kenya | 50 |
81 | Mali | 48 |
82 | Tunisia | 45 |
83 | San Marino | 41 |
84 | Azerbaijan | 36 |
85 | Tajikistan | 36 |
86 | Kazakhstan | 34 |
87 | Guatemala | 33 |
88 | Albania | 31 |
89 | Sierra Leone | 29 |
90 | Kosovo | 29 |
91 | Ghana | 29 |
92 | Slovakia | 28 |
93 | Lebanon | 26 |
94 | El Salvador | 26 |
95 | Senegal | 25 |
96 | Cote d'Ivoire | 25 |
97 | Singapore | 22 |
98 | New Zealand | 21 |
99 | Oman | 21 |
100 | Tanzania | 21 |
101 | Liberia | 20 |
102 | Haiti | 20 |
103 | Uruguay | 19 |
104 | Latvia | 19 |
105 | Yemen | 18 |
106 | Cyprus | 17 |
107 | Guinea | 16 |
108 | Congo (Brazzaville) | 15 |
109 | Qatar | 15 |
110 | Kyrgyzstan | 14 |
111 | Diamond Princess | 13 |
112 | Georgia | 12 |
113 | Bahrain | 12 |
114 | Paraguay | 11 |
115 | Togo | 11 |
116 | Gabon | 11 |
117 | Bahamas | 11 |
118 | Uzbekistan | 11 |
119 | Venezuela | 10 |
120 | Mauritius | 10 |
121 | Costa Rica | 10 |
122 | Guyana | 10 |
123 | Iceland | 10 |
124 | Sri Lanka | 9 |
125 | Montenegro | 9 |
126 | Jordan | 9 |
127 | Jamaica | 9 |
128 | Trinidad and Tobago | 8 |
129 | Nicaragua | 8 |
130 | Sao Tome and Principe | 7 |
131 | Equatorial Guinea | 7 |
132 | Taiwan* | 7 |
133 | Barbados | 7 |
134 | Zambia | 7 |
135 | Burma | 6 |
136 | Malta | 6 |
137 | Ethiopia | 5 |
138 | Guinea-Bissau | 4 |
139 | Djibouti | 4 |
140 | South Sudan | 4 |
141 | Monaco | 4 |
142 | Mauritania | 4 |
143 | Maldives | 4 |
144 | Zimbabwe | 4 |
145 | Syria | 3 |
146 | Cabo Verde | 3 |
147 | Antigua and Barbuda | 3 |
148 | Malawi | 3 |
149 | Libya | 3 |
150 | Angola | 2 |
151 | West Bank and Gaza | 2 |
152 | Benin | 2 |
153 | Belize | 2 |
154 | Eswatini | 2 |
155 | MS Zaandam | 2 |
156 | Gambia | 1 |
157 | Brunei | 1 |
158 | Liechtenstein | 1 |
159 | Nepal | 1 |
160 | Suriname | 1 |
161 | Burundi | 1 |
162 | Comoros | 1 |
163 | Botswana | 1 |
# Countries with no cases recovered (yet)
temp = row_latest_grouped[row_latest_grouped['Recovered']==0]
temp = temp[['Country/Region', 'Confirmed', 'Deaths', 'Recovered']]
temp = temp.sort_values('Confirmed', ascending=False)
temp = temp.reset_index(drop=True)
temp.style.background_gradient(cmap='Pastel1_r')
Country/Region | Confirmed | Deaths | Recovered | |
---|---|---|---|---|
0 | Canada | 77206 | 5800 | 0 |
1 | Tajikistan | 1322 | 36 | 0 |
2 | Mozambique | 129 | 0 | 0 |
3 | Syria | 51 | 3 | 0 |
4 | Timor-Leste | 24 | 0 | 0 |
5 | MS Zaandam | 9 | 2 | 0 |
6 | Lesotho | 1 | 0 | 0 |
temp = full_table.groupby(['Country/Region', 'Date', ])['Confirmed', 'Deaths', 'Recovered']
temp = temp.sum().diff().reset_index()
mask = temp['Country/Region'] != temp['Country/Region'].shift(1)
temp.loc[mask, 'Confirmed'] = np.nan
temp.loc[mask, 'Deaths'] = np.nan
temp.loc[mask, 'Recovered'] = np.nan
fig = px.bar(temp, x="Date", y="Confirmed", color='Country/Region',
title='Number of new cases reported globally everyday')
fig.show()
fig = px.bar(temp[temp['Country/Region']!='Mainland China'], x="Date", y="Confirmed", color='Country/Region',
title='Number of daily new cases (excluding) China')
fig.show()
fig = px.bar(temp[temp['Country/Region']!='Mainland China'], x="Date", y="Deaths", color='Country/Region',
title='Number of daily new death cases (excluding China)')
fig.show()
temp = row_latest_grouped[row_latest_grouped['Confirmed']==
row_latest_grouped['Deaths']+
row_latest_grouped['Recovered']]
temp = temp[['Country/Region', 'Confirmed', 'Deaths', 'Recovered']]
temp = temp.sort_values('Confirmed', ascending=False)
temp = temp.reset_index(drop=True)
temp.style.background_gradient(cmap='Greens')
Country/Region | Confirmed | Deaths | Recovered | |
---|---|---|---|---|
0 | Mauritius | 332 | 10 | 322 |
1 | Cambodia | 122 | 0 | 122 |
2 | Eritrea | 39 | 0 | 39 |
3 | Belize | 18 | 2 | 16 |
4 | Saint Lucia | 18 | 0 | 18 |
5 | Suriname | 10 | 1 | 9 |
6 | Papua New Guinea | 8 | 0 | 8 |
7 | Western Sahara | 6 | 0 | 6 |
temp = china_latest_grouped[china_latest_grouped['Confirmed']==
china_latest_grouped['Deaths']+
china_latest_grouped['Recovered']]
temp = temp[['Province/State', 'Confirmed', 'Deaths', 'Recovered']]
temp = temp.sort_values('Confirmed', ascending=False)
temp = temp.reset_index(drop=True)
temp.style.background_gradient(cmap='Greens')
Province/State | Confirmed | Deaths | Recovered | |
---|---|---|---|---|
0 | Henan | 1276 | 22 | 1254 |
1 | Zhejiang | 1268 | 1 | 1267 |
2 | Hunan | 1019 | 4 | 1015 |
3 | Anhui | 991 | 6 | 985 |
4 | Heilongjiang | 945 | 13 | 932 |
5 | Jiangxi | 937 | 1 | 936 |
6 | Jiangsu | 653 | 0 | 653 |
7 | Chongqing | 579 | 6 | 573 |
8 | Sichuan | 561 | 3 | 558 |
9 | Fujian | 356 | 1 | 355 |
10 | Guangxi | 254 | 2 | 252 |
11 | Shanxi | 198 | 0 | 198 |
12 | Yunnan | 185 | 2 | 183 |
13 | Guizhou | 147 | 2 | 145 |
14 | Gansu | 139 | 2 | 137 |
15 | Xinjiang | 76 | 3 | 73 |
16 | Ningxia | 75 | 0 | 75 |
17 | Qinghai | 18 | 0 | 18 |
18 | Tibet | 1 | 0 | 1 |
# global data
all_cases = full_table.groupby('Date')['Confirmed', 'Deaths', 'Recovered'].sum()
all_cases = all_cases.reset_index()
all_cases = all_cases.sort_values('Date', ascending=False)
all_cases.head(5).style.background_gradient(cmap='Pastel1')
Date | Confirmed | Deaths | Recovered | |
---|---|---|---|---|
115 | 2020-05-16 00:00:00 | 4634062 | 311781 | 1655256 |
114 | 2020-05-15 00:00:00 | 4542341 | 307666 | 1600051 |
113 | 2020-05-14 00:00:00 | 4442157 | 302418 | 1551698 |
112 | 2020-05-13 00:00:00 | 4347012 | 297197 | 1513280 |
111 | 2020-05-12 00:00:00 | 4261741 | 291942 | 1459275 |
# breakdown by countries, alphabetical
temp = full_latest.groupby(['Country/Region', 'Province/State'])['Confirmed', 'Deaths', 'Recovered'].max()
temp.style.background_gradient(cmap='Pastel1_r')
Confirmed | Deaths | Recovered | ||
---|---|---|---|---|
Country/Region | Province/State | |||
Afghanistan | -- | 6402 | 168 | 745 |
Albania | -- | 933 | 31 | 714 |
Algeria | -- | 6821 | 542 | 3409 |
Andorra | -- | 761 | 51 | 615 |
Angola | -- | 48 | 2 | 17 |
Antigua and Barbuda | -- | 25 | 3 | 19 |
Argentina | -- | 7805 | 363 | 2534 |
Armenia | -- | 4283 | 55 | 1791 |
Australia | Australian Capital Territory | 107 | 3 | 104 |
New South Wales | 3075 | 45 | 2611 | |
Northern Territory | 29 | 0 | 27 | |
Queensland | 1055 | 6 | 1037 | |
South Australia | 439 | 4 | 435 | |
Tasmania | 228 | 13 | 192 | |
Victoria | 1558 | 18 | 1417 | |
Western Australia | 553 | 9 | 541 | |
Austria | -- | 16201 | 629 | 14524 |
Azerbaijan | -- | 3138 | 36 | 1944 |
Bahamas | -- | 96 | 11 | 42 |
Bahrain | -- | 6747 | 12 | 2762 |
Bangladesh | -- | 20995 | 314 | 4117 |
Barbados | -- | 86 | 7 | 67 |
Belarus | -- | 28681 | 160 | 9498 |
Belgium | -- | 54989 | 9005 | 14460 |
Belize | -- | 18 | 2 | 16 |
Benin | -- | 339 | 2 | 83 |
Bhutan | -- | 21 | 0 | 5 |
Bolivia | -- | 3826 | 165 | 473 |
Bosnia and Herzegovina | -- | 2267 | 129 | 1355 |
Botswana | -- | 24 | 1 | 17 |
Brazil | -- | 233511 | 15662 | 89672 |
Brunei | -- | 141 | 1 | 136 |
Bulgaria | -- | 2175 | 105 | 573 |
Burkina Faso | -- | 782 | 51 | 604 |
Burma | -- | 182 | 6 | 96 |
Burundi | -- | 15 | 1 | 7 |
Cabo Verde | -- | 328 | 3 | 84 |
Cambodia | -- | 122 | 0 | 122 |
Cameroon | -- | 3105 | 140 | 1567 |
Canada | Alberta | 6587 | 126 | 0 |
British Columbia | 2428 | 141 | 0 | |
Grand Princess | 13 | 0 | 0 | |
Manitoba | 289 | 7 | 0 | |
New Brunswick | 120 | 0 | 0 | |
Newfoundland and Labrador | 260 | 3 | 0 | |
Northwest Territories | 5 | 0 | 0 | |
Nova Scotia | 1037 | 55 | 0 | |
Ontario | 23645 | 1976 | 0 | |
Prince Edward Island | 27 | 0 | 0 | |
Quebec | 42192 | 3484 | 0 | |
Saskatchewan | 591 | 7 | 0 | |
Yukon | 11 | 0 | 0 | |
Central African Republic | -- | 327 | 0 | 13 |
Chad | -- | 474 | 50 | 111 |
Chile | -- | 41428 | 421 | 18014 |
Colombia | -- | 14939 | 562 | 3587 |
Comoros | -- | 11 | 1 | 3 |
Congo (Brazzaville) | -- | 391 | 15 | 87 |
Congo (Kinshasa) | -- | 1455 | 61 | 270 |
Costa Rica | -- | 853 | 10 | 551 |
Cote d'Ivoire | -- | 2061 | 25 | 987 |
Croatia | -- | 2224 | 95 | 1913 |
Cuba | -- | 1862 | 79 | 1460 |
Cyprus | -- | 914 | 17 | 515 |
Czechia | -- | 8455 | 296 | 5422 |
Denmark | -- | 10858 | 543 | 9107 |
Faroe Islands | 187 | 0 | 187 | |
Greenland | 11 | 0 | 11 | |
Diamond Princess | -- | 712 | 13 | 651 |
Djibouti | -- | 1331 | 4 | 950 |
Dominica | -- | 16 | 0 | 15 |
Dominican Republic | -- | 12110 | 428 | 3726 |
Ecuador | -- | 32763 | 2688 | 3433 |
Egypt | -- | 11719 | 612 | 2950 |
El Salvador | -- | 1265 | 26 | 441 |
Equatorial Guinea | -- | 594 | 7 | 22 |
Eritrea | -- | 39 | 0 | 39 |
Estonia | -- | 1770 | 63 | 934 |
Eswatini | -- | 202 | 2 | 72 |
Ethiopia | -- | 306 | 5 | 113 |
Fiji | -- | 18 | 0 | 15 |
Finland | -- | 6286 | 297 | 5000 |
France | -- | 177207 | 27483 | 59142 |
French Guiana | 197 | 1 | 125 | |
French Polynesia | 60 | 0 | 59 | |
Guadeloupe | 155 | 13 | 109 | |
Martinique | 192 | 14 | 91 | |
Mayotte | 1312 | 18 | 627 | |
New Caledonia | 18 | 0 | 18 | |
Reunion | 443 | 0 | 354 | |
Saint Barthelemy | 6 | 0 | 6 | |
Saint Pierre and Miquelon | 1 | 0 | 1 | |
St Martin | 39 | 3 | 30 | |
Gabon | -- | 1320 | 11 | 244 |
Gambia | -- | 23 | 1 | 12 |
Georgia | -- | 683 | 12 | 419 |
Germany | -- | 175752 | 7938 | 152600 |
Ghana | -- | 5735 | 29 | 1754 |
Greece | -- | 2819 | 162 | 1374 |
Grenada | -- | 22 | 0 | 14 |
Guatemala | -- | 1763 | 33 | 138 |
Guinea | -- | 2658 | 16 | 1133 |
Guinea-Bissau | -- | 969 | 4 | 26 |
Guyana | -- | 117 | 10 | 43 |
Haiti | -- | 358 | 20 | 29 |
Holy See | -- | 12 | 0 | 2 |
Honduras | -- | 2565 | 138 | 278 |
Hungary | -- | 3473 | 448 | 1371 |
Iceland | -- | 1802 | 10 | 1786 |
India | -- | 90648 | 2871 | 34224 |
Indonesia | -- | 17025 | 1089 | 3911 |
Iran | -- | 118392 | 6937 | 93147 |
Iraq | -- | 3260 | 121 | 2126 |
Ireland | -- | 24048 | 1533 | 19470 |
Israel | -- | 16608 | 268 | 12855 |
Italy | -- | 224760 | 31763 | 122810 |
Jamaica | -- | 517 | 9 | 121 |
Japan | -- | 16237 | 725 | 10338 |
Jordan | -- | 607 | 9 | 404 |
Kazakhstan | -- | 5850 | 34 | 2980 |
Kenya | -- | 830 | 50 | 301 |
Kosovo | -- | 944 | 29 | 690 |
Kuwait | -- | 13802 | 107 | 3843 |
Kyrgyzstan | -- | 1117 | 14 | 783 |
Laos | -- | 19 | 0 | 14 |
Latvia | -- | 997 | 19 | 662 |
Lebanon | -- | 902 | 26 | 247 |
Lesotho | -- | 1 | 0 | 0 |
Liberia | -- | 223 | 20 | 116 |
Libya | -- | 65 | 3 | 28 |
Liechtenstein | -- | 82 | 1 | 55 |
Lithuania | -- | 1534 | 55 | 988 |
Luxembourg | -- | 3930 | 104 | 3699 |
MS Zaandam | -- | 9 | 2 | 0 |
Madagascar | -- | 283 | 0 | 114 |
Mainland China | Anhui | 991 | 6 | 985 |
Beijing | 593 | 9 | 577 | |
Chongqing | 579 | 6 | 573 | |
Fujian | 356 | 1 | 355 | |
Gansu | 139 | 2 | 137 | |
Guangdong | 1590 | 8 | 1579 | |
Guangxi | 254 | 2 | 252 | |
Guizhou | 147 | 2 | 145 | |
Hainan | 169 | 6 | 162 | |
Hebei | 328 | 6 | 321 | |
Heilongjiang | 945 | 13 | 932 | |
Henan | 1276 | 22 | 1254 | |
Hong Kong | 1052 | 4 | 1022 | |
Hubei | 68134 | 4512 | 63616 | |
Hunan | 1019 | 4 | 1015 | |
Inner Mongolia | 209 | 1 | 196 | |
Jiangsu | 653 | 0 | 653 | |
Jiangxi | 937 | 1 | 936 | |
Jilin | 144 | 2 | 113 | |
Liaoning | 149 | 2 | 144 | |
Macau | 45 | 0 | 44 | |
Ningxia | 75 | 0 | 75 | |
Qinghai | 18 | 0 | 18 | |
Shaanxi | 308 | 3 | 301 | |
Shandong | 788 | 7 | 780 | |
Shanghai | 665 | 7 | 641 | |
Shanxi | 198 | 0 | 198 | |
Sichuan | 561 | 3 | 558 | |
Tianjin | 192 | 3 | 187 | |
Tibet | 1 | 0 | 1 | |
Xinjiang | 76 | 3 | 73 | |
Yunnan | 185 | 2 | 183 | |
Zhejiang | 1268 | 1 | 1267 | |
Malawi | -- | 65 | 3 | 24 |
Malaysia | -- | 6872 | 113 | 5512 |
Maldives | -- | 1078 | 4 | 58 |
Mali | -- | 835 | 48 | 479 |
Malta | -- | 546 | 6 | 450 |
Mauritania | -- | 40 | 4 | 7 |
Mauritius | -- | 332 | 10 | 322 |
Mexico | -- | 47144 | 5045 | 31848 |
Moldova | -- | 5934 | 207 | 2344 |
Monaco | -- | 96 | 4 | 87 |
Mongolia | -- | 135 | 0 | 20 |
Montenegro | -- | 324 | 9 | 311 |
Morocco | -- | 6741 | 192 | 3487 |
Mozambique | -- | 129 | 0 | 0 |
Namibia | -- | 16 | 0 | 13 |
Nepal | -- | 291 | 1 | 36 |
Netherlands | -- | 43870 | 5670 | 0 |
Aruba | 101 | 3 | 93 | |
Curacao | 16 | 1 | 14 | |
Sint Maarten | 77 | 15 | 54 | |
New Zealand | -- | 1499 | 21 | 1433 |
Nicaragua | -- | 25 | 8 | 7 |
Niger | -- | 889 | 51 | 689 |
Nigeria | -- | 5621 | 176 | 1472 |
North Macedonia | -- | 1762 | 98 | 1267 |
Norway | -- | 8237 | 232 | 32 |
Oman | -- | 5029 | 21 | 1436 |
Pakistan | -- | 38799 | 834 | 10880 |
Panama | -- | 9449 | 269 | 6080 |
Papua New Guinea | -- | 8 | 0 | 8 |
Paraguay | -- | 778 | 11 | 198 |
Peru | -- | 88541 | 2523 | 28272 |
Philippines | -- | 12305 | 817 | 2561 |
Poland | -- | 18257 | 915 | 7175 |
Portugal | -- | 28810 | 1203 | 3822 |
Qatar | -- | 30972 | 15 | 3788 |
Romania | -- | 16704 | 1094 | 9574 |
Russia | -- | 272043 | 2537 | 63166 |
Rwanda | -- | 289 | 0 | 178 |
Saint Kitts and Nevis | -- | 15 | 0 | 14 |
Saint Lucia | -- | 18 | 0 | 18 |
Saint Vincent and the Grenadines | -- | 17 | 0 | 14 |
San Marino | -- | 653 | 41 | 198 |
Sao Tome and Principe | -- | 235 | 7 | 4 |
Saudi Arabia | -- | 52016 | 302 | 23666 |
Senegal | -- | 2429 | 25 | 949 |
Serbia | -- | 10496 | 228 | 4479 |
Seychelles | -- | 11 | 0 | 10 |
Sierra Leone | -- | 462 | 29 | 106 |
Singapore | -- | 27356 | 22 | 8342 |
Slovakia | -- | 1493 | 28 | 1151 |
Slovenia | -- | 1465 | 103 | 272 |
Somalia | -- | 1357 | 55 | 148 |
South Africa | -- | 14355 | 261 | 6478 |
South Korea | -- | 11050 | 262 | 9888 |
South Sudan | -- | 236 | 4 | 4 |
Spain | -- | 230698 | 27563 | 146446 |
Sri Lanka | -- | 960 | 9 | 520 |
Sudan | -- | 2289 | 97 | 222 |
Suriname | -- | 10 | 1 | 9 |
Sweden | -- | 29677 | 3674 | 4971 |
Switzerland | -- | 30572 | 1879 | 27400 |
Syria | -- | 51 | 3 | 0 |
Taiwan* | -- | 440 | 7 | 389 |
Tajikistan | -- | 1322 | 36 | 0 |
Tanzania | -- | 509 | 21 | 183 |
Thailand | -- | 3025 | 56 | 2855 |
Timor-Leste | -- | 24 | 0 | 0 |
Togo | -- | 298 | 11 | 99 |
Trinidad and Tobago | -- | 116 | 8 | 107 |
Tunisia | -- | 1037 | 45 | 807 |
Turkey | -- | 148067 | 4096 | 108137 |
US | -- | 1467820 | 88754 | 268376 |
Uganda | -- | 227 | 0 | 63 |
Ukraine | -- | 17858 | 497 | 4906 |
United Arab Emirates | -- | 22627 | 214 | 7931 |
United Kingdom | -- | 240161 | 34466 | 0 |
Anguilla | 3 | 0 | 3 | |
Bermuda | 123 | 9 | 73 | |
British Virgin Islands | 8 | 1 | 6 | |
Cayman Islands | 94 | 1 | 55 | |
Channel Islands | 554 | 43 | 458 | |
Falkland Islands (Malvinas) | 13 | 0 | 13 | |
Gibraltar | 147 | 0 | 145 | |
Isle of Man | 335 | 24 | 285 | |
Montserrat | 11 | 1 | 10 | |
Turks and Caicos Islands | 12 | 1 | 10 | |
Uruguay | -- | 733 | 19 | 558 |
Uzbekistan | -- | 2738 | 11 | 2213 |
Venezuela | -- | 504 | 10 | 241 |
Vietnam | -- | 318 | 0 | 260 |
West Bank and Gaza | -- | 376 | 2 | 329 |
Western Sahara | -- | 6 | 0 | 6 |
Yemen | -- | 122 | 18 | 1 |
Zambia | -- | 679 | 7 | 183 |
Zimbabwe | -- | 42 | 4 | 13 |
# breakdown by countries, sorted by cases
temp_f = full_latest_grouped[['Country/Region', 'Confirmed', 'Deaths', 'Recovered']]
temp_f = temp_f.sort_values(by='Confirmed', ascending=False)
temp_f = temp_f.reset_index(drop=True)
temp_f.style.background_gradient(cmap='Pastel1_r')
Country/Region | Confirmed | Deaths | Recovered | |
---|---|---|---|---|
0 | US | 1467820 | 88754 | 268376 |
1 | Russia | 272043 | 2537 | 63166 |
2 | United Kingdom | 241461 | 34546 | 1058 |
3 | Brazil | 233511 | 15662 | 89672 |
4 | Spain | 230698 | 27563 | 146446 |
5 | Italy | 224760 | 31763 | 122810 |
6 | France | 179630 | 27532 | 60562 |
7 | Germany | 175752 | 7938 | 152600 |
8 | Turkey | 148067 | 4096 | 108137 |
9 | Iran | 118392 | 6937 | 93147 |
10 | India | 90648 | 2871 | 34224 |
11 | Peru | 88541 | 2523 | 28272 |
12 | Mainland China | 84044 | 4638 | 79293 |
13 | Canada | 77206 | 5800 | 0 |
14 | Belgium | 54989 | 9005 | 14460 |
15 | Saudi Arabia | 52016 | 302 | 23666 |
16 | Mexico | 47144 | 5045 | 31848 |
17 | Netherlands | 44064 | 5689 | 161 |
18 | Chile | 41428 | 421 | 18014 |
19 | Pakistan | 38799 | 834 | 10880 |
20 | Ecuador | 32763 | 2688 | 3433 |
21 | Qatar | 30972 | 15 | 3788 |
22 | Switzerland | 30572 | 1879 | 27400 |
23 | Sweden | 29677 | 3674 | 4971 |
24 | Portugal | 28810 | 1203 | 3822 |
25 | Belarus | 28681 | 160 | 9498 |
26 | Singapore | 27356 | 22 | 8342 |
27 | Ireland | 24048 | 1533 | 19470 |
28 | United Arab Emirates | 22627 | 214 | 7931 |
29 | Bangladesh | 20995 | 314 | 4117 |
30 | Poland | 18257 | 915 | 7175 |
31 | Ukraine | 17858 | 497 | 4906 |
32 | Indonesia | 17025 | 1089 | 3911 |
33 | Romania | 16704 | 1094 | 9574 |
34 | Israel | 16608 | 268 | 12855 |
35 | Japan | 16237 | 725 | 10338 |
36 | Austria | 16201 | 629 | 14524 |
37 | Colombia | 14939 | 562 | 3587 |
38 | South Africa | 14355 | 261 | 6478 |
39 | Kuwait | 13802 | 107 | 3843 |
40 | Philippines | 12305 | 817 | 2561 |
41 | Dominican Republic | 12110 | 428 | 3726 |
42 | Egypt | 11719 | 612 | 2950 |
43 | Denmark | 11056 | 543 | 9305 |
44 | South Korea | 11050 | 262 | 9888 |
45 | Serbia | 10496 | 228 | 4479 |
46 | Panama | 9449 | 269 | 6080 |
47 | Czechia | 8455 | 296 | 5422 |
48 | Norway | 8237 | 232 | 32 |
49 | Argentina | 7805 | 363 | 2534 |
50 | Australia | 7044 | 98 | 6364 |
51 | Malaysia | 6872 | 113 | 5512 |
52 | Algeria | 6821 | 542 | 3409 |
53 | Bahrain | 6747 | 12 | 2762 |
54 | Morocco | 6741 | 192 | 3487 |
55 | Afghanistan | 6402 | 168 | 745 |
56 | Finland | 6286 | 297 | 5000 |
57 | Moldova | 5934 | 207 | 2344 |
58 | Kazakhstan | 5850 | 34 | 2980 |
59 | Ghana | 5735 | 29 | 1754 |
60 | Nigeria | 5621 | 176 | 1472 |
61 | Oman | 5029 | 21 | 1436 |
62 | Armenia | 4283 | 55 | 1791 |
63 | Luxembourg | 3930 | 104 | 3699 |
64 | Bolivia | 3826 | 165 | 473 |
65 | Hungary | 3473 | 448 | 1371 |
66 | Iraq | 3260 | 121 | 2126 |
67 | Azerbaijan | 3138 | 36 | 1944 |
68 | Cameroon | 3105 | 140 | 1567 |
69 | Thailand | 3025 | 56 | 2855 |
70 | Greece | 2819 | 162 | 1374 |
71 | Uzbekistan | 2738 | 11 | 2213 |
72 | Guinea | 2658 | 16 | 1133 |
73 | Honduras | 2565 | 138 | 278 |
74 | Senegal | 2429 | 25 | 949 |
75 | Sudan | 2289 | 97 | 222 |
76 | Bosnia and Herzegovina | 2267 | 129 | 1355 |
77 | Croatia | 2224 | 95 | 1913 |
78 | Bulgaria | 2175 | 105 | 573 |
79 | Cote d'Ivoire | 2061 | 25 | 987 |
80 | Cuba | 1862 | 79 | 1460 |
81 | Iceland | 1802 | 10 | 1786 |
82 | Estonia | 1770 | 63 | 934 |
83 | Guatemala | 1763 | 33 | 138 |
84 | North Macedonia | 1762 | 98 | 1267 |
85 | Lithuania | 1534 | 55 | 988 |
86 | New Zealand | 1499 | 21 | 1433 |
87 | Slovakia | 1493 | 28 | 1151 |
88 | Slovenia | 1465 | 103 | 272 |
89 | Congo (Kinshasa) | 1455 | 61 | 270 |
90 | Somalia | 1357 | 55 | 148 |
91 | Djibouti | 1331 | 4 | 950 |
92 | Tajikistan | 1322 | 36 | 0 |
93 | Gabon | 1320 | 11 | 244 |
94 | El Salvador | 1265 | 26 | 441 |
95 | Kyrgyzstan | 1117 | 14 | 783 |
96 | Maldives | 1078 | 4 | 58 |
97 | Tunisia | 1037 | 45 | 807 |
98 | Latvia | 997 | 19 | 662 |
99 | Guinea-Bissau | 969 | 4 | 26 |
100 | Sri Lanka | 960 | 9 | 520 |
101 | Kosovo | 944 | 29 | 690 |
102 | Albania | 933 | 31 | 714 |
103 | Cyprus | 914 | 17 | 515 |
104 | Lebanon | 902 | 26 | 247 |
105 | Niger | 889 | 51 | 689 |
106 | Costa Rica | 853 | 10 | 551 |
107 | Mali | 835 | 48 | 479 |
108 | Kenya | 830 | 50 | 301 |
109 | Burkina Faso | 782 | 51 | 604 |
110 | Paraguay | 778 | 11 | 198 |
111 | Andorra | 761 | 51 | 615 |
112 | Uruguay | 733 | 19 | 558 |
113 | Diamond Princess | 712 | 13 | 651 |
114 | Georgia | 683 | 12 | 419 |
115 | Zambia | 679 | 7 | 183 |
116 | San Marino | 653 | 41 | 198 |
117 | Jordan | 607 | 9 | 404 |
118 | Equatorial Guinea | 594 | 7 | 22 |
119 | Malta | 546 | 6 | 450 |
120 | Jamaica | 517 | 9 | 121 |
121 | Tanzania | 509 | 21 | 183 |
122 | Venezuela | 504 | 10 | 241 |
123 | Chad | 474 | 50 | 111 |
124 | Sierra Leone | 462 | 29 | 106 |
125 | Taiwan* | 440 | 7 | 389 |
126 | Congo (Brazzaville) | 391 | 15 | 87 |
127 | West Bank and Gaza | 376 | 2 | 329 |
128 | Haiti | 358 | 20 | 29 |
129 | Benin | 339 | 2 | 83 |
130 | Mauritius | 332 | 10 | 322 |
131 | Cabo Verde | 328 | 3 | 84 |
132 | Central African Republic | 327 | 0 | 13 |
133 | Montenegro | 324 | 9 | 311 |
134 | Vietnam | 318 | 0 | 260 |
135 | Ethiopia | 306 | 5 | 113 |
136 | Togo | 298 | 11 | 99 |
137 | Nepal | 291 | 1 | 36 |
138 | Rwanda | 289 | 0 | 178 |
139 | Madagascar | 283 | 0 | 114 |
140 | South Sudan | 236 | 4 | 4 |
141 | Sao Tome and Principe | 235 | 7 | 4 |
142 | Uganda | 227 | 0 | 63 |
143 | Liberia | 223 | 20 | 116 |
144 | Eswatini | 202 | 2 | 72 |
145 | Burma | 182 | 6 | 96 |
146 | Brunei | 141 | 1 | 136 |
147 | Mongolia | 135 | 0 | 20 |
148 | Mozambique | 129 | 0 | 0 |
149 | Cambodia | 122 | 0 | 122 |
150 | Yemen | 122 | 18 | 1 |
151 | Guyana | 117 | 10 | 43 |
152 | Trinidad and Tobago | 116 | 8 | 107 |
153 | Bahamas | 96 | 11 | 42 |
154 | Monaco | 96 | 4 | 87 |
155 | Barbados | 86 | 7 | 67 |
156 | Liechtenstein | 82 | 1 | 55 |
157 | Libya | 65 | 3 | 28 |
158 | Malawi | 65 | 3 | 24 |
159 | Syria | 51 | 3 | 0 |
160 | Angola | 48 | 2 | 17 |
161 | Zimbabwe | 42 | 4 | 13 |
162 | Mauritania | 40 | 4 | 7 |
163 | Eritrea | 39 | 0 | 39 |
164 | Antigua and Barbuda | 25 | 3 | 19 |
165 | Nicaragua | 25 | 8 | 7 |
166 | Botswana | 24 | 1 | 17 |
167 | Timor-Leste | 24 | 0 | 0 |
168 | Gambia | 23 | 1 | 12 |
169 | Grenada | 22 | 0 | 14 |
170 | Bhutan | 21 | 0 | 5 |
171 | Laos | 19 | 0 | 14 |
172 | Saint Lucia | 18 | 0 | 18 |
173 | Belize | 18 | 2 | 16 |
174 | Fiji | 18 | 0 | 15 |
175 | Saint Vincent and the Grenadines | 17 | 0 | 14 |
176 | Dominica | 16 | 0 | 15 |
177 | Namibia | 16 | 0 | 13 |
178 | Burundi | 15 | 1 | 7 |
179 | Saint Kitts and Nevis | 15 | 0 | 14 |
180 | Holy See | 12 | 0 | 2 |
181 | Seychelles | 11 | 0 | 10 |
182 | Comoros | 11 | 1 | 3 |
183 | Suriname | 10 | 1 | 9 |
184 | MS Zaandam | 9 | 2 | 0 |
185 | Papua New Guinea | 8 | 0 | 8 |
186 | Western Sahara | 6 | 0 | 6 |
187 | Lesotho | 1 | 0 | 0 |
# breakdown of cases in China by provinces
temp_f = china_latest_grouped[['Province/State', 'Confirmed', 'Deaths', 'Recovered']]
temp_f = temp_f.sort_values(by='Confirmed', ascending=False)
temp_f = temp_f.reset_index(drop=True)
temp_f.style.background_gradient(cmap='Pastel1_r')
Province/State | Confirmed | Deaths | Recovered | |
---|---|---|---|---|
0 | Hubei | 68134 | 4512 | 63616 |
1 | Guangdong | 1590 | 8 | 1579 |
2 | Henan | 1276 | 22 | 1254 |
3 | Zhejiang | 1268 | 1 | 1267 |
4 | Hong Kong | 1052 | 4 | 1022 |
5 | Hunan | 1019 | 4 | 1015 |
6 | Anhui | 991 | 6 | 985 |
7 | Heilongjiang | 945 | 13 | 932 |
8 | Jiangxi | 937 | 1 | 936 |
9 | Shandong | 788 | 7 | 780 |
10 | Shanghai | 665 | 7 | 641 |
11 | Jiangsu | 653 | 0 | 653 |
12 | Beijing | 593 | 9 | 577 |
13 | Chongqing | 579 | 6 | 573 |
14 | Sichuan | 561 | 3 | 558 |
15 | Fujian | 356 | 1 | 355 |
16 | Hebei | 328 | 6 | 321 |
17 | Shaanxi | 308 | 3 | 301 |
18 | Guangxi | 254 | 2 | 252 |
19 | Inner Mongolia | 209 | 1 | 196 |
20 | Shanxi | 198 | 0 | 198 |
21 | Tianjin | 192 | 3 | 187 |
22 | Yunnan | 185 | 2 | 183 |
23 | Hainan | 169 | 6 | 162 |
24 | Liaoning | 149 | 2 | 144 |
25 | Guizhou | 147 | 2 | 145 |
26 | Jilin | 144 | 2 | 113 |
27 | Gansu | 139 | 2 | 137 |
28 | Xinjiang | 76 | 3 | 73 |
29 | Ningxia | 75 | 0 | 75 |
30 | Macau | 45 | 0 | 44 |
31 | Qinghai | 18 | 0 | 18 |
32 | Tibet | 1 | 0 | 1 |
def location(row):
if row['Country/Region']=='Mainland China':
if row['Province/State']=='Hubei':
return 'Hubei'
else:
return 'Other Chinese Provinces'
else:
return 'Rest of the World'
temp = full_latest.copy()
temp['Region'] = temp.apply(location, axis=1)
temp = temp.groupby('Region')['Confirmed', 'Deaths', 'Recovered'].sum().reset_index()
temp = temp.melt(id_vars='Region', value_vars=['Confirmed', 'Deaths', 'Recovered'],
var_name='Case', value_name='Count').sort_values('Count')
fig = px.bar(temp, y='Region', x='Count', color='Case', barmode='group', orientation='h',
text='Count', title='Hubei - Rest of China - Rest of the World',
color_discrete_sequence= ['#EF553B', '#00CC96', '#636EFA'])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.show()
gdf = full_table.groupby(['Date', 'Country/Region'])['Confirmed', 'Deaths', 'Recovered'].max()
gdf = gdf.reset_index()
temp = gdf[gdf['Country/Region']=='Mainland China'].reset_index()
temp = temp.melt(id_vars='Date', value_vars=['Confirmed', 'Deaths', 'Recovered'],
var_name='Case', value_name='Count')
fig = px.bar(temp, x="Date", y="Count", color='Case', facet_col="Case",
title='Cases in China')
fig.show()
temp = gdf[gdf['Country/Region']!='Mainland China'].groupby('Date').sum().reset_index()
temp = temp.melt(id_vars='Date', value_vars=['Confirmed', 'Deaths', 'Recovered'],
var_name='Case', value_name='Count')
fig = px.bar(temp, x="Date", y="Count", color='Case', facet_col="Case",
title='Cases in rest of the World')
fig.show()
Note that China has 31 administrative divisions (省级行政区) under direct jurisdiction (excluding Hong Kong and Macau). https://en.wikipedia.org/wiki/Provinces_of_China
c_spread = china[china['Confirmed']!=0].groupby('Date')['Province/State'].unique().apply(len)
c_spread = pd.DataFrame(c_spread).reset_index()
fig = px.line(c_spread, x='Date', y='Province/State',
title='Number of provinces in China affected over time')
fig.show()
# ------------------------------------------------------------------------------------------
spread = full_table[full_table['Confirmed']!=0].groupby('Date')['Country/Region'].unique().apply(len)
spread = pd.DataFrame(spread).reset_index()
fig = px.line(spread, x='Date', y='Country/Region',
title='Number of countries affected over time')
fig.show()
temp = full_table.groupby('Date').sum().reset_index()
temp.head()
# adding two more columns
temp['% death'] = round(temp['Deaths']/
temp['Confirmed'], 3)*100
temp['% recovered'] = round(temp['Recovered']/
temp['Confirmed'], 3)*100
temp = temp.melt(id_vars='Date',
value_vars=['% death',
'% recovered'],
var_name='Ratio',
value_name='Value')
fig = px.line(temp, x="Date", y="Value", color='Ratio',
title='Recovery and Mortality Rate over Time')
fig.show()
fig = px.treemap(china_latest.sort_values(by='Confirmed', ascending=False).reset_index(drop=True),
path=["Province/State"], values="Confirmed",
title='Number of Confirmed Cases in Chinese Provinces',
color_discrete_sequence = px.colors.qualitative.Prism)
fig.show()
fig = px.treemap(china_latest.sort_values(by='Deaths', ascending=False).reset_index(drop=True),
path=["Province/State"], values="Deaths",
title='Number of Deaths Reported in Chinese Provinces',
color_discrete_sequence = px.colors.qualitative.Prism)
fig.show()
fig = px.treemap(china_latest.sort_values(by='Recovered', ascending=False).reset_index(drop=True),
path=["Province/State"], values="Recovered",
title='Number of Recovered Cases in Chinese Provinces',
color_discrete_sequence = px.colors.qualitative.Prism)
fig.show()
fig = px.treemap(row_latest, path=["Country/Region"], values="Confirmed",
title='# confirmed (excluding Mainland China)',
color_discrete_sequence = px.colors.qualitative.Pastel)
fig.show()
fig = px.treemap(row_latest, path=["Country/Region"], values="Deaths",
title='# deaths (excluding Mainland China)',
color_discrete_sequence = px.colors.qualitative.Pastel)
fig.show()
fig = px.treemap(row_latest, path=["Country/Region"], values="Recovered",
title='# recovered (excluding Mainland China)',
color_discrete_sequence = px.colors.qualitative.Pastel)
fig.show()
Source: WHO
epidemics = pd.DataFrame({
'epidemic' : ['COVID-19', 'SARS', 'EBOLA', 'MERS', 'H1N1'],
'start_year' : [2019, 2003, 2014, 2012, 2009],
'end_year' : [2020, 2004, 2016, 2017, 2010],
'confirmed' : [all_cases.iloc[0,1], 8096, 28646, 2494, 6724149],
'deaths' : [all_cases.iloc[0, 2], 774, 11323, 858, 19654]
})
epidemics['% mortality'] = round((epidemics['deaths']/epidemics['confirmed'])*100, 2)
epidemics
epidemic | start_year | end_year | confirmed | deaths | % mortality | |
---|---|---|---|---|---|---|
0 | COVID-19 | 2019 | 2020 | 4634062 | 311781 | 6.73 |
1 | SARS | 2003 | 2004 | 8096 | 774 | 9.56 |
2 | EBOLA | 2014 | 2016 | 28646 | 11323 | 39.53 |
3 | MERS | 2012 | 2017 | 2494 | 858 | 34.40 |
4 | H1N1 | 2009 | 2010 | 6724149 | 19654 | 0.29 |
temp = epidemics.melt(id_vars='epidemic', value_vars=['confirmed', 'deaths', '% mortality'],
var_name='Case', value_name='Value')
fig = px.bar(temp, x="epidemic", y="Value", color='epidemic', text='Value', facet_col="Case",
color_discrete_sequence = px.colors.qualitative.Bold)
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.update_yaxes(showticklabels=False)
fig.layout.yaxis2.update(matches=None)
fig.layout.yaxis3.update(matches=None)
fig.show()
temp = full_table.groupby('Date')['Confirmed'].sum().reset_index()
covid = temp['Confirmed']
sars = [8096 for i in range(len(temp))]
ebola = [28646 for i in range(len(temp))]
mers = [2494 for i in range(len(temp))]
h1n1 = [6724149 for i in range(len(temp))]
plt.style.use('fivethirtyeight')
plt.figure(figsize=(20, 8))
ax = plt.plot(temp['Date'], covid, label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
ax = plt.plot(temp['Date'], sars, label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], ebola, label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], mers, label='MERS (2012-2017)', c='#2EC4B6', ls='--', alpha=0.8)
plt.title('Number of cases (excluding H1N1)')
plt.legend()
plt.show()
/Users/kevinsiswandi/opt/anaconda3/lib/python3.7/site-packages/pandas/plotting/_matplotlib/converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters. To register the converters: >>> from pandas.plotting import register_matplotlib_converters >>> register_matplotlib_converters()
temp = full_table.groupby('Date')['Deaths'].sum().reset_index()
covid = temp['Deaths']
sars = [774 for i in range(len(temp))]
ebola = [11323 for i in range(len(temp))]
mers = [858 for i in range(len(temp))]
h1n1 = [19654 for i in range(len(temp))]
plt.figure(figsize=(20, 8))
ax = plt.plot(temp['Date'], covid, label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
ax = plt.plot(temp['Date'], sars, label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], ebola, label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], mers, label='MERS (2012-2017)', c='#2EC4B6', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], h1n1, label='H1N1 (2009-2010)', c='#2345BA', ls='--', alpha=0.8)
plt.title('Number of deaths')
plt.legend()
plt.show()