
The bash Shell
ME 4953/5013 - Introduction to High-Performance Computing

ME 4953/5013 bash

Shells Offerings

Two main categories
The Bourne family

Bourne (/bin/sh), Korn (/bin/ksh), Bash (/bin/bash)

The C Shell (/bin/csh)

Tsch (/bin/tcsh)

Bash and C are the most common

Bash is default on Linux
To list your shell invoke echo $SHELL

ME 4953/5013 bash

bash pattern matching

Slightly different than regular expressions used in grep

Wild Card Matches
* Any number of characters including none
? A single character
[ijk] A single character – either i,j, or k
[x-z] A range of characters x to z

[!ijk] A single character not i, j, or k
{pat1,pat2,...} pat1, pat2, etc.
!(flname) All except flname
!(flname1|flname2) All except flname1 and flname2

ME 4953/5013 bash

Pattern matching examples

Command Significance
ls *.lst Lists all files with extension .lst
mv * ../bin Moves all files to bin subdirectory of

parent directory
gzip .?*.?* Compresses all files beginning with a dot,

followed by one or more characters, then a
second dot followed by one or more characters.

cp chap chap* Copies file chap* (* loses meaning here)
cp ?????? progs Copies to progs all six-character filenames
rm note[0-1][0-9] Removes files note00, note01, ...

through note19

ls *.[!o] Lists all files having extensions except C
object files

cp ?*.*[!1238] Copies to the parent directory files having
extensions with at least one character before the
dot, but not having 1, 2, 3, or 8 as the
last character.

ME 4953/5013 bash

Escaping and quoting

When the \ precedes a metacharacter (wildcard) its special
meaning is turned off.

This is known as escaping

Quoting the metacharacter or even the whole pattern has
the same effect of turning off the special meanings.

e.g., rm ‘‘chap*’’
e.g., rm ‘‘My Document.doc’’

Contains the space between My and Documents

ME 4953/5013 bash

Command substitution

The shell supports, in addition to pipes (|), another way to
join two commands together.

Surround the substituted command with single backquotes
(‘pwd‘)

Example

> echo The date today is ‘date‘

ME 4953/5013 bash

Shell variables

A variable assignment is of the form variable=value and its evaluation
requires the $ prefix

Example

> count=5

> echo $count

A variable can be assigned the value of another variable:

Example

> total=$count

> echo $total

No special steps are needed to concatenate variables.

Example

> ext=.avi

> moviename=holmes

> filename=$moviename$ext

ME 4953/5013 bash

Shell scripts

We store a group of commands in a file and execute them
sequentially. These files are called shell scripts

Use vi or emacs to create the following script:

script.sh

directory=‘pwd‘

echo The date today is ‘date‘

echo The current directory is $directory

The extension .sh is used by convention.

Must change the permissions of a shell script to be
executed.

ME 4953/5013 bash

Shell programming

The She-Bang Line (#!)

The first line of a shell script should contain the full path
to the shell you wish to execute, e.g., #!/bin/bash or
#!/bin/csh, etc.

The login shell reads this line and spawns a sub-shell of the
type specified.

Can spawn C shells from Bash and vice-versa.

ME 4953/5013 bash

Making scripts interactive

read

read causes the script to pause and accept input from
stdin

Example

1 #!/bin/bash

2 echo -n "Enter the directory to be searched: "

3 read dname

4 echo -n "Enter the file extension to find: "

5 read flext

6 echo Searching for files with extension .$flext in \

7 directory $dname

8 find $dname \(-name "*.$flext" -a -type f \) \

9 2>/dev/null

ME 4953/5013 bash

Command line arguments

Scripts not using read can run noninteractively and be
used with redirection and pipes.

Positional parameters or command line arguments are
useful here.

The first arguments is stored in $1, the second in $2, etc.

$# specifies the number of arguments at command line

Example

1 #!/bin/bash

2 echo Searching for files with extension .$2 in \

3 directory $1

4 find $1 \(-name "*.$2" -a -type f \) \

5 2>/dev/null

ME 4953/5013 bash

Conditional execution

bash offers conditional blocks, if, else, elif and logical operators
and (&&) and or (||).

Example

1 #!/bin/bash

2

3 if [$# -eq 1] ; then

4 echo Searching for files with extension .$1 in \

5 directory $PWD

6 find $PWD \(-name "*.$1" -a -type f \) 2>/dev/null

7

8 elif [$# = 2] ; then

9 echo Searching for files with extension .$2 in \

10 directory $1

11 find $1 \(-name "*.$2" -a -type f \) 2>/dev/null

12

13 else

14 echo Please specify either 1 or 2 inputs.

15 fi

ME 4953/5013 bash

Comparison operators

Numerical comparisons
Operator Meaning
-eq (=) Equal to
-ne (!=) Not equal to
-gt (>) Grater than
-ge (>=) Greater than or equal to
-lt (<) Less than
-le (<=) Less than or equal to

String testing
Test If true
s1 = s2 String s1s equal to s2

s1 != s2 String s1 is not equal to s2

-n stg String stg is not a null string
-z stg String stg is a null string
stg stg is assigned and not null

ME 4953/5013 bash

File attribute testing

True True if file
-f file file exists and is a regular file
-r file file exists and is readable
-w file file exists and is writable
-x file file exists and is executable
-d file file exists and is a directory
-s file file exists and has a size greater than zero
-e file file exists
f1 -nt f2 f1 is newer than f2

f1 -ot f2 f1 is older than f2

ME 4953/5013 bash

Final notes on bash programming

bash offers for and while constructs

Offers integer and floating point computation with expr

and bc, respectively

These things are usually better left to a real programming
language, i.e. Python

ME 4953/5013 bash

