This is a naive tutorial on how to use FCLayer
(Fully-connected Layer) to train and predict the Fashion MNIST data set
using MLDatasets
using NumNN
using Plots
gr()
Plots.GRBackend()
### uncomment this line the first time you run this code
# ] add https://github.com/timholy/ProgressMeter.jl.git ;
using ProgressMeter
ProgressMeter.ijulia_behavior(:clear);
X_train, Y_train = FashionMNIST.traindata(Float64);
X_test, Y_test = FashionMNIST.testdata(Float64);
X_train ./= 255
X_test ./=255
Y_train = oneHot(Y_train)
Y_test = oneHot(Y_test);
X_Input = Input(X_train) #or Input(size(X_train))
X = Flatten()(X_Input)
X = FCLayer(120, :relu)(X)
X_Output = FCLayer(10, :softmax)(X);
Another way when there is no side branches is to use the chain
function as follows:
X_Input, X_Ouput = chain(X_train,[Flatten(),FCLayer(120,:relu),FCLayer(10,:softmax)]);
chain
returns a Tuple
of two pointers of the Input Layer
and Output Layer
This will also initialize the Layer
s' parameters
model = Model(X_train,Y_train,X_Input,X_Output, 0.005; optimizer=:adam);
predict
to see the current Accuracy¶TestP = predict(model, X_test, Y_test);
println()
println("The accuracy of Test Data before the training process $(round(TestP[:accuracy], digits=4))")
println("The cost of Test Data before the training process $(round(TestP[:cost], digits=4))")
Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 Instances 10000: 10000
The accuracy of Test Data before the training process 0.0634 The cost of Test Data before the training process 2.3028
TrainP = predict(model, X_train, Y_train);
println()
println("The accuracy of Train Data before the training process $(round(TrainP[:accuracy], digits=4))")
println("The cost of Train Data before the training process $(round(TrainP[:cost], digits=4))")
Progress: 100%|█████████████████████████████████████████| Time: 0:00:06 Instances 60000: 60000
The accuracy of Train Data before the training process 0.0612 The cost of Train Data before the training process 2.3028
TrainD = train(X_train, Y_train, model, 10);# testData = X_test, testLabels = Y_test);
Progress: 100%|█████████████████████████████████████████| Time: 0:00:56 Epoch 10: 10 Instances 60000: 60000 Train Cost: 0.3447 Train Accuracy: 0.8757
train
function provides an extra kwargs
to use test Data/Labels to get the Costs and Accuracies during each training epochs.
Note This will take extra time to do the training
Instead it can be used as follows:
TrainD = train(X_train, Y_train, model, 10)
plot(1:10, TrainD[:trainAccuracies], label="Training Accuracies")
plot!(1:10, TrainD[:trainCosts], label="Training Costs")
# plot!(1:10, TrainD[:testAccuracies], label="Test Accuracies")
# plot!(1:10, TrainD[:testCosts], label="Test Costs")
ylabel!("Epochs")
TrainP = predict(model, X_train, Y_train);
println()
println("The accuracy of Train Data before the training process $(round(TrainP[:accuracy], digits=4))")
println("The cost of Train Data before the training process $(round(TrainP[:cost], digits=4))")
Progress: 100%|█████████████████████████████████████████| Time: 0:00:06 Instances 60000: 60000
The accuracy of Train Data before the training process 0.8812 The cost of Train Data before the training process 0.3314
TestP = predict(model, X_test, Y_test);
println()
println("The accuracy of Test Data before the training process $(round(TestP[:accuracy], digits=4))")
println("The cost of Test Data before the training process $(round(TestP[:cost], digits=4))")
Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 Instances 10000: 10000
The accuracy of Test Data before the training process 0.8629 The cost of Test Data before the training process 0.3845