
TM

Gnome::Gtk3::Widget

Table of Contents

0.1 Widget — Base class for all widgets
1 Synopsis
2 Methods
2.1 gtk_widget_destroy
2.2 gtk_widget_show
2.3 gtk_widget_hide
2.4 [gtk_widget_] show_all
2.5 [gtk_widget_] set_name
2.6 [gtk_widget_] get_name
2.7 [gtk_widget_] set_sensitive
2.8 [gtk_widget_] get_sensitive
2.9 [gtk_widget_] set_size_request
2.10 [gtk_widget_] set_no_show_all
2.11 [gtk_widget_] get_no_show_all
2.12 [gtk_widget_] get_allocated_width
2.13 [gtk_widget_] get_allocated_height
2.14 [gtk_widget_] queue_draw
2.15 [gtk_widget_] get_display
2.16 [gtk_widget_] set_direction
2.17 [gtk_widget_] get_direction
2.18 [gtk_widget_] set_default_direction
2.19 [gtk_widget_] get_default_direction
2.20 [gtk_widget_] set_tooltip_text
2.21 [gtk_widget_] get_tooltip_text
2.22 [gtk_widget_] get_window
2.23 [gtk_widget_] set_visible
2.24 [gtk_widget_] get_visible
2.25 [gtk_widget_] get_has_window

unit class Gnome::Gtk3::Widget;
also is Gnome::Gtk3::GInitiallyUnowned;

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Widget — Base class for all widgets

Synopsis
create a button and set a tooltip
my Gnome::Gtk3::Button $start-button .= new(:label<Start>);
$start-button.set-tooltip-text('Nooooo don\'t touch that button!!!!!!!');

Methods

gtk_widget_destroy

method gtk_widget_destroy ()

Destroys a native widget. When a widget is destroyed all references it holds on
other objects will be released:

• if the widget is inside a container, it will be removed from its parent

• if the widget is a container, all its children will be destroyed, recursively

• if the widget is a top level, it will be removed from the list of top level
widgets that GTK+ maintains internally

It's expected that all references held on the widget will also be released; you
should connect to the “destroy” signal if you hold a reference to widget and you
wish to remove it when this function is called. It is not necessary to do so if you
are implementing a GtkContainer, as you'll be able to use the
GtkContainerClass.remove() virtual function for that.

It's important to notice that gtk_widget_destroy() will only cause the widget to be
finalized if no additional references, acquired using g_object_ref(), are held on it.
In case additional references are in place, the widget will be in an "inert" state
after calling this function; widget will still point to valid memory, allowing you to
release the references you hold, but you may not query the widget's own state.

You should typically call this function on top level widgets, and rarely on child
widgets.

See also: gtk_container_remove()

gtk_widget_show

method gtk_widget_show ()

Flags a widget to be displayed. Any widget that isn’t shown will not appear on the
screen. If you want to show all the widgets in a container, it’s easier to call
gtk_widget_show_all() on the container, instead of individually showing the
widgets.

Remember that you have to show the containers containing a widget, in addition
to the widget itself, before it will appear onscreen.

When a toplevel container is shown, it is immediately realized and mapped; other
shown widgets are realized and mapped when their toplevel container is realized
and mapped.

gtk_widget_hide

method gtk_widget_hide ()

Reverses the effects of gtk_widget_show().

[gtk_widget_] show_all

method gtk_widget_show_all ()

Recursively shows a widget, and any child widgets (if the widget is a container).

[gtk_widget_] set_name

method gtk_widget_set_name (Str $name)

Widgets can be named, which allows you to refer to them from a CSS file. You can
apply a style to widgets with a particular name in the CSS file. See the
documentation for the CSS syntax (on the same page as the docs for
GtkStyleContext).

Note that the CSS syntax has certain special characters to delimit and represent
elements in a selector (period, #, >, *...), so using these will make your widget
impossible to match by name. Any combination of alphanumeric symbols, dashes
and underscores will suffice.

[gtk_widget_] get_name

method gtk_widget_get_name ()

Retrieves the name of a widget. See gtk_widget_set_name() for the significance of
widget names.

https://developer.gnome.org/gtk3/stable/GtkStyleContext.html
https://developer.gnome.org/gtk3/stable/GtkStyleContext.html

[gtk_widget_] set_sensitive

method gtk_widget_set_sensitive (Int $sensitive)

Sets the sensitivity of a widget. A widget is sensitive if the user can interact with
it. Insensitive widgets are “grayed out” and the user can’t interact with them.
Insensitive widgets are known as “inactive”, “disabled”, or “ghosted” in some
other toolkits.

[gtk_widget_] get_sensitive

method gtk_widget_get_sensitive (--> Int)

Returns the widget’s sensitivity (in the sense of returning the value that has been
set using gtk_widget_set_sensitive()).

The effective sensitivity of a widget is however determined by both its own and its
parent widget’s sensitivity. See gtk_widget_is_sensitive().

[gtk_widget_] set_size_request

method gtk_widget_set_size_request (Int $w, Int $h)

Sets the minimum size of a widget; that is, the widget’s size request will be at
least width by height . You can use this function to force a widget to be larger
than it normally would be.

In most cases, gtk_window_set_default_size() is a better choice for toplevel
windows than this function; setting the default size will still allow users to shrink
the window. Setting the size request will force them to leave the window at least
as large as the size request. When dealing with window sizes,
gtk_window_set_geometry_hints() can be a useful function as well.

Note the inherent danger of setting any fixed size - themes, translations into other
languages, different fonts, and user action can all change the appropriate size for
a given widget. So, it's basically impossible to hardcode a size that will always be
correct.

The size request of a widget is the smallest size a widget can accept while still
functioning well and drawing itself correctly. However in some strange cases a
widget may be allocated less than its requested size, and in many cases a widget
may be allocated more space than it requested.

If the size request in a given direction is -1 (unset), then the “natural” size request
of the widget will be used instead.

The size request set here does not include any margin from the GtkWidget
properties margin-left, margin-right, margin-top, and margin-bottom, but it does
include pretty much all other padding or border properties set by any subclass of
GtkWidget.

[gtk_widget_] set_no_show_all

method gtk_widget_set_no_show_all (Int $no_show_all)

Sets the “no-show-all” property, which determines whether calls to
gtk_widget_show_all() will affect this widget.

This is mostly for use in constructing widget hierarchies with externally
controlled visibility.

[gtk_widget_] get_no_show_all

method gtk_widget_get_no_show_all (--> Int)

Returns the current value of the “no-show-all” property, which determines
whether calls to gtk_widget_show_all() will affect this widget.

[gtk_widget_] get_allocated_width

method gtk_widget_get_allocated_width (--> Int)

Returns the width that has currently been allocated to widget . This function is
intended to be used when implementing handlers for the “draw” function.

[gtk_widget_] get_allocated_height

method gtk_widget_get_allocated_height (--> Int)

Returns the height that has currently been allocated to widget . This function is
intended to be used when implementing handlers for the “draw” function.

[gtk_widget_] queue_draw

method gtk_widget_queue_draw ()

Equivalent to calling gtk_widget_queue_draw_area() for the entire area of a
widget.

[gtk_widget_] get_display

method gtk_widget_get_display ()

Get the GdkDisplay for the toplevel window associated with this widget. This
function can only be called after the widget has been added to a widget hierarchy
with a GtkWindow at the top.

In general, you should only create display specific resources when a widget has
been realized, and you should free those resources when the widget is unrealized.

[gtk_widget_] set_direction
Sets the reading direction on a particular widget. This direction controls the
primary direction for widgets containing text, and also the direction in which the
children of a container are packed. The ability to set the direction is present in
order so that correct localization into languages with right-to-left reading
directions can be done. Generally, applications will let the default reading
direction present, except for containers where the containers are arranged in an
order that is explicitly visual rather than logical (such as buttons for text
justification).

If the direction is set to GTK_TEXT_DIR_NONE, then the value set by
gtk_widget_set_default_direction() will be used.

method gtk_widget_set_direction (Int $direction)

• Int $direction; the new direction. This is a GtkTextDirection enum type
defined in GtkEnums.

[gtk_widget_] get_direction
Gets the reading direction for a particular widget.

method gtk_widget_get_direction (--> GtkTextDirection)

Returns the current text direction. This is a GtkTextDirection enum type defined
in GtkEnums.

[gtk_widget_] set_default_direction
Sets the default reading direction on a particular widget.

method gtk_widget_set_default_direction (GtkTextDirection $direction)

• $direction; the default direction.

[gtk_widget_] get_default_direction
Gets the default reading direction for a particular widget.

method gtk_widget_get_default_direction (--> GtkTextDirection)

Returns the default text direction.

[gtk_widget_] set_tooltip_text

method gtk_widget_set_tooltip_text (Str $text)

Sets text as the contents of the tooltip. This function will take care of setting “has-
tooltip” to TRUE and of the default handler for the “query-tooltip” signal.

[gtk_widget_] get_tooltip_text

method gtk_widget_get_tooltip_text (--> Str)

Sets text as the contents of the tooltip. This function will take care of setting “has-
tooltip” to TRUE and of the default handler for the “query-tooltip” signal.

[gtk_widget_] get_window

method gtk_widget_get_window (--> N-GObject)

Returns the widget’s window (is a GtkWindow) if it is realized, NULL otherwise.

my Gtk::V3::Gtk::GtkButton $b .= new(:build-id<startButton>);
my Gtk::V3::Gdk::GdkWindow $w .= new(:widget($b.get-window));

[gtk_widget_] set_visible

method gtk_widget_set_visible (Int $visible)

Sets the visibility state of widget. Note that setting this to TRUE doesn’t mean the
widget is actually viewable, see gtk_widget_get_visible().

This function simply calls gtk_widget_show() or gtk_widget_hide() but is nicer to
use when the visibility of the widget depends on some condition.

[gtk_widget_] get_visible

method gtk_widget_get_visible (--> Int)

Determines whether the widget is visible. If you want to take into account
whether the widget’s parent is also marked as visible, use gtk_widget_is_visible()
instead.

This function does not check if the widget is obscured in any way.

[gtk_widget_] get_has_window

method gtk_widget_get_has_window (--> Int)

Specifies whether widget has a GdkWindow of its own. Note that all realized
widgets have a non-NULL “window” pointer (gtk_widget_get_window() never
returns a NULL window when a widget is realized), but for many of them it’s
actually the GdkWindow of one of its parent widgets. Widgets that do not create a
window for themselves in “realize” must announce this by calling this function
with has_window = FALSE.

This function should only be called by widget implementations, and they should
call it in their init() function.

Generated using Pod::Render, Pod::To::HTML, Camelia™ (butterfly) is © 2009 by Larry Wall

	Table of Contents
	Widget — Base class for all widgets
	Synopsis
	Methods
	gtk_widget_destroy
	gtk_widget_show
	gtk_widget_hide
	[gtk_widget_] show_all
	[gtk_widget_] set_name
	[gtk_widget_] get_name
	[gtk_widget_] set_sensitive
	[gtk_widget_] get_sensitive
	[gtk_widget_] set_size_request
	[gtk_widget_] set_no_show_all
	[gtk_widget_] get_no_show_all
	[gtk_widget_] get_allocated_width
	[gtk_widget_] get_allocated_height
	[gtk_widget_] queue_draw
	[gtk_widget_] get_display
	[gtk_widget_] set_direction
	[gtk_widget_] get_direction
	[gtk_widget_] set_default_direction
	[gtk_widget_] get_default_direction
	[gtk_widget_] set_tooltip_text
	[gtk_widget_] get_tooltip_text
	[gtk_widget_] get_window
	[gtk_widget_] set_visible
	[gtk_widget_] get_visible
	[gtk_widget_] get_has_window

