# Polarizability by linear response¶

We compute the polarizability of a Helium atom. The polarizability is defined as the change in dipole moment $$\mu = \int r ρ(r) dr$$ with respect to a small uniform electric field E = -x.

We compute this in two ways: first by finite differences (applying a finite electric field), then by linear response. Note that DFTK is not really adapted to isolated atoms because it uses periodic boundary conditions. Nevertheless we can simply embed the Helium atom in a large enough box (although this is computationally wasteful).

As in other tests, this is not fully converged, convergence parameters were simply selected for fast execution on CI,

In [1]:
using DFTK
using LinearAlgebra

a = 10.
lattice = a * I(3)  # cube of a bohrs
atoms = [He => [[1/2; 1/2; 1/2]]]  # Helium at the center of the box

kgrid = [1, 1, 1]  # no kpoint sampling for an isolated system
Ecut = 30
tol = 1e-8

# dipole moment of a given density (assuming the current geometry)
function dipole(basis, ρ)
rr = [a * (r[1] - 1/2) for r in r_vectors(basis)]
d = sum(rr .* ρ) * basis.dvol
end;


## Polarizability by finite differences¶

We first compute the polarizability by finite differences. First compute the dipole moment at rest:

In [2]:
model = model_LDA(lattice, atoms; symmetries=false)
basis = PlaneWaveBasis(model; Ecut, kgrid)
res = self_consistent_field(basis, tol=tol)
μref = dipole(basis, res.ρ)

n     Energy            Eₙ-Eₙ₋₁     ρout-ρin   α      Diag
---   ---------------   ---------   --------   ----   ----
1   -2.769557045830         NaN   2.96e-01   0.80    8.0
2   -2.771176088779   -1.62e-03   5.13e-02   0.80    1.0
3   -2.771212878815   -3.68e-05   1.93e-03   0.80    2.0
4   -2.771212980989   -1.02e-07   6.82e-05   0.80    2.0
5   -2.771212981734   -7.45e-10   9.60e-06   0.80    2.0

Out[2]:
-0.00013457651991103718

Then in a small uniform field:

In [3]:
ε = .01
model_ε = model_LDA(lattice, atoms; extra_terms=[ExternalFromReal(r -> -ε * (r[1] - a/2))],
symmetries=false)
basis_ε = PlaneWaveBasis(model_ε; Ecut, kgrid)
res_ε = self_consistent_field(basis_ε, tol=tol)
με = dipole(basis_ε, res_ε.ρ)

n     Energy            Eₙ-Eₙ₋₁     ρout-ρin   α      Diag
---   ---------------   ---------   --------   ----   ----
1   -2.769997388446         NaN   2.99e-01   0.80    9.0
2   -2.771277392773   -1.28e-03   4.81e-02   0.80    1.0
3   -2.771299767255   -2.24e-05   3.84e-03   0.80    2.0
4   -2.771300361847   -5.95e-07   7.93e-05   0.80    2.0
5   -2.771300362347   -5.01e-10   1.20e-05   0.80    2.0

Out[3]:
0.017617947480044416
In [4]:
polarizability = (με - μref) / ε

println("Reference dipole:  $μref") println("Displaced dipole:$με")
println("Polarizability :   $polarizability")  Reference dipole: -0.00013457651991103718 Displaced dipole: 0.017617947480044416 Polarizability : 1.7752523999955454  The result on more converged grids is very close to published results. For example DOI 10.1039/C8CP03569E quotes 1.65 with LSDA and 1.38 with CCSD(T). ## Polarizability by linear response¶ Now we use linear response to compute this analytically; we refer to standard textbooks for the formalism. In the following, \chi_0 is the independent-particle polarizability, and K the Hartree-exchange-correlation kernel. We denote with \delta V_{\rm ext} an external perturbing potential (like in this case the uniform electric field). Then: $$\delta\rho = \chi_0 \delta V = \chi_0 (\delta V_{\rm ext} + K \delta\rho),$$ which implies $$\delta\rho = (1-\chi_0 K)^-1 \chi_0 \delta V_{\rm ext}.$$ From this we identify the polarizability operator to be \chi = (1-\chi_0 K)^{-1} \chi_0. Numerically, we apply \chi to \delta V = -x by solving a linear equation (the Dyson equation) iteratively. In [5]: using KrylovKit # Apply (1- χ0 K) function dielectric_operator(δρ) δV = apply_kernel(basis, δρ; ρ=res.ρ) χ0δV = apply_χ0(res.ham, res.ψ, res.εF, res.eigenvalues, δV) δρ - χ0δV end # δVext is the potential from a uniform field interacting with the dielectric dipole # of the density. δVext = [-a * (r[1] - 1/2) for r in r_vectors(basis)] δVext = cat(δVext; dims=4) # Apply χ0 once to get non-interacting dipole δρ_nointeract = apply_χ0(res.ham, res.ψ, res.εF, res.eigenvalues, δVext) # Solve Dyson equation to get interacting dipole δρ = linsolve(dielectric_operator, δρ_nointeract, verbosity=3)[1] println("Non-interacting polarizability:$(dipole(basis, δρ_nointeract))")
println("Interacting polarizability:     \$(dipole(basis, δρ))")

WARNING: using KrylovKit.basis in module ##282 conflicts with an existing identifier.
┌ Info: GMRES linsolve in iter 1; step 1: normres = 2.488887722995e-01
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:55
┌ Info: GMRES linsolve in iter 1; step 2: normres = 4.704095337059e-03
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; step 3: normres = 8.754659150327e-04
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; step 4: normres = 6.998380051695e-06
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; step 5: normres = 6.572217847421e-07
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; step 6: normres = 1.897973272007e-09
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; step 7: normres = 2.873423393402e-11
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; step 8: normres = 2.544682984511e-12
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 1; finished at step 8: normres = 2.544682984511e-12
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:96
┌ Info: GMRES linsolve in iter 2; step 1: normres = 1.384863725607e-06
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:55
┌ Info: GMRES linsolve in iter 2; step 2: normres = 8.274074335256e-08
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 2; step 3: normres = 1.471843230952e-09
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 2; step 4: normres = 2.893911597400e-11
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 2; step 5: normres = 2.397599696592e-13
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 2; finished at step 5: normres = 2.397599696592e-13
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:96
┌ Info: GMRES linsolve in iter 3; step 1: normres = 3.083416609017e-11
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:55
┌ Info: GMRES linsolve in iter 3; step 2: normres = 1.175861684065e-12
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:89
┌ Info: GMRES linsolve in iter 3; finished at step 2: normres = 1.175861684065e-12
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:96
┌ Info: GMRES linsolve converged at iteration 3, step 2:
│ *  norm of residual = 1.1641629429714486e-12
│ *  number of operations = 17
└ @ KrylovKit /home/runner/.julia/packages/KrylovKit/YPiz7/src/linsolve/gmres.jl:127
Non-interacting polarizability: 1.9244613335551235
Interacting polarizability:     1.7721061512104237


As expected, the interacting polarizability matches the finite difference result. The non-interacting polarizability is higher.