%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/Dp9NhFShaPM?rel=0" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/BcVFpv1sczg?rel=0" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
organ of corti of a guinea pig
white bar = 20 μm
≈ 3500 IHC and ≈ 12000 OHC at humans.
hair cells convert fluid motion into electrical impulses in auditory nerve.
from IPython.display import IFrame
print('https://acoustics.org/pressroom/httpdocs/146th/mountain.htm')
IFrame('https://acoustics.org/pressroom/httpdocs/146th/mountain.htm', width=900, height=600)
https://acoustics.org/pressroom/httpdocs/146th/mountain.htm
from IPython.display import IFrame
print('http://147.162.36.50/cochlea/cochleapages/overview/history.htm')
IFrame('http://147.162.36.50/cochlea/cochleapages/overview/history.htm', width=900, height=600)
http://147.162.36.50/cochlea/cochleapages/overview/history.htm
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/eQEaiZ2j9oc?rel=0" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/tj069m7BUf0?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/sTGM9FhcNbw?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
$$\large \dfrac{L_{T_q}}{dB} = 3.64 \left( \frac{f}{kHz} \right)^{-0.8} - \exp \left( -0.6\left(\dfrac{f}{kHz}-3.3\right)^2\right)
$$
Pure-tone threshold standard deviation of all participants as a function of frequency (the parameter is age in 10-year groups).
from IPython.display import IFrame
print('http://newt.phys.unsw.edu.au/jw/hearing.html')
IFrame('http://newt.phys.unsw.edu.au/jw/hearing.html', width=900, height=600)
http://newt.phys.unsw.edu.au/jw/hearing.html
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/BQPVCN1fmSQ?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
Loudness LeveL:
Equal-Loudness Level Contours:
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/UI9Y8B9A__0?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
→ unit was defined leading to so-called critical-band rate scale
→ unit was defined leading to so-called critical-band rate scale
Critical Bandrate z:
zBark=13arctan(0.76⋅fkHz)+3.5⋅arctan(f7.5kHz)2Critical Bandwidth:
Δfb=25+75(1+1.4(fkHz)2)0.69data compression:
Basic principle:
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/5Er45bT-hOE?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/bHXbgLWkCUk?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
narrow-band noise:
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/yEc89bIIcAY?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/W01-mvdXP_c?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
1 kHz masking tone with level of 80 dB.
threshold for 'detection of anything'
Difficulties:
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/zuQzj9cYwnk?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/pyRuUEB8Bqk?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/2aGu9gCB1Ug?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
where α… Tonality index, αv… Noise Coefficient
T(f)=10Ls(f)−Of(i)10
where Ls(f)… Sound Pressure Level, Ofi… Distance to Masking Threshold
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/EX7x7LLJRKM?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
%%html
<iframe width="560" height="315" src="https://www.youtube.com/embed/_TYpk4ekJGs?rel=0" frameborder="0" allow="accelerometer; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
Post-Masking: corresponds to decay in the effect of the masker → expected
Pre-Masking: appears during time before masker is switched on:
Frequency resolution ↔ Blurringing time
Frequency resolution in the ear → Masking in time
Because of in-ear fast processing between quiet to loud signals, we get Pre-Echoes
Pre-Masking: 1-5 ms
Post-Masking: ~100ms