%pylab inline
Populating the interactive namespace from numpy and matplotlib
from graphid.core import AnnotInference
infr = AnnotInference()
print('infr = {}'.format(infr))
infr = <AnnotInference(nNodes=0, nEdges=0, nCCs=0)>
infr.add_aids(list(range(1, 6)))
print('infr = {}'.format(infr))
infr.show_graph()
infr = <AnnotInference(nNodes=5, nEdges=0, nCCs=5)>
from graphid.core.state import POSTV, NEGTV, INCMP, UNREV, UNKWN
infr.add_feedback((1, 2), POSTV) # Positive (I can visually tell these are the same)
infr.add_feedback((1, 3), NEGTV) # Negative (I can visually tell these are not the same)
infr.add_feedback((1, 4), INCMP) # Incomparable (no visual evidence of difference or sameness)
print('infr = {}'.format(infr))
infr.show_graph()
infr = <AnnotInference(nNodes=5, nEdges=3, nCCs=4)>
# Add a few more positive decisions
infr.add_feedback((2, 5), POSTV)
infr.add_feedback((4, 5), POSTV)
print('infr = {}'.format(infr))
infr.show_graph()
infr = <AnnotInference(nNodes=5, nEdges=5, nCCs=2)>
(Note that there is a highlight around the edge the algorithm has determined to be most likely to be wrongly reviewed)
infr.add_feedback((1, 5), NEGTV)
print('infr = {}'.format(infr))
# The `infr.status` method is a useful tool for breaking down the
# current state of the graph. See the docstring for `infr.status` for
# more information on each item.
print('status = {}'.format(ub.urepr(infr.status(), nl=1)))
infr.show_graph()
infr = <AnnotInference(nNodes=5, nEdges=6, nCCs=2)> status = { 'nNodes': 5, 'nEdges': 6, 'nCCs': 2, 'nPostvEdges': 3, 'nNegtvEdges': 2, 'nIncmpEdges': 1, 'nUnrevEdges': 0, 'nPosRedunCCs': 0, 'nNegRedunPairs': 0, 'nInconsistentCCs': 1, }
# Whenever an inconsistent edge is added, a potential fix is prioritized.
# Peeking at the top of the priority queue shows the highlighted edge.
infr.peek()
((2, 5), 10.000000001)
infr.add_feedback((2, 5), NEGTV)
print('infr = {}'.format(infr))
print('status = {}'.format(ub.urepr(infr.status(), nl=1)))
infr.show_graph()
infr = <AnnotInference(nNodes=5, nEdges=6, nCCs=3)> status = { 'nNodes': 5, 'nEdges': 6, 'nCCs': 3, 'nPostvEdges': 2, 'nNegtvEdges': 3, 'nIncmpEdges': 1, 'nUnrevEdges': 0, 'nPosRedunCCs': 2, 'nNegRedunPairs': 1, 'nInconsistentCCs': 0, }
Run infr.prioritize
to populate it. You will get better results if you have hooked up good ranking and verification algorithms.
infr.add_aids([6, 7, 8, 9])
print(infr.queue)
infr.prioritize()
print(infr.queue)
infr.show_graph()
<PriorityQueue(size=0)> <PriorityQueue(size=0)>
# We need to add a few candidate edges
candidates = list(infr.find_neg_redun_candidate_edges())
infr.add_candidate_edges(candidates)
print(infr.queue)
infr.peek_many(n=10)
<PriorityQueue(size=29)>
[((1, 6), 1e-06), ((1, 7), 1e-06), ((1, 8), 1e-06), ((1, 9), 1e-06), ((2, 3), 1e-06), ((2, 6), 1e-06), ((2, 7), 1e-06), ((2, 8), 1e-06), ((2, 9), 1e-06), ((3, 4), 1e-06)]