Category Theory by Example

Ivan Murashko, Alexey Radkov, Marat Minshin

October 31, 2020
CONTENTS

2.6.1 Hask category ... 49
2.6.2 C++ category ... 51
2.6.3 Scala category ... 52
2.7 Quantum mechanics ... 53

3 Curry-Howard-Lambek correspondence .. 55
3.1 Proof category .. 55
3.2 Linear logic and Linear types 57
3.3 Quantum logic and quantum computation 58

4 Functors ... 61
4.1 Definitions .. 61
4.2 Cat category ... 63
4.3 Contravariant functor ... 64
4.4 Bifunctors ... 65

5 Natural transformation .. 67
5.1 Definitions .. 67
5.2 Category of functors .. 69
5.3 Operations with natural transformations 71
5.4 Polymorphism and natural transformation 73
5.4.1 Hask category ... 73

6 Monads ... 75
6.1 Monoid in Set category ... 75
6.1.1 Associativity .. 76
6.1.2 Identity presence ... 78
6.1.3 Categorical definition for monoid 79
6.1.4 Monoid importance .. 80
6.2 Monoidal category .. 81
6.3 Tensor product in Quantum mechanics 82
6.4 Category of endofunctors 83
6.5 Monads in programming languages 85
6.5.1 Haskell .. 85
6.5.2 C++ ... 86
6.5.3 Scala ... 87

7 Kleisli category ... 89
7.1 Partiality and Exception .. 90
7.1.1 Haskell example ... 91
7.1.2 C++ example ... 92
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 Non-Determinism</td>
<td>93</td>
</tr>
<tr>
<td>7.2.1 Haskell example</td>
<td>93</td>
</tr>
<tr>
<td>7.3 Side effects and interactive input/output</td>
<td>93</td>
</tr>
<tr>
<td>7.4 Continuation</td>
<td>94</td>
</tr>
<tr>
<td>8 Limits</td>
<td>95</td>
</tr>
<tr>
<td>8.1 Definitions</td>
<td>95</td>
</tr>
<tr>
<td>8.1.1 Limit</td>
<td>96</td>
</tr>
<tr>
<td>8.1.2 Colimit</td>
<td>99</td>
</tr>
<tr>
<td>8.2 Cone as natural transformation</td>
<td>100</td>
</tr>
<tr>
<td>8.3 Categorical constructions as limits</td>
<td>101</td>
</tr>
<tr>
<td>8.3.1 Initial and terminal objects</td>
<td>101</td>
</tr>
<tr>
<td>8.3.2 Product and sum</td>
<td>102</td>
</tr>
<tr>
<td>8.3.3 Equalizer</td>
<td>104</td>
</tr>
<tr>
<td>9 Yoneda’s lemma</td>
<td>107</td>
</tr>
<tr>
<td>9.1 Hom functors</td>
<td>107</td>
</tr>
<tr>
<td>9.1.1 Covariant Hom functor</td>
<td>107</td>
</tr>
<tr>
<td>9.1.2 Contravariant Hom functor</td>
<td>109</td>
</tr>
<tr>
<td>9.1.3 Representable functor</td>
<td>112</td>
</tr>
<tr>
<td>9.2 Yoneda’s lemma</td>
<td>113</td>
</tr>
<tr>
<td>10 Topos</td>
<td>117</td>
</tr>
<tr>
<td>Appendices</td>
<td>119</td>
</tr>
<tr>
<td>A Abstract algebra</td>
<td>121</td>
</tr>
<tr>
<td>A.1 Groups</td>
<td>121</td>
</tr>
<tr>
<td>A.2 Rings and Fields</td>
<td>122</td>
</tr>
<tr>
<td>A.2.1 Rings</td>
<td>122</td>
</tr>
<tr>
<td>A.2.2 Fields</td>
<td>122</td>
</tr>
<tr>
<td>A.3 Linear algebra</td>
<td>122</td>
</tr>
<tr>
<td>Index</td>
<td>125</td>
</tr>
</tbody>
</table>
Notations

\(\alpha \circ \beta \) Vertical composition of natural transformations (circle dot)

\(\alpha \ast \beta \) Horizontal composition of natural transformations (star dot)

\(\alpha H \) Left whiskering

\(\alpha, \beta \) Natural transformation (Greek small letters)

\(\alpha : F \to G \) Natural transformation (arrow with dot)

\(\text{cocone}(c, f^{(c)}) \) Cocone

\(\text{cone}(c, f^{(c)}) \) Cone

\(\text{Hom}_C (-, a) \) Contravariant Hom functor

\(\text{Hom}_C (a, -) \) Covariant Hom functor

\(\text{hom}_C (a, b) \) Set of morphisms between \(a \) and \(b \) in category \(C \)

\(\text{hom} (a, b) \) Set of morphisms between \(a \) and \(b \)

\(C^{++} \) \(C^{++} \) category

\(C_M \) Kleisli category

\(\text{Cat} \) \(\text{Cat} \) category

\(C \) \(C \) Category (bold capital Latin letter)

\(C^{op} \) Opposite category

\(\text{FdHilb} \) \(\text{FdHilb} \) category

\(\text{Hask} \) \(\text{Hask} \) category

\(\text{Proof} \) \(\text{Proof} \) category
Rel Rel category

Scala Scala category

Set Set category

cod f Codomain

$\Delta \downarrow F$ Category of cones to F

Δ_c Constant functor

dom f Domain

\exists exists

\forall for all

$[C, D]$ Fun category

$1_{C \Rightarrow C}$ Identity functor

$1_{a \rightarrow a}$ Identity morphism

$1_{F \Rightarrow F}$ Identity natural transformation

Im f Image of the function f

$\langle M, \mu, \eta \rangle$ Monad

$|A|$ Cardinality of a Set A

\mathcal{H}_n finite dimensional Hilbert space

$a \cong b$ there is an Isomorphism between a and b. The exact isomorphism does not matter in the case

$a \cong_f b$ there is an Isomorphism f between a and b

$a \oplus b$ Sum

$a \times b$ Product

a, b Objects (Latin small letters)

a^b Exponential

$\textit{curry}(f)$ Currying
eq(f, g) Equalizer
F \circ G Functor composition (circle dot)
f \circ g Morphism composition (circle dot)
F \downarrow \Delta Category of co-cones from F
F, G Functor (capital Latin letter)
f, g, h Morphism (Arrow) (Latin small letter)
F : \mathbf{C} \Rightarrow \mathbf{D} Functor (double arrow)
f : a \hookrightarrow b Monomorphism (hook arrow)
f : a \rightarrow b Morphism (simple arrow)
H \alpha Right whiskering
P \implies Q Implication
TBD To Be Defined (later)
Introduction

You just looked at yet another introduction to Category Theory. The subject mostly consists of a lot of definitions that are related each others. We wrote the book to collect all the definitions in one place to be easy checked and updated in future when we decide to refresh our knowledge about the field of math. Therefore the book was written mostly for our category theory studying purposes but we will appreciate if somebody else find it useful.

The topics(chapters) cover base definitions (Object, Morphism and Category) as well as more advanced ones (Functor, Natural transformation, Monad) and also include important results from the category theory such as Yoneda’s lemma (see chapter 9) and Curry-Howard-Lambek correspondence (see chapter 3). The chapter 10 gives an introduction to the topos theory i.e. just another view of the Sets.

There are a lot of examples in each chapter. The examples cover different category theory application areas. We assume that the reader is familiar with the corresponding area and the example(s) can be passed if not. I.e. anyone can choose suitable example(s) for him/her.

The most important examples are related to the set theory. The set theory and category theory are very close related. Each one can be considered as an alternative view to another one.

There are also a lot of examples from programming languages which include Haskell, Scala, C++. The source files for programming languages examples (Haskell, C++, Scala) can be found on github repositories:

- Haskell: [9]
- Scala: [10]
- C++: [8]

The examples from physics are related to quantum mechanics that is the most known for us. For the examples we were inspired by the Bob Coecke article [1].
There is also additional material related to abstract algebra (see chapter A) taken from [16]. The material describes the different math constructions used in the book.

The text is distributed under Creative Common Public License (see the text of the license at the end of the book) i.e. any reader has right to copy, store, modify, distribute or build upon the book until the original authors are pointed in the derivative products. The initial text of the book can be found at [17].
Chapter 1

Base definitions

1.1 Definitions

1.1.1 Object

Definition 1.1 (Class). A class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share.

Definition 1.2 (Object). In category theory object is considered as something that does not have internal structure (aka point) but has a property that makes different objects belong to the same Class.

Remark 1.3 (Class of Objects). The Class of Objects will be marked as ob(C) (see fig. 1.1).

\[\text{ob}(C) = \{a, b, c, d\} \]

Figure 1.1: Class of objects ob(C) = \{a, b, c, d\}
1.1.2 Morphism

Morphism is a kind of relation between 2 Objects.

Definition 1.4 (Morphism). A relation between two Objects a and b

$$f : a \rightarrow b$$

is called as morphism. Morphism assumes a direction i.e. one Object (a) is called source or Domain and another one (b) target or Codomain.

The Set of all morphisms between objects a and b is denoted as $\text{hom}(a,b)$.

Definition 1.5 (Arrow). Morphisms are also called as Arrows (see fig. 1.2).

The important remark about morphisms is below

Remark 1.6 (Morphism). The morphism has to be considered as a relation between objects. We will avoid standard (from set theory) notation for morphisms: $f(a) = b$. The reason for this is the following. Let $f_1 : a \rightarrow b$ and $f_2 : a \rightarrow b$ are two different morphisms. The notation $f_1(a) = b, f_2(a) = b$ leads to incorrect conclusion that $f_1 = f_2$.

For instance if $a = b = \mathbb{R}$ then two functions $f_1(x) = x, f_2(x) = -x$ define two different ordering on \mathbb{R} and as result have not to be considered as the same Morphisms.

Definition 1.7 (Domain). Given a Morphism $f : a \rightarrow b$, the Object a is called domain and denoted as $\text{dom} f$.

Definition 1.8 (Codomain). Given a Morphism $f : a \rightarrow b$, the Object b is called codomain and denoted as $\text{cod} f$.
1.1. DEFINITIONS

Morphisms have several properties. ¹

Axiom 1.9 (Composition). *If we have 3 Objects a, b, c and 2 Morphisms*

\[f_{ab} : a \rightarrow b, \]
\[f_{bc} : b \rightarrow c \]

then there exists a Morphism (see fig. 1.3)

\[f_{ac} : a \rightarrow c \]

such that

\[f_{ac} = f_{bc} \circ f_{ab} \]

Remark 1.10 (Composition). The equation

\[f_{ac} = f_{bc} \circ f_{ab} \]

means that we apply \(f_{ab} \) first and then we apply \(f_{bc} \) to the result of the application i.e. if our objects are sets and \(x \in a \) then

\[f_{ac}(x) = f_{bc}(f_{ab}(x)), \]

where \(f_{ab}(x) \in b, f_{ac}(x) \in c. \)

Axiom 1.11 (Associativity). *The Morphism Composition (Axiom 1.9) should follow associativity property:*

\[f_{ce} \circ (f_{bc} \circ f_{ab}) = (f_{ce} \circ f_{bc}) \circ f_{ab} = f_{ce} \circ f_{bc} \circ f_{ab}. \]

Definition 1.12 (Identity morphism). For every Object a we define a special Morphism \(1_{a \rightarrow a} : a \rightarrow a \) with the following properties: \(\forall f_{ba} : b \rightarrow a \) (see fig. 1.4)

\[1_{a \rightarrow a} \circ f_{ba} = f_{ba} \quad (1.1) \]

and \(\forall f_{ab} : a \rightarrow b \) (see fig. 1.5)

\[f_{ab} \circ 1_{a \rightarrow a} = f_{ab}. \quad (1.2) \]

This morphism is referred to as *identity morphism.*

¹The properties don’t have any proof and postulated as axioms
Note that Identity morphism is unique, see Identity is unique (Theorem 2.3) below.

\[\begin{array}{c}
\text{1}_{a\rightarrow a} \quad f_{ba} \\
\downarrow \quad a \quad \quad b
\end{array} \]

Figure 1.4: Identity morphism: \(\text{1}_{a\rightarrow a} \circ f_{ba} = f_{ba} \)

\[\begin{array}{c}
f_{ab} \quad \text{1}_{a\rightarrow a} \\
\downarrow \quad a \quad \quad b
\end{array} \]

Figure 1.5: Identity morphism: \(f_{ab} \circ \text{1}_{a\rightarrow a} = f_{ab} \)

Definition 1.13 (Diagram). A *diagram* in a category \(\mathcal{C} \) is a collection of vertices and directed edges where the vertices correspond to the category \(\mathcal{C} \) objects and edges consistently correspond to the morphisms (see 1.6).

\[\begin{array}{c}
\quad \quad a \\
\quad \quad f \\
\quad \quad b
\end{array} \]

Figure 1.6: Diagram in category \(\mathcal{C} \). Vertexes \(a \) and \(b \) are objects in the category \(\mathcal{C} \), \(f \) is a morphism from the category.

Consistently means that for an edge named as \(f \) has endpoints labeled \(a \) and \(b \). Where \(f \) is a morphism of \(\mathcal{C} \), \(a \) is Domain of \(f \) and \(b \) is Codomain of \(f \).

Definition 1.14 (Commutative diagram). A *Diagram* of category \(\mathcal{C} \) is said to *commute* if all directed paths in the diagram with the same start and endpoint lead to the same result by composition.

Example 1.15. The trivial example of Commutative diagram is Composition (Axiom 1.9) for \(f_{ab} = f_{cb} \circ f_{ac} \).
1.1. DEFINITIONS

Figure 1.8: Class of morphisms \(\text{hom}(C) = \{f, g, h\} \), where \(h = f \circ g \)

Remark 1.16 (Class of Morphisms). The Class of Morphisms will be marked as \(\text{hom}(C) \) (see fig. 1.8)

Definition 1.17 (Monomorphism). If \(\forall g_1, g_2 \) the equation

\[
f \circ g_1 = f \circ g_2
\]

leads to

\[
g_1 = g_2
\]

then \(f \) is called monomorphism (see fig. 1.9). The monomorphism between \(a \) and \(b \) is denoted as \(f: a \hookrightarrow b \) (see also Injection or “one-to-one” functions).

Figure 1.9: Monomorphism \(f: a \hookrightarrow b \). \(\forall g_1, g_2: f \circ g_1 = f \circ g_2 \) leads to \(g_1 = g_2 \)
Definition 1.18 (Epimorphism). If \(\forall g_1, g_2 \) the equation (see fig. 1.10)
\[
g_1 \circ f = g_2 \circ f
\]
leads to
\[
g_1 = g_2
\]
then \(f \) is called epimorphism (see also Surjection or “onto” functions).

<table>
<thead>
<tr>
<th>a</th>
<th>(f)</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>

Figure 1.10: Epimorphism \(f \): \(g_1 \circ f = g_2 \circ f \) leads to \(g_1 = g_2 \)

Definition 1.19 (Isomorphism). A Morphism \(f : a \to b \) is called isomorphism if \(\exists g : b \to a \) such that \(f \circ g = 1_{b \to b} \) and \(g \circ f = 1_{a \to a} \). If there is an isomorphism \(f \) between objects \(a \) and \(b \) then it is denoted by \(a \cong f b \).

Remark 1.20 (Isomorphism). There can be many different Isomorphisms between 2 Objects.

If there is an unique isomorphism between 2 objects \(a \) and \(b \) then the objects can be treated as the same object i.e. \(a = b \).

1.1.3 Category

Definition 1.21 (Category). A category \(C \) consists of

- Class of Objects \(\text{ob}(C) \)
- Class of Morphisms \(\text{hom}(C) \) defined for \(\text{ob}(C) \), i.e. each morphism \(f_{ab} \) from \(\text{hom}(C) \) has both source \(a \) and target \(b \) from \(\text{ob}(C) \)

For any Object \(a \) there should be unique Identity morphism \(1_{a \to a} \). Any morphism should satisfy Composition (Axiom 1.9) and Associativity (Axiom 1.11) axioms (see example in fig. 1.11).

Definition 1.22 (Set of morphisms). The set of morphisms between objects \(a \) and \(b \) in the category \(C \) will be denoted as \(\text{hom}_C(a, b) \). The set will be denoted as \(\text{hom}(a, b) \) if the exact category does not matter.

The Category can be considered as a way to represent a structured data. Objects are the data and Morphisms form the structure that connects the data.
1.1. DEFINITIONS

![Diagram of Category C]

Figure 1.11: Category C. It consists of 4 objects $\text{ob}(C) = \{a, b, c, d\}$ and 7 morphisms $\text{ob}(C) = \{f, g, h = f \circ g, 1_{a \rightarrow a}, 1_{b \rightarrow b}, 1_{c \rightarrow c}, 1_{d \rightarrow d}\}$

Definition 1.23 (Opposite category). If C is a Category then opposite (or dual) category C^{op} is constructed in the following way: Objects are the same, but the Morphisms are inverted i.e. if $f \in \text{hom}(C)$ and $\text{dom} f = a, \text{cod} f = b$ (see Domain, Codomain), then the corresponding morphism $f^{\text{op}} \in \text{hom}(C^{\text{op}})$ has $\text{dom} f^{\text{op}} = b, \text{cod} f^{\text{op}} = a$ (see fig. 1.12)

Remark 1.24. Composition on C^{op}. As you can see from fig. 1.12 the Composition (Axiom 1.9) is reverted for Opposite category. If $f, g, h = f \circ g \in \text{hom}(C)$ then $f \circ g$ translated into $g^{\text{op}} \circ f^{\text{op}}$ in opposite category.

Definition 1.25 (Small category). A category C is called small if both $\text{ob}(C)$ and $\text{hom}(C)$ are Sets

Definition 1.26 (Locally small category). A category C is called locally small if $\text{hom}(C)$ is a Set. The set is called Homset.

Definition 1.27 (Homset). The homset is the Set of morphisms in a Locally small category.

Definition 1.28 (Large category). A category C is not Small category then it is called large. The example of large category is Set category

Definition 1.29 (Empty category). The category that does not contain any Objects and as result does not contain any Morphisms is called Empty category [23].

Definition 1.30 (Trivial category). The category that contains only one Object and only one Morphism (Identity morphism) is called Trivial category.
There are several examples of categories below that will also be actively used later in the book:

- **Set** category example: see section 1.2
- Programming languages (Haskell, C++, Scala) examples: see section 1.3
- Quantum mechanics example: see section 1.4

1.2 Set category example

The category of sets is the most important example because it connects our usual knowledge about sets with the category theory.

Definition 1.31 (Set). *Set* is a collection of distinct objects. The objects are called the elements of the set.

The set will be denoted by a capital letter in the book, for instance A. The elements of a set will be denoted by small letters: $a \in A$.

Remark 1.32 (Set). The definition of *Set* was given above is incomplete. There are several additional axioms should be applied for the complete definition. Different sets of axioms can be used. In our case we consider so called *Zermelo–Fraenkel set theory with the axiom of Choice* or *ZFC* [28]. The system of axioms allows us to avoid different logical paradoxes of the set theory, for instance well known Russell’s paradox [27].
1.2. **SET CATEGORY EXAMPLE**

Definition 1.33 (Cardinality). The number of elements in the Set A is called *cardinality* and is denoted as $|A|$.

Definition 1.34 (Cartesian product). If A and B are two sets then we can define a new set $A \times B = \{(a, b) | a \in A, b \in B\}$ that is called as the *cartesian product*.

Definition 1.35 (Binary relation). If A and B are 2 Sets then a subset of the Cartesian product $A \times B$ is called as *binary relation* R between the 2 sets, i.e. $R \subseteq A \times B$.

Example 1.36 (Binary relation). Example of binary relation is shown on fig. 1.13. There is a relation R between 2 sets A and B. The relation maps a_1 into two different values b_1 and b_2.

![Figure 1.13: Binary relation R between 2 sets A and B. a_1 is mapped into 2 values b_1, b_2.](image)

Definition 1.37 (Function). *Function* f is a special type of Binary relation. I.e. if A and B are 2 Sets then a subset of $A \times B$ is called function f between the 2 sets if $\forall a \in A \exists! b \in B$ such that $(a, b) \in f$.

Remark 1.38 (Function vs Binary relation). The main difference between Function and Binary relation is that Binary relation allows mapping an argument into more than one value (see fig. 1.13). From other side Function definition does not allow such “multi value”.

Definition 1.39 (Set category). In the *Set category* we consider a Set of Sets where Objects are the Sets and Morphisms are Functions between the sets. The *Identity morphism* is the trivial function such that $\forall x \in X : 1_{x \to X}(x) = x$. *Composition* (Axiom 1.9) is the functions composition (see fig. 1.14)
Figure 1.14: Function composition. The function $f_{X \rightarrow Z} : X \rightarrow Z$ is the composition of 2 functions $f_{X \rightarrow Y} : X \rightarrow Y$ and $f_{Y \rightarrow Z} : Y \rightarrow Z$.

Remark 1.40 (Set category). In general case when we say Set category we assume the set of all sets. But the result is inconsistent because famous Russell’s paradox [27] can be applied. To avoid such situations we consider a limitation that is applied on our construction as it was mentioned at remark 1.32, especially ZFC [28] is applied. If we take into consideration the limitation then we have a set of all sets is not a set itself and as result the Set category is a Large category.

Definition 1.41 (Singleton). The singleton is a Set with only one element.

Example 1.42 (Domain). Given a function $f : X \rightarrow Y$, the set X is the domain. I.e. $\text{dom } f = X$.

Example 1.43 (Codomain). Given a function $f : X \rightarrow Y$, the set Y is the codomain. I.e. $\text{cod } f = Y$.

Definition 1.44 (Image). The image of a function $f : X \rightarrow Y$ is a subset of Codomain Y such that for every element in the subset there is an element in Domain X that maps into the subset: $\text{Im } f = \{ y \in Y | y = f(x) \text{ for some } x \in X \}$.

Definition 1.45 (Surjection). The function $f : X \rightarrow Y$ is surjective (or “onto”) if $\forall y \in Y, \exists x \in X$ such that $f(x) = y$ (see figs. 1.15 and 1.19).

Example 1.46 (Surjection). An example of a surjective function is shown in fig. 1.15. Note that the function in the figure is not an Injection. You can find an example of a function that is Surjection as well as Injection (aka Bijection) in fig. 1.19.
1.2. **Set Category Example**

\[
\begin{array}{ccc}
X & \rightarrow & Y \\
\bullet x_1 & \mapsto & \bullet y_1 \\
\bullet x_2 & \mapsto & \bullet y_2 \\
\bullet x_3 & \mapsto & \bullet y_3 \\
\bullet x_4 & \mapsto & \bullet y_4
\end{array}
\]

Figure 1.15: A surjective (non-injective) function from domain \(X\) to codomain \(Y\)

Remark 1.47 (Surjection vs Epimorphism). Surjection and Epimorphism are related each other. Consider a non-surjective function \(f : X \rightarrow Y' \subset Y\) (see fig. 1.16). One can conclude that there is not an Epimorphism because \(\exists g_1 : Y' \rightarrow Y'\) and \(g_2 : Y \rightarrow Y\) such that \(g_1 \neq g_2\) because they operates on different Domains but from other hand \(g_1(y) = g_2(y), \forall y \in Y'\). For instance we can choose \(g_1 = 1_{Y' \rightarrow Y'}, g_2 = 1_{Y \rightarrow Y}\). As soon as \(Y'\) is Codomain of \(f\) we always have \(g_1(f(x)) = g_2(f(x)), \forall x \in X\). I.e.

\[g_1 \circ f = g_2 \circ f,\]

but \(g_1 \neq g_2\). As result one can say that a Surjection is an Epimorphism in the **Set** category. Moreover there is a proof [21] of that fact.

\[
\begin{array}{ccc}
X & \rightarrow & Y' \\
\bullet x_1 & \mapsto & \bullet y_1 \\
\bullet x_2 & \mapsto & \bullet y_2 \\
\bullet x_3 & \mapsto & \bullet y_3 \\
\bullet x_4 & \mapsto & \bullet y_4
\end{array}
\]

Figure 1.16: Surjection vs epimorphism: A non-surjective function \(f\) from domain \(X\) to codomain \(Y' \subset Y\). \(\exists g_1 : Y' \rightarrow Y', g_2 : Y \rightarrow Y\) such that \(g_1(y) = g_2(y), \forall y \in Y'\), but as soon as \(Y' \neq Y\) we have \(g_1 \neq g_2\). Using the fact that \(Y'\) is codomain of \(f\) we got \(g_1 \circ f = g_2 \circ f\). I.e. the function \(f\) is not epimorphism.
Definition 1.48 (Injection). The function $f : X \to Y$ is injective (or “one-to-one” function) if $\forall x_1, x_2 \in X$, such that $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ (see figs. 1.17 and 1.19).

Example 1.49 (Injection). An example of an injective function is shown in fig. 1.17. Note that the function in the figure is not a Surjection. You can find an example of a function that is Surjection as well as Injection (aka Bijection) in fig. 1.19.

![Figure 1.17: A injective (non-surjective) function from domain X to codomain Y](image)

Remark 1.50 (Injection vs Monomorphism). Injection and Monomorphism are related each other. Consider a non-injective function $f : X \to Y$ (see fig. 1.18). One can conclude that it is not a Monomorphism because $\exists g_1, g_2$ such that $g_1 \neq g_2$ and $f(g_1(a_1)) = y_3 = f(g_2(b_1))$. As result one can say that an Injection is a Monomorphism in the Set category. Moreover there is a proof [20] of that fact.

Definition 1.51 (Bijection). The function $f : X \to Y$ is bijective (or “one-to-one” correspondence) if it is an Injection and a Surjection (see fig. 1.19).

There is a question what is the categorical analog of a single Set. Main characteristic of a category is a structure but the Set by definition does not have a structure. Which category does not have any structure? The answer is the Discrete category.

Definition 1.52 (Discrete category). Discrete category is a Category where Morphisms are only Identity morphisms.
Figure 1.18: A non-injective function f from domain X to codomain Y. \(\exists g_1 : A \rightarrow X, g_2 : B \rightarrow X\) such that \(g_1 \neq g_2\) (as soon as the functions operate on different domains) but \(f \circ g_1 = f \circ g_2\). I.e. the function f is not a monomorphism.

Figure 1.19: An injective and surjective function (bijection)
1.3 Programming languages examples

Functions are the most important constructions in programming languages. They convert elements of one type into elements of another one.

Definition 1.53 (Pure function). The function is pure if its execution gives the same results independently from the environment.

Categorical view to programming languages assumes types as **Objects** and functions as **Morphisms**. The critical requirements for such consideration is that the functions have to be **Pure functions** (without side effects). This requirement mainly is satisfied by functional languages such as Haskell and Scala.

From the other side the functional languages use lazy evaluation to improve their performance. The laziness can also make category theory axiom invalid (see Haskell lazy evaluation (Remark 1.54) below).

Remark 1.54 (Haskell lazy evaluation). Each Haskell type has a special value ⊥. The fact that the value and the lazy evaluations are parts of the language, make several category law invalid, for instance **Identity morphism** behaviour become invalid in specific cases.

The following code

```haskell
seq undefined True
```

produces undefined. But the following

```haskell
seq (id.undefined) True
seq (undefined.id) True
```

produces True in both cases. As result we have

```haskell
id . undefined /= undefined
undefined . id /= undefined,
```

i.e. (1.1) and (1.2) are not satisfied.

In the example we used the `seq` function that has the following signature

```haskell
seq :: a -> b -> b
```

2We consider variables as the elements in Scala and C++. Constant applicative forms (CAF) are considered as the elements in Haskell.

3we cannot compare functions in Haskell, but if we could we can get it
i.e. it takes two arguments and returns the second one. It also evaluates the first argument:

\[
\begin{align*}
 \text{seq}(\bot, b) &= \bot, \\
 \text{seq}(a, b) &= b.
\end{align*}
\]

Strictly speaking neither Haskell (pure functional language) nor C++ can be considered as a category in general. For the first approximation a functional language (Haskell, Scala) can be considered as a category if we avoid to use functions with side effects (mainly for Scala) and use strict, not lazy, evaluations (for both Haskell and Scala). Let’s take the fact into consideration and define categories for 3 languages

Definition 1.55 (Hask category). The objects in the Hask category are Haskell types and morphisms are functions. We use only strict (not lazy) evaluations for functions in the category.

Definition 1.56 (Scala category). The objects in the Scala category are Scala types and morphisms are functions. We don’t define functions that have side effects in the category. I.e. the functions are Pure functions. We also use only strict (not lazy) evaluations for functions in the category.

Definition 1.57 (C++ category). The objects in the C++ category are C++ types and morphisms are functions. We don’t define functions that have side effects in the category. I.e. the functions are Pure functions.

In any case we can construct a simple toy category that can be easy implemented in any language. Particularly we will look into category with 3 Objects that are types: Int, Bool, String. There are also several Morphisms (functions) between them (see fig. 1.20).

1.3.1 Hask toy category

Example 1.58 (Hask toy category). Types in Haskell are considered as Objects. Functions are considered as Morphisms. We are going to implement Category from fig. 1.20.

The function `isEven` converts Int type into Bool.

\[
\begin{align*}
 \text{isEven} &:: \text{Int} \to \text{Bool} \\
 \text{isEven} \ x &= x \ `\text{mod}` \ 2 == 0
\end{align*}
\]

There is also Identity morphism that is defined as follows
Figure 1.20: Programming language category example. Objects are types: Int, Bool, String. Morphisms are several functions

- **id**: a \(\rightarrow\) a
 - id \(x = x\)

If we have an additional function

- **stringLength**: String \(\rightarrow\) Int
 - stringLength \(x = \text{length } x\)

then we can create a Composition (Axiom 1.9)

- **isStringLengthEven**: String \(\rightarrow\) Bool
 - isStringLengthEven \(= \text{isEven} \circ \text{stringLength}\)

1.3.2 Scala toy category

Example 1.59 (Scala toy category). We will use the same trick as in Hask toy category (Example 1.58) and will assume types in Scala as Objects, functions as Morphisms. We also are going to implement Category from fig. 1.20.

```scala
object Category {
  def id[A]: A \(\rightarrow\) A = a \(\Rightarrow\) a
  def compose[A, B, C](g: B \(\Rightarrow\) C, f: A \(\Rightarrow\) B): A \(\Rightarrow\) C = g \(\circ\) f
}
```
val isEven = (i: Int) => i % 2 == 0
val stringLength = (s: String) => s.length
val isStringLengthEven = (s: String) =>
 compose(isEven, stringLength)(s)
}

The usage example is below

class CategorySpec extends Properties("Category") {
 import Category._
 import Prop.forAll

 property("composition") = forAll { (s: String) =>
 isStringLengthEven(s) == isEven(stringLength(s))
 }

 property("right id") = forAll { (i: Int) =>
 isEven(i) == compose(isEven, id[Int])(i)
 }

 property("left id") = forAll { (i: Int) =>
 isEven(i) == compose(id[Boolean], isEven)(i)
 }
}

1.3.3 C++ toy category

Example 1.60 (C++ toy category). We will use the same trick as in Hask
toy category (Example 1.58) and will assume types in C++ as Objects,
functions as Morphisms. We will implement Category from fig. 1.20.

Let's define 2 functions as follows:

```cpp
auto isEven = [] (int x) {
  return x % 2 == 0;
};

auto stringLength = [] (std::string s) {
  return static_cast<int>(s.size());
};
```

Then we can define composition:
CHAPTER 1. BASE DEFINITIONS

```cpp
// h = g . f
template <typename A, typename B>
auto compose(A g, B f) {
    auto h = [f, g](auto a) {
        auto b = f(a);
        auto c = g(b);
        return c;
    };
    return h;
};
```

The Identity morphism:
```cpp
auto id = [](auto x) { return x; };
```

The usage examples are the following:
```cpp
auto isStringLengthEven = compose<>(isEven, stringLength);
auto isStringLengthEvenL = compose<>(id, isStringLengthEven);
auto isStringLengthEvenR = compose<>(isStringLengthEven, id);
```

Such construction will always provides us a category until we use pure function (functions without effects).

1.4 Quantum mechanics examples

The most critical property of quantum system is the superposition principle. The Set category cannot be used for it because it does not satisfy the principle but a simple modification of the Set category does.

Definition 1.61 (Rel category). We will consider a set of sets (same as Set category) i.e. Sets as Objects. Instead of Functions we will use Binary relations as Morphisms.

The Rel category is similar to the finite dimensional Hilber space especially because it assumes some kind of superposition. Really consider Rel - the Rel category. $X, Y \in \text{ob(Rel)}$ - 2 sets which consists of different elements. Let $f : X \to X$ - Morphism. Each element $x \in X$ is mapped to a subset $Y' \subset Y$. The Y' can be Singleton (in this case no differences with Set category) but there can be a situation when Y' consists of several elements. In the case we will get some kind of superposition that is analogyest to quantum systems.
1.4. QUANTUM MECHANICS EXAMPLES

In the quantum mechanics we say about Hilber spaces that is a Vector space under Field of complex numbers \mathbb{C}.

Definition 1.62 (Hilbert space). The Hilbert space is a complex Vector space with an inner product as a complex number (\mathbb{C}).

Later we will consider only finite dimensional Hilber spaces. We will denote a Hilbert space of dimensional n as \mathcal{H}_n. Obviously $\mathcal{H}_1 = \mathbb{C}$.

Definition 1.63 (Dual space). Each Hilber space \mathcal{H} has an associated with it dual space \mathcal{H}^* that consists of linear functionals

Example 1.64 (Dirac notation). Consider a ket-vector $|\psi\rangle \in \mathcal{H}$. Then the corresponding vector from Dual space is called bra-vector $\langle \psi | \in \mathcal{H}^*$. From the definition of dual space the bra-vector is a linear functional i.e.

$$\langle \psi | : \mathcal{H} \to \mathbb{C},$$

\forall |\phi\rangle \in \mathcal{H} \text{ we have } \langle \psi | (|\phi\rangle) = (|\psi\rangle, |\phi\rangle)$$ - inner product that is often written as $\langle \psi | \phi \rangle$.

The transformation between 2 Hilbert spaces that preserves the structure is called linear map or linear transformations.

Definition 1.65 (Linear map). The linear map between 2 Hilbert spaces \mathcal{A} and \mathcal{B} is a mapping $f : \mathcal{A} \to \mathcal{B}$ that preserves additions

$$f(a_1 + a_2) = f(a_1) + f(a_2),$$

and scalar multiplications:

$$f(c \cdot a) = c \cdot f(a)$$

where $a, a_1, a_2 \in \mathcal{A}$ and $f(a), f(a_1), f(a_2) \in \mathcal{B}$.

Remark 1.66 (Linear map). Note that Linear map does not preserve inner product. TBD (verify the statement ???)

If we want to combine 2 Hilbert spaces into one we use a notion of direct sum.

Definition 1.67 (Direct sum of Hilber spaces). Let \mathcal{A}, \mathcal{B} are 2 Hilbert spaces. The direct sum $\mathcal{A} \oplus \mathcal{B}$ is defined as follows

$$\mathcal{A} \oplus \mathcal{B} = \{ a \oplus b | a \in \mathcal{A}, b \in \mathcal{B} \}.$$

The inner product is defined as follows

$$\langle a_1 \oplus b_1 | a_2 \oplus b_2 \rangle = \langle a_1 | a_2 \rangle + \langle b_1 | b_2 \rangle.$$
CHAPTER 1. BASE DEFINITIONS

<table>
<thead>
<tr>
<th>Set</th>
<th>Rel</th>
<th>FdHilb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Set</td>
<td>finite dimensional Hilbert space</td>
</tr>
<tr>
<td>Morphism</td>
<td>Function</td>
<td>Linear map</td>
</tr>
<tr>
<td>Initial object</td>
<td>empty set</td>
<td>trivial Hilbert space of dimensional 0</td>
</tr>
<tr>
<td>Terminal object</td>
<td>Singleton</td>
<td>C</td>
</tr>
<tr>
<td>Product</td>
<td>Cartesian product</td>
<td>Direct sum of Hilbert spaces</td>
</tr>
<tr>
<td>Sum</td>
<td>Sum (Example 2.16)</td>
<td>Direct sum of Hilbert spaces</td>
</tr>
</tbody>
</table>

Table 1.1: Relations between Set, Rel and FdHilb categories

Definition 1.68 (FdHilb category). Most common case in quantum mechanics is the case of quantum states in the finite dimensional Hilbert space. We can consider the set of all finite dimensional Hilbert spaces as a category. The Objects in the category are finite dimensional Hilbert spaces and Morphisms are Linear maps. The category is denoted as FdHilb. It is very similar to Rel category. The brief relation is described in the table 1.1.

Example 1.69 (Rabi oscillations). For our example we consider a 2 level atom with states $|a\rangle$ - excited and $|b\rangle$ - ground. As soon as we consider a 2-level system we are in the 2 dimensional Hilbert space i.e. have only one Object. Lets call it as $|\psi\rangle$. The category in the example will be called as Rabi. I.e. $\text{ob}(\text{Rabi}) = \mathcal{H}_2\{|\psi\rangle\}$.

The atom interacts with light beam of frequency $\omega = \omega_{ab}$. The state of the system is described by the following equation [32]:

$$|\psi\rangle = \cos\frac{\omega_R t}{2} |a\rangle - i \sin\frac{\omega_R t}{2} |b\rangle,$$

where ω_R - Rabi frequency [32].

The interaction time t is fixed and corresponds to $\omega_R t = \pi$ i.e. the interaction can be described a linear operator \hat{L}.

There are 4 different states and as result 4 Morphisms:

$$|\psi\rangle_0 = |a\rangle,$$

$$|\psi\rangle_1 = \hat{L} |\psi\rangle_0 = -i |b\rangle,$$

$$|\psi\rangle_2 = \hat{L}^2 |\psi\rangle_0 = - |a\rangle,$$

$$|\psi\rangle_3 = \hat{L}^3 |\psi\rangle_0 = i |b\rangle.$$

1.5 Categorical approach

There is an interesting relation between sets and categories. In both we consider objects(sets) and relations between them(morphisms/functions).
1.5. CATEGORICAL APPROACH

\[1_{|\psi\rangle \rightarrow |\psi\rangle} = \hat{L}^4 \]

Figure 1.21: Rabi oscillations as a category Rabi

In the set theory we can get info about functions by looking inside the objects(sets) aka use “microscope” [14]. For instance the definitions for Injection and Surjection are given in the terms of internal objects (sets) structure.

Contrary in the category theory we initially don’t have any info about object internal structure but can get it using the relation between the objects i.e. using Morphisms. In other words we can use “telescope” [14] there. For the instance in the remark 1.47 we concluded that Epimorphism is a categorical definition for Surjection. The same conclusion for relation between Injection and Monomorphism was made in remark 1.50.

Many constructions can be defined in the 2 different ways: via local (via “microscope”) or global (via “telescope”) approach. This gives us the following definitions.

Definition 1.70 (Categorical approach). The description of a system (object) via its relations with other systems (objects) will be called as **categorical approach** in the book. This description is an alternative one to an ordinary system description via its internal structure.

Definition 1.71 (Non-categorical approach). The opposite to Categorical approach will be called as **non-categorical approach** in the book. This description is an ordinary system description via its internal structure.

Categorical approach often uses so called Universal property to define different constructions. There is an informal definition of the property below

Definition 1.72 (Universal property). In category theory we can highlight constructions when they follow an unique pattern. There can be a lot of such constructions. We pick up the best one via a criteria that can vary for different definitions. The criteria that is used to separate a particular categorical construction from a huge amount of similar ones is called **Universal property**.
Typical examples of the universal property application are Product and Sum definitions. You can find the definitions later in the book (see section 2.3). The Universal property seems to be broadly used in different areas. There are several examples of such Universal property usage (see section 1.5.2) and Categorical approach (see section 1.5.1) below.

1.5.1 Programming languages

There are two basic options possible in programming language. You can use an imperative approach to implement requested functionality or declarative (functional) one. Let’s illustrate it on the factorial calculation example.

The factorial can be defined in 2 forms. The first one assumes direct instruction on how to calculate it:

\[n! = \prod_{i=1}^{n} i, \tag{1.3} \]

another one gives you a formal definition for the function:

\[n! = n \cdot (n - 1)!, \]
\[0! = 1 \tag{1.4} \]

Straightforward approach to resolve the task is demonstrated by C++ language in implementing (1.3):

```cpp
int f(int n) {
    if (n < 0) {
        throw std::invalid_argument("the argument has to be greater or equal 0");
    }
    int res = 1;
    for (int i = 1; i <= n; ++i) {
        res *= i;
    }
    return res;
}
```

The solution requires provide all details about the internal structure of the solution i.e. which variables to be used and how to calculate result using them. Thus the approach can be considered as a variation of Non-categorical approach.

Another case assume that the formal definition of the function is provided without any internal details about the implementation. I.e. the (1.4) is
1.5. CATEGORICAL APPROACH

Figure 1.22: Optics refraction as an example of Universal property in optics

used. A functional language such as Haskell is a good candidate for the implementation:

```haskell
-- Factorial
f 0 = 1
f n = n * f (n - 1)
```

1.5.2 Physics

Many physical concepts (may be every one) can be formulated in 2 ways. The first one uses differential equations (aka local approach). The second one uses integral equations (aka global approach). The first case is similar to the “microscope” usage. The second one is the similar to “telescope” approach.

Optics

Optics is another good example of Universal property in physics. In optics it can be reformulated as follows

Remark 1.73 (Universal property). [Optics] A light beam chooses a path that requires the minimal amount of time to path through it.

Good example of the property is shown in fig. 1.22. When the light traverse from point A to point B it does not use the shortest path because a
big part of the path will be in water where speed of the light \(v_2 \) is smaller than in air \(v_1 \):
\[
v_2 < v_1
\]
Thus if it follows the **Universal property** then it should minimize the path in water that leads to well known Snell’s law [31]:
\[
\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} = \frac{n_1}{n_2}.
\]

Classical mechanics

We will consider a motion of a classical mechanical system there. The system consists of \(n \) particles. Each particle with number \(i \in 1, \ldots, n \) has coordinate \(q_i \in \mathbb{R}^3 \) that changes with time. The set \(q_1(t), \ldots, q_n(t) \) defines the trajectory. Equations of classical mechanics, that define the trajectory, can be written in different forms. We will consider Lagrangian form and least action form there. The key point for both is Lagrangian that can be written \(^4\) as
\[
L = T - U,
\]
where \(T \) is kinetic energy and \(U \) is the potential energy. The Lagrangian is the function of particles positions \(\{q_i\} \), velocities \(\{\dot{q}_i\} \) and time \(t \). For the case of \(n \) particles we can get the following form of Lagrangian:
\[
L = L (q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n, t).
\]
The motion equation can be written in the following form:
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}, \quad (1.5)
\]

Example 1.74 (Newton’s second law for a particle). Lets consider a single particle motion on the force field \(F = -\frac{dU}{dx} \). The kinetic energy is
\[
T = \frac{m \dot{x}^2}{2}
\]
and Lagrangian
\[
L = T - U = \frac{m \dot{x}^2}{2} - U(x).
\]
Thus (1.5) gives us
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x}
\]

\(^4\)non-relativistic case
or
\[
\frac{d}{dt} (m\ddot{x}) = m\ddot{x} = -\frac{dU}{dx} = F
\]
that is the famous Newton’s second law for a particle.

The (1.5) is an example of local approach when the knowledge about local properties (this knowledge leads to the differential equation) gives us the motion equation i.e. the equation has been got using a “microscope” there.

Another way to investigate the motion is the principle of least action. In the principle we consider all possible trajectories of our system between time points \(t_1 \) and \(t_2 \). For each trajectory \(q(t) = q_1(t), \ldots, q_n(t), t \in [t_1, t_2] \) we can define the following integral
\[
S(q, t_1, t_2) = \int_{t_1}^{t_2} L(q(t), \dot{q}(t), t) \, dt, \tag{1.6}
\]
that is called as *Action*. The principle of least action states that the trajectory taken by the system between times \(t_1 \) and \(t_2 \) is the one for which the action is stationary (no change) to first order \([30]\) i.e.
\[
\delta S = 0.
\]

We can rewrite the principle as follows
\[
\delta S = \int_{t_1}^{t_2} \delta L(q(t), \dot{q}(t), t) \, dt =
\]
\[
= \int_{t_1}^{t_2} [L(q + \delta q, \dot{q} + \delta \dot{q}, t) - L(q, \dot{q}, t)] \, dt =
\]
\[
= \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right] \, dt + \int_{t_1}^{t_2} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \, dt =
\]
\[
= \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial q} \delta q + \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \right] \, dt = 0,
\]
that leads to (1.5). Therefore the same motion equation can be used using global approach (via integral over all possible trajectories) or in other words the “telescope” was used there.

Remark 1.75 (Universal property). [Mechanics] The principle of least action can be treated as an universal property that will allow to pick up one object (trajectory) among the set of the similar objects. The same universal properties will appear during the book in a lot of places.
1.5.3 Quantum mechanics

Very interesting example of Categorical approach is provided us by quantum mechanics via path integrals [3]. The question that is asked is the following. If we have 2 points \(a\) and \(b\), what’s probability \(P(a, b)\) that a particle moves from \(a\) to \(b\)? The probability is defined as follows [3]:

\[
P(a, b) = |K(a, b)|^2,
\]

where \(K(a, b)\) is a special function defined by all possible paths from \(a\) to \(b\) as follows

\[
K(a, b) = \frac{1}{Z} \int_q e^{i \pi S(q)} Dq,
\]

where \(q\) is a trajectory from \(a\) to \(b\) (see fig. 1.23), and \(S\) is the action defined by (1.6). For a path \(x\) such that \(\delta S(q) > \hbar\) we will have that a trajectory \(q + \delta q\) that is similar to \(q\) but gives a completely different action and as result such trajectories will cancel each other.

From other hand the path \(q_0\) such that \(\delta S(q_0) = 0\) will have all other similar trajectories \(q_0 + \delta q\) will increase each other and as result the \(q_0\) will define the real trajectory for the particle. This is in direct connection with the classical least action principle [30].
Chapter 2

Objects and morphisms

2.1 Equality

The important question is how we can decide whenever an object/morphism is equal to another object/morphism. The trivial answer is possible if the Object is a Set. In the case we can say that 2 objects are equal if they contain the equivalent collection of elements. Unfortunately we cannot do the same trick for categorical Objects as soon as they don’t have any internal structure but can use a Categorical approach (see section 1.5) i.e. if we cannot use a “microscope” lets use a “telescope” and define the equality of objects and morphisms of a category \(C \) in the terms of whole \(\text{hom}(C) \).

Definition 2.1 (Objects equality). Two Objects \(a \) and \(b \) in Category \(C \) are equal if there exists an unique Isomorphism \(a \cong_f b \). This also means that there exists an unique isomorphism \(b \cong_g a \). These two Morphisms \((f \text{ and } g) \) are related each other via the following equations: \(f \circ g = 1_{a \rightarrow a} \) and \(g \circ f = 1_{b \rightarrow b} \).

Unlike Functions between Sets we don’t have any additional info \(^1\) about Morphisms except category theory axioms which the morphisms satisfy [5]. This leads us to the following definition of morphisms equality:

Definition 2.2 (Morphisms equality). Two Morphisms \(f \) and \(g \) in Category \(C \) are equal if the equality can be derived from the base axioms:

- Composition (Axiom 1.9)
- Associativity (Axiom 1.11)

\(^1\)for instance info about sets internals. i.e. which elements of the sets are connected by the considered functions
• Identity morphism: (1.1), (1.2)
or Commutative diagrams which postulate the equality.

As an example lets proof the following theorem

Theorem 2.3 (Identity is unique). The Identity morphism is unique.

Proof. Consider an Object \(a \) and it’s Identity morphism \(1_{a \to a} \). Assume existence of a function \(f : a \to a \) such that \(f \) is also identity. (1.1), for \(f \) as identity, gives us

\[
f \circ 1_{a \to a} = 1_{a \to a}.
\]

From other side (1.2) for \(1_{a \to a} \) satisfied

\[
f \circ 1_{a \to a} = f
\]

i.e.

\[
f = f \circ 1_{a \to a} = 1_{a \to a}
\]

or \(f = 1_{a \to a} \).

\(\square\)

2.2 Initial and terminal objects

2.2.1 Initial object

Definition 2.4 (Initial object). Let \(C \) is a Category, the Object \(i \in \text{ob}(C) \) is called initial object if \(\forall x \in \text{ob}(C) \exists f_x : i \to x \in \text{hom}(C) \).

Example 2.5 (Initial object). [Set] Note that there is only one function from empty set to any other sets [19] that makes the empty set as the Initial object in Set category.

Theorem 2.6 (Initial object is unique). Let \(C \) is a category and \(i, i' \in \text{ob}(C) \) two Initial objects then there exists an unique Isomorphism \(u : i \to i' \) (see Objects equality)

Proof. Consider the following Commutative diagram (see fig. 2.1). As soon as \(i \) initial object \(\exists! u : i \to i' \). From other side \(i' \) is also initial object and therefore \(\exists! u^{-1} : i' \to i \). Combining them together via composition we can get \(u^{-1} \circ u : i \to i \) and \(u \circ u^{-1} : i' \to i' \). From the fact that \(i \) is initial object one can get that there exists only one morphism \(1_{i \to i} : i \to i \). The same is the truth for \(i' \). Therefore \(u^{-1} \circ u = 1_{i \to i} \) and \(u \circ u^{-1} = 1_{i' \to i'} \). These complete the commutative diagram build and finishes the proof. \(\square\)
2.2. INITIAL AND TERMINAL OBJECTS

2.2.2 Terminal object

Definition 2.7 (Terminal object). Let C is a Category, the Object $t \in \text{ob}(C)$ is called terminal object if $\forall x \in \text{ob}(C) \exists! g_x : x \to t \in \text{hom}(C)$.

Example 2.8 (Terminal object). $\textbf{[Set]}$ Terminal object in \textbf{Set} category is a set with one element i.e Singleton.

As you can see the initial and terminal objects are opposite each other. I.e. if i is an Initial object in C then it will be Terminal object in the Opposite category C^{op}.

Theorem 2.9 (Terminal object is unique). Let C is a category and $t,t' \in \text{ob}(C)$ two Terminal objects then there exists an unique Isomorphism $v : t' \to t$ (see Objects equality).

Proof. Just got to the Opposite category and revert Arrows in fig. 2.1. The result shown on fig. 2.2 and it proofs the theorem statement. \qed
2.2.3 Toy example

Example 2.10 (Toy example). In our toy example fig. 1.20 the type String is Initial object and type Bool is the Terminal object.

2.3 Product and sum

2.3.1 Product

The pair of 2 objects is defined via the Universal property in the following way:

Definition 2.11 (Product). Let we have a category \mathcal{C} and $c_1, c_2 \in \text{ob}(\mathcal{C})$ -two Objects then the product of the objects c_1, c_2 is another object in \mathcal{C} $c = c_1 \times c_2$ with 2 Morphisms π_1, π_2 such that $c_1 = \pi_1(c), c_2 = \pi_2(c)$ and the following universal property is satisfied: $\forall c' \in \text{ob}(\mathcal{C})$ and morphisms $\pi'_1 : c' \to c_1, \pi'_2 : c' \to c_2$, exists unique morphism h such that the following diagram (see fig. 2.3) commutes, i.e.

\[
\begin{align*}
\pi'_1 &= \pi_1 \circ h, \\
\pi'_2 &= \pi_2 \circ h.
\end{align*}
\]

In other words h factorizes $\pi'_{1,2}$.

Example 2.12 (Product). \mathbf{Set} Cartesian product: $C = A \times B = \{(a, b) | a \in A, b \in B\}$ is the Product of two sets A and B in \mathbf{Set} category. We have only one option for $\pi_{1,2}$:

\[
\begin{align*}
\pi_1 : (a, b) &\to a \in A, \\
\pi_2 : (a, b) &\to b \in B.
\end{align*}
\]
Consider also another candidate: \(C' = A \times A \times B \times B = \{(a_1, a_2, b_1, b_2) | a_{1,2} \in A, b_{1,2} \in B\} \). There are different options for \(\pi'_1 \) and \(\pi'_2 \). Let’s choose the following ones:

\[
\begin{align*}
\pi'_1 &: (a_1, a_2, b_1, b_2) \rightarrow a_1 \in A, \\
\pi'_2 &: (a_1, a_2, b_1, b_2) \rightarrow b_2 \in B.
\end{align*}
\]

We have only one morphism \(h \) that satisfied conditions (2.1):

\[h : (a_1, a_2, b_1, b_2) \rightarrow (a_1, b_2) \in A \times B \]

that is accordingly with the Product definition for \(C = A \times B \).

If \(C' \) had been the Product then it would have satisfied the following factorization conditions:

\[
\begin{align*}
\pi_1 &= \pi'_1 \circ h', \\
\pi_2 &= \pi'_2 \circ h',
\end{align*}
\]

(2.2)

where \(h' \) would have been an unique morphism. From other side there are a lot of morphisms \(h' \) which factorize \(\pi_{1,2} \) accordingly (2.2):

\[h' : (a, b) \rightarrow (a, \bar{a}, \bar{b}, b), \]

where \(\bar{a} \) can be replaced with any element from \(A \) and \(\bar{b} \) can be replaced with any element of \(B \). Therefore \(C' \) can not be considered as the Product of \(A \) and \(B \).

The Product of objects will provide also a definition for product of morphisms

Definition 2.13 (Product of morphisms). Let \(C \) is a category and \(a, a' \in \text{ob}(C) \) and \(b, b' \in \text{ob}(C) \) are 2 pairs of Objects that admit definition 2.11. Consider 2 morphisms that connects the objects: \(f : a \rightarrow b, f' : a' \rightarrow b' \) then we can create a new unique morphism that connects the products: \(f \times f' : a \times a' \rightarrow b \times b' \) and makes the diagram commute (see fig. 2.4).

![Figure 2.4: Product of morphisms.](image)
2.3.2 Sum

If we invert Arrows in Product we will get another object definition that is called sum.

Definition 2.14 (Sum). Let we have a category \(C \) and \(c_1, c_2 \in \text{ob}(C) \) -two Objects then the sum of the objects \(c_1, c_2 \) is another object in \(C \) \(c = c_1 \oplus c_2 \) with 2 Morphisms \(i_1, i_2 \) such that \(c = i_1(c_1), c = i_2(c_2) \) and the following Universal property is satisfied: \(\forall c' \in \text{ob}(C) \) and morphisms \(i'_1 : c_1 \to c', i'_2 : c_2 \to c' \), exists unique morphism \(h \) such that the following diagram (see fig. 2.5) commutes, i.e. \(i'_1 = h \circ i_1, i'_2 = h \circ i_2 \).

\[c' \]
\[\downarrow h \]
\[c \]
\[\downarrow i_1 \]
\[c_1 \]
\[\downarrow i_2 \]
\[c_2 \]

\(i'_1 \quad i'_2 \)

Figure 2.5: Sum \(c = c_1 \oplus c_2 \). \(\forall c, \exists ! h \in \text{hom}(C) : i'_1 = h \circ i_1, i'_2 = h \circ i_2 \).

In other words \(h \) factorizes \(i'_{1,2} \).

The categorical sum is also called as *coproduct*.

Definition 2.15 (Disjoint union). Let \(\{ A_i : i \in I \} \) be a family of sets indexed by \(I \). The disjoint union \([24]\) of this family is the set

\[\bigsqcup_{i \in I} A_i = \bigcup_{i \in I} \{(x, i) : x \in A_i\} \, . \]

The elements of the disjoint union are ordered pairs \((x, i)\). Here \(i \) serves as an auxiliary index that indicates which \(A_i \) the element \(x \) came from.

Example 2.16 (Sum). \([\text{Set}]\) Disjoint union is the Sum of two sets \(A \) and \(B \) in Set category.

Remark 2.17 (Sum sign). In the book we will use \(\oplus \) as the sign for the categorical Sum. The Disjoint union sign \(\bigsqcup \) is also used \(^2 \) as the sign for categorical sum \([29]\).

\(^2\)but not in the book
2.4 Category as a monoid

Consider the following definition from abstract algebra

Definition 2.18 (Monoid). The set of elements M with defined binary operation \circ we will call as a monoid if the following conditions are satisfied.

1. **Closure:** $\forall a, b \in M: a \circ b \in M$
2. **Associativity:** $\forall a, b, c \in M: a \circ (b \circ c) = (a \circ b) \circ c$ (2.3)
3. **Identity element:** $\exists e \in M$ such that $\forall a \in M: e \circ a = a \circ e = a$ (2.4)

Example 2.19 (Monoid). **Monoid** concept is widely spread in math. Especially integer numbers form a monoid under summation operation. They also form another monoid under multiplication operation. The element 0 is used as identity in summation and 1 is used as the identity in multiplication.

Example 2.20 (Monoid). [Hask] There is a declaration of Monoid in Hask category

```haskell
class Monoid m where
    mappend :: m -> m -> m
    mempty :: m
```

There is a binary operation `mappend` and the identity `mempty`. As it was mentioned in the Monoid definition (see definition 2.18), the binary operation should satisfy the associativity (2.3) and identity element (2.4) properties. This is a responsibility of a particular implementation to satisfy the properties. For instance the standard list implementation satisfies them:

```haskell
instance Monoid [a] where
    mappend = (++)
    mempty = []
```

Remark 2.21 (Monoid). The given definition of monoid is based on its internal structure i. e. there is a Non-categorical approach. In section 6.1.3 we will continue the Monoid concept investigation and will give a Categorical approach of the concept. You can also find there some notes about the concept importance in different areas such as programming languages and math (see section 6.1.4).
We can consider 2 Monoids. The first one has Product as the binary operation and Terminal object as the identity element. As result we just got an analog of multiplication in the category theory. This is why the terminal object is often denoted as 1 and the operation is called as the product.

Another one is additional Monoid that has Initial object as the identity element and the Sum as the binary operation. The initial object in that case is often denoted as 0. I.e. we can see a direct connection with addition in algebra.

If we do such consideration then we can make a step forward and look at the distributive law that sum and multiplication satisfy.

Definition 2.22 (Distributive category). A category C is distributive if it has finite Products and Sums such that $\forall a, b, c \in \text{ob}(C)$:

$$(a \times b) \oplus (a \times c) \cong a \times (b \oplus c)$$

and

$$a \times 0 \cong 0$$

where 0 is the Initial object.

Example 2.23 (Distributive category). **Set** category is an example of Distributive category.

From other hand not all categories which have both product and sum are distributive. One of such example is a category of all groups Grp where groups are considered as objects and group homomorphisms as morphisms.

2.5 Exponential

We are going to talk about functions (aka morphisms) as Objects.

2.5.1 Definition and examples

Example 2.24 (Homset). Consider 2 sets A and B then the set of functions between the 2 sets forms a new set that is called as Homset and denoted as $\text{hom}(A, B)$. Thus if $A, B \in \text{ob}(\text{Set})$ then $\text{hom}(A, B) \in \text{ob}(\text{Set})$.

The construction of Homset is applied to the Set category but not to an arbitrary category because the Homset is a Set and therefore the object in the Set category. I.e. if C is a category and $a, b \in \text{ob}(C)$ then the Homset $\text{hom}(a, b) \in \text{ob}(\text{Set})$ but we now want to construct something like to the Homset but that is an object in C. This will be called as the function object. We will use the universal construction (Universal property) for the object definition.
2.5. EXPONENTIAL

Definition 2.25 (Exponential). Let \(\mathcal{C} \) is a category and \(x, y \in \text{ob(} \mathcal{C} \text{)} \). We also assume that \(\mathcal{C} \) allows all Products with \(x \), i.e. \(\forall y' \in \text{ob(} \mathcal{C} \text{)}, \exists y' \times x \). An object \(y^x \) together with a Morphism \(e : y^x \times x \to y \) is an exponential object if \(\forall e' \in \text{hom(} \mathcal{C} \text{)} \) and \(\forall y' \in \text{ob(} \mathcal{C} \text{)} \) exists an unique morphism \(h : y' \to y \) such that the Commutative diagram shown in fig. 2.6 commutes:

\[
e' = e \circ (h \times 1_{x \to x})
\]

Example 2.26 (Exponential). \([\text{Set}]\) Let's look at the Exponential in \(\text{Set} \). We want to show that the object corresponds to the function. Really if we want to define a function \(f : X \to Y \) then we should look at the Homset \(F = \text{hom(} X, Y \text{)} \). \(f \in F \) is an element of the Homset. For the function application we have to take the argument \(x \in X \) and the function we want to apply \(f \in F \). Then we construct the pair \((f, x) \in F \times X \). For the function application we have to call a Morphism \(e : F \times X \to Y \). \(^3\) I.e. the application \(e(f, x) \) gives us \(e(f, x) = y \in Y \) - the function value.

The notation is used for “morphisms (functions) as objects” in the category theory has an explanation provided in the following remark.

Remark 2.27 (Exponential notation). The Homset \(\text{hom(} X, Y \text{)} \) is often denoted as \(Y^X \). Why the strange notation is used? Let \(X \) is a Singleton i.e. its Cardinality is 1: \(|X| = 1 \). The set \(Y \) has only 2 elements, i.e. its Cardinality is 2: \(|Y| = 2 \).

Consider a function \(f : X \to Y \). How many such functions do we have? There are really 2 functions (see fig. 2.7). One of them \(f_1 \) return the first element from \(Y \) (\(y_1 \)) and the other \(f_2 \) returns the second one (\(y_2 \)). The number of functions can be written as \(2^1 \). I.e. one can write for Cardinality of a set of all functions between \(X \) and \(Y \) as follows

\[
|Y^X| = |Y|^{|X|}. \tag{2.5}
\]

\(^3\)e from the word “eval”
Figure 2.7: \(\text{hom} (X, Y) \) consists of 2 elements: \(\{f_1, f_2\} \). Thus the cardinality of the homset is 2.

Otherwise if we consider a function \(g : Y \to X \) then we have only one possible choice for it (see fig. 2.8): just return the only possible element from \(X \). I.e. \(\lvert X^Y \rvert = 1 \) that correlates with (2.5).

Figure 2.8: \(\text{hom} (Y, X) \) consists of 1 element: \(\{g\} \). Thus the cardinality of the homset is 1.

2.5.2 Currying in Set

In the section we will be in the Set category. The definition of Exponential object is closely related to notion of currying that is defined for Sets as follows.

Definition 2.28 (Currying). Consider a function of 2 arguments:

\[
f : (X \times Y) \to Z
\]

that maps a pair (Product) of 2 sets \(X \) and \(Y \) into another set \(Z \). The currying constructs a new function

\[
h : X \to (Y \to Z)
\]

such that the following equation holds

\[
h(x)(y) = f(x, y),
\]

where \(x \in X, y \in Y \). The currying will be denoted as \(h = \text{curry}(f) \).
Remark 2.29 (Currying). If we consider Y^X is a set of functions $f : X \rightarrow Y$ then the currying is the Bijection

$$Y^{X_1 \times X_2} \cong (Y^{X_1})^{X_2}.$$

Remark 2.30 (Currying and Exponential). If we look in fig. 2.6 then we can notice that

$$\text{curry}(e) : y^x \rightarrow (x \rightarrow y),$$

i.e. currying is used to construct a morphisms from exponential object.

2.5.3 Cartesian closed category

Definition 2.31 (Cartesian closed category). If a category C satisfies the following conditions then it is called Cartesian closed category

1. It has Terminal object
2. $\forall a, b \in \text{ob}(C)$ exists Product $a \times b \in \text{ob}(C)$.
3. $\forall a, b \in \text{ob}(C)$ exists Exponential $a^b \in \text{ob}(C)$

Theorem 2.32 (Cartesian closed category). If C is a Cartesian closed category with finite Sum then it is a Distributive category.

Proof. TBD

2.6 Programming language examples. Type algebra

2.6.1 Hask category

Example 2.33 (Initial object). [Hask] If we avoid lazy evaluations in Haskell (see Haskell lazy evaluation (Remark 1.54)) then we can found several types as candidates for initial and terminal object in Haskell. Initial object in Hask category is a type without values

```haskell
data Void
```

i.e. you cannot construct a object of the type.

There is only one function from the initial object:

```haskell
absurd :: Void -> a
```
The function is called absurd because it does absurd action. Nobody can
proof that it does not exist. For the existence proof the following absurd
argument can be used: “Just provide me an object type Void and I will
provide you the result of evaluation”.

There is no function in opposite direction because it would had been used
for the Void object creation.

Example 2.34 (Terminal object). [Hask] Terminal object (unit) in Hask
category keeps only one element

```hs
data () = ()
```
i.e. you can create only one element of the type. You can use the following
function for the creation:

```hs
unit :: a -> ()
unit _ = ()
```

Example 2.35 (Product). [Hask] The Product in Hask category keeps a
pair and the constructor defined as follows

```hs
(,) :: a -> b -> (a, b)
(,) x y = (x, y)
```

There are 2 projectors:

```hs
fst :: (a, b) -> a
fst (x, _) = x
snd :: (a, b) -> b
snd (_, y) = y
```

Example 2.36 (Sum). [Hask] The Sum in Hask category defined as
follows

```hs
data Either a b = Left a | Right b
```
The typical usage is via pattern matching for instance

```hs
factor :: (a -> c) -> (b -> c) -> Either a b -> c
factor f _ (Left x) = f x
factor _ g (Right y) = g y
```

Example 2.37 (Distributive category). [Hask] As soon as Hask is a Carte-
sian closed category then by theorem 2.32 it is a Distributive category i.e.
one can conclude that
2.6. PROGRAMMING LANGUAGE EXAMPLES. TYPE ALGEBRA

(a, Either b c)

is the same to

Either (a, b) (a, c)

Example 2.38 (Exponential). [Hask] It’s not surprisingly that the Exponential in Hask is a function object i.e. \(b^a \) can be written as \(a \rightarrow b \).

Example 2.39 (Type algebra). example 2.38 gives interesting results with types manipulations. For instance the type \(a^{b+c} \) can be written as

Either b c -> a

for the function we should have both functions \(b \rightarrow a \) and \(b \rightarrow c \). I.e. the code is equivalent to the following one

(b -> a, c -> a)

These transformations correspond to the following simple algebraic equation

\[a^{b+c} = a^b a^c. \]

This is also called as type algebra.

2.6.2 C++ category

Example 2.40 (Initial object). [C++] In C++ exists a special type that does not hold any values and as result cannot be created: void. You cannot create an object of that type i.e. you will get a compiler error if you try.

Example 2.41 (Terminal object). [C++] C++ 17 introduced a special type that keeps only one value - std::monostate:

```cpp
namespace std {
    struct monostate {}
}
```

Example 2.42 (Product). [C++] The Product in C++ category keeps a pair and the constructor defined as follows

```cpp
namespace std {
    template< class A, class B > struct pair {
        A first;
        B second;
    };
}
```
There is a simple usage example

```cpp
std::pair<int, bool> p(0, false);
std::cout << "First projector: " << p.first << std::endl;
std::cout << "Second projector: " << p.second << std::endl;
```

Really any `struct` or `class` can be considered as a product.

Example 2.43 (Sum). [C++] If we consider `Objects` as types then `Sum` is an object that can be either one or another type. The corresponding C/C++ construction that provides an ability to keep one of two types is `union`.

C++17 suggests `std::variant` as a safe replacement for `union`. The example of the `factor` function is below

```cpp
template <typename A, typename B, typename C, typename D>
auto factor(A f, B g, const std::variant<C, D>& either) {
    try {
        return f(std::get<C>(either));
    } catch(...) {
        return g(std::get<D>(either));
    }
};
```

The simple usage as follows:

```cpp
std::variant<std::string, int> var = std::string("abc");
std::cout << "String length:" << factor<>(stringLength, id, var) << std::endl;
var = 4;
std::cout << "id(int):" << factor<>(stringLength, id, var) << std::endl;
```

2.6.3 Scala category

Example 2.44 (Initial object). [Scala] We used a same trick as for Initial object (Example 2.33) in Hask category and define Initial object in Scala category as a type without values

`sealed trait Void`

i.e. you cannot construct a object of the type.
Example 2.45 (Terminal object). [Scala] We used a same trick as for Terminal object (Example 2.34) in Hask category and define Terminal object in Scala category as a type with only one value

abstract final class Unit extends AnyVal

TBD i.e. you can create only one element of the type.

2.7 Quantum mechanics

Example 2.46 (Initial object). [FdHilb] We will use a Hilber space of dimensional 0 as the Initial object. I.e. the set that does not have any states in it.

Example 2.47 (Terminal object). [FdHilb] We will use a Hilber space of dimensional 1 as the Terminal object. I.e. the set of complex numbers \mathbb{C}.

Example 2.48 (Product). [FdHilb] The Product in FdHilb category is a Direct sum of Hilber spaces.

Example 2.49 (Sum). [FdHilb] The Sum in FdHilb category is a Direct sum of Hilber spaces.

TBD
CHAPTER 2. OBJECTS AND MORPHISMS
Chapter 3
Curry-Howard-Lambek correspondence

There is an interesting correspondence between computer programs and mathematical proofs. Different types of logic correspond to different computational models. This allows to build a theory of computation on the base of math logic. First of all consider a category of proofs

3.1 Proof category

Definition 3.1 (Proposition). Proposition is a statement that either true or false.

There are 2 main propositions

Definition 3.2 (True). A true statement is one that is correct, either in all cases or at least in the sample case [22].

and

Definition 3.3 (False). A false statement is one that is not correct [22].

Example 3.4 (Proposition). There is an example of correct (true) proposition

\[\forall n \in \mathbb{R} : n^2 \geq 0 \]

There is an example of incorrect (false) proposition

\[\forall n \in \mathbb{C} : n^2 \geq 0, \]

for instance \(i \in \mathbb{C} \) gives \(i^2 = -1 \).
Definition 3.5 (Implication). An implication is a Proposition of the form $P \implies Q$ i.e. if P then Q [12].

The main logical deduction rule is the following

Definition 3.6 (Modus ponens). If P is true and $P \implies Q$ is true then Q is also true. The rule is often written as [12]

\[
\frac{P}{P \implies Q}
\]

where if statements above the line are true then the statement below the line is also true.

Definition 3.7 (Proof). Proof is a verification [12] of a Proposition by a chain of logical deduction from a base set of axioms.

Propositions can be combined into new propositions via the following logical operations

Definition 3.8 (Conjunction). Conjunction or logical AND is the operation with following rules

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$a \land b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Table 3.1: Conjunction

Definition 3.9 (Disjunction). Conjunction or logical OR is the operation with following rules

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$a \lor b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Table 3.2: Disjunction
Operations in Boolean logic follow the distributive law:

\[a \land (b \lor c) = (a \land b) \lor (a \land c) \] (3.1)

i.e. the operation \(\land \) corresponds to multiplication and \(\lor \) to sum. Therefore the **Proof** can be considered as a **Distributive category**.

Definition 3.10 (Proof category). The **Proof** category is a category where **Propositions** are **Objects** and **Proofs** are **Morphisms**. I.e. proofs are used as connectors between different propositions.

Consider different objects and constructions of the proof (logic) theory from the categorical point of view

Example 3.11 (Initial object). [Proof] The *false* statement can be considered as the initial object because for any other statement exists only one proof from the false statement to that one.

Example 3.12 (Terminal object). [Proof] The *true* statement can be considered as the terminal object

Example 3.13 (Product). [Proof] Conjunction can be considered as **Product** in **Proof category**.

Example 3.14 (Sum). [Proof] Disjunction can be considered as **Sum** in **Proof category**.

Thus we can declare the following correspondence (see table 3.3) between logic proofs and **Cartesian closed category** and therefore also between programming languages.

<table>
<thead>
<tr>
<th>Proof category</th>
<th>Programming language</th>
<th>Cartesian closed category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposition/Implication</td>
<td>Type</td>
<td>Object</td>
</tr>
<tr>
<td>Proof</td>
<td>Function type</td>
<td>Exponential</td>
</tr>
<tr>
<td>Conjunction</td>
<td>Product type</td>
<td>Product</td>
</tr>
<tr>
<td>Disjunction</td>
<td>Sum type</td>
<td>Sum</td>
</tr>
<tr>
<td>True</td>
<td>unit type</td>
<td>Terminal object</td>
</tr>
<tr>
<td>False</td>
<td>botom type</td>
<td>Initial object</td>
</tr>
</tbody>
</table>

Table 3.3: Relation between logic proofs and programming languages

3.2 Linear logic and Linear types

Linear logic [2] is one of refinements of classical logic in the logic the **Implication** has been modified. In the classical logic the both statements \(P \) and
Q are valid after implication $P \implies Q$. But in linear logic we have another situation when the statement P can be used only once and become invalid after the usage. The situation then a resource can be used only once is useful in different types of computations especially in concurrency. TBD

3.3 Quantum logic and quantum computation

Different modifications of logic rules give us new computational models. One of example is the quantum computations. The quantum logic differs from Boolean one in the missing distributive law (3.1).

We can use the Heisenberg inequality to illustrate the violation of the law. Consider a particle with 2 possible positions range and 1 possible momentum range. The event P is that momentum has range Δp. The event $Q_{1,2}$ is that position is in the corresponding range $\Delta q_{1,2}$ (see fig. 3.1).

![Figure 3.1: Heisenberg inequality. The particle position can be in the following ranges: $[0, q_1]$ (uncertainty is Δq_1), $[q_1, q_2]$ (uncertainty is $\Delta q_2 = \Delta q_1$) or $[0, q_2]$ (uncertainty is $\Delta q = \Delta q_1 + \Delta q_2 = 2\Delta q_1$). We assume that momentum uncertainty is defined as $\Delta p = \frac{\hbar}{2\Delta q}$. Thus we have $\Delta p\Delta q_1 = \Delta p\Delta q_1 = \frac{\hbar}{2} < \frac{\hbar}{2}$ and therefore the particle cannot be localised neither inside $[0, q_1]$ or $[q_1, q_2]$. From other side $\Delta p\Delta q = 2\Delta p\Delta q_1 = \frac{2\hbar}{3} > \frac{\hbar}{2}$ and as result the particle can be localized at interval $[0, q_2]$](image)

Heisenberg inequality says

$$\Delta p\Delta q_{1,2} \geq \frac{\hbar}{2}$$

i.e. the following 2 events $P \land Q_{1,2}$ are forbidden as soon as (see fig. 3.1):

$$\Delta p\Delta q_1 = \frac{\hbar}{3}$$

and

$$\Delta p\Delta q_2 = \frac{\hbar}{3}$$

i.e.

$$P \land Q_1 = P \land Q_2 = \text{False}$$
from other side the event $P \land (Q_1 \lor Q_2)$ can be True as soon as (see fig. 3.1)

$$\Delta p(\Delta q_1 + \Delta q_2) = \frac{2\hbar}{3} > \frac{\hbar}{2}.$$

Therefore we have distributive law (3.1) violation

$$P \land (Q_1 \lor Q_2) \neq (P \land Q_1) \lor (P \land Q_2).$$
Chapter 4

Functors

4.1 Definitions

Definition 4.1 (Functor). Let \(C \) and \(D \) are 2 categories. A mapping \(F : C \Rightarrow D \) between the categories is called functor if it preserves the internal structure (see fig. 4.1):

- \(\forall a_C \in \text{ob}(C), \exists a_D \in \text{ob}(D) \) such that \(a_D = F(a_C) \)

- \(\forall f_C \in \text{hom}(C), \exists f_D \in \text{hom}(D) \) such that \(\text{dom} f_D = F(\text{dom} f_C), \text{cod} f_D = F(\text{cod} f_C) \). We will use the following notation later: \(f_D = F(f_C) \).

- \(\forall f_C, g_C \) the following equation holds:

 \[
 F (f_C \circ g_C) = F (f_C) \circ F (g_C) = f_D \circ g_D.
 \]

- \(\forall x \in \text{ob}(C) : F(1_{x \rightarrow x}) = 1_{F(x) \rightarrow F(x)} \).

![Diagram of Functor](image)

Figure 4.1: Functor \(F : C \Rightarrow D \) definition
Remark 4.2 (Functor). When we say that functor preserve internal structure we assume that the functor is not just mapping between Objects but also between Morphisms.

Thus functor is something that allows map one category into another. The initial category can be considered as a pattern thus the mapping is some kind of searching of the pattern inside another category.

Programming languages can be considered as a good platform for the functor examples. The functor can be defined in Haskell as follows

Example 4.3 (Functor). [Hask]
\[
\text{class } \text{Functor } f \text{ where}
\text{fmap} :: (a \rightarrow b) \rightarrow f\text{ a} \rightarrow f\text{ b}
\]

In Scala it can be defined in the same way

Example 4.4 (Functor). [Scala]
\[
\text{trait Functor}[F[_]] {
\text{def } \text{fmap[A, B](f: A => B): F[A] => F[B]}
\]

In C++ the definition differs

Example 4.5 (Functor). [C++] In C++ templates can be considered as type constructors in Haskell and therefore can convert one type for another. For instance the list of strings can be got with the following construction:

```
using StringList = std::list<std::string>;
StringList a = {"1", "2", "3"};
```

i.e. we have Objects mapping out of the box. Therefore we need to define fmap operation for Morphisms mapping to complete the Functor definition. It can be declared as follows

```
\text{template } < \text{template}< \text{class } [...] \text{> class } F, \text{class } A, \text{class } B>
\text{F<B> fmap(std::function<B(A)>, F<A>);}
```

The template specialization for the std::list can be written as follows

```
// file: functor.h
\text{template } < \text{class } A, \text{class } B>
\text{std::list<B> fmap(std::function<B(A)>, std::list<A> a) } \{
\text{std::list<B> res;}
\text{std::transform(a.begin(), a.end(), back_inserter(res), f);}\text{ return res;}
\}
```

\[\text{1}\text{the real definition is quite different from the current one}\]
4.2. **CAT CATEGORY**

The simple usage example is the following

```cpp
StringList a = {"1", "2", "3"};
std::function<int(std::string)> f = [] (std::string s) {
    return 2 * atoi(s.c_str());
};
auto res = fmap<> (f, a);
```

Definition 4.6 (Endofunctor). Let C is a Category. The Functor $E : C \Rightarrow C$ i.e. the functor from a category to the same category is called *endofunctor*.

Definition 4.7 (Identity functor). Let C is a Category. The Functor $1_C : C \Rightarrow C$ is called *identity functor* if for every object $a \in \text{ob}(C)$

$$1_C(a) = a$$

and for every Morphism $f \in \text{hom}(C)$

$$1_C(f) = f$$

Remark 4.8 (Identity functor). First of all notice that Identity functor is an Endofunctor.

There is difference between identity functor and Identity morphism because the first one has deal with both Objects and Morphisms while the second one with the objects only.

Definition 4.9 (Functor composition). If we have 3 categories C, D, E and 2 functors between them: $F : C \Rightarrow D$ and $G : D \Rightarrow E$ then we can construct a new functor $H : C \Rightarrow E$ that is called *functor composition* and denoted as $H = G \circ F$.

4.2 Cat category

The *Functor composition* is associative by definition. Therefore *Identity functor* with the associative composition allow us to define a category where other categories are considered as objects and functors as morphisms:

Definition 4.10 (Cat category). The category of small categories (see Small category) denoted as Cat is the Category where objects are small categories and morphisms are Functors between them.

We can construct an extension of Cartesian product as follows
Definition 4.11 (Category Product). If we have 2 categories C and D then we can construct a new category $C \times D$ with the following components:

- **Objects** are the pairs (c, d) where $c \in \text{ob}(C)$ and $d \in \text{ob}(D)$
- **Morphisms** are the pair (f, g) where $f \in \text{hom}(C)$ and $g \in \text{hom}(D)$
- **Composition** (Axiom 1.9) is defined as follows $(f_1, g_1) \circ (f_2, g_2) = (f_1 \circ f_2, g_1 \circ g_2)$
- **Identity** is defined as follows: $1_{C \times D} \rightarrow C \times D = (1_C \rightarrow C, 1_D \rightarrow D)$

Definition 4.12 (Constant functor). Let consider a trivial functor Δ_c from Category A to category C such that $\forall a \in \text{ob}(A) : \Delta_c a = c$ -fixed object in C and $\forall f \in \text{hom}(A) : \Delta_c f = 1_{c \rightarrow c}$. The trivial functor is called **constant functor**.

Example 4.13 (Initial object). [Cat] Empty category is the Initial object in Cat category [23].

Example 4.14 (Terminal object). [Cat] Trivial category is the Terminal object in Cat category.

The good example can be found in Hask category.

Example 4.15 (Constant functor). [Hask]

```haskell
data Const c a = Const c
fmap :: (a -> b) -> Const c a -> Const c b
fmap f (Const c a) = Const c b
```

4.3 Contravariant functor

Ordinary functor preserves the direction of morphisms and often called as **Covariant functor**. The functor that reverses the direction of morphisms is called as **Contravariant functor**.

Definition 4.16 (Covariant functor). If we have categories C and D then the ordinary Functor $C \Rightarrow D$ is called **covariant functor**.

Definition 4.17 (Contravariant functor). If we have categories C and D then the Functor $C^{\text{op}} \Rightarrow D$ is called **contravariant functor**.

Example 4.18 (Contravariant functor). [Hask] Function mapping inside a functor is made via `fmap` (see example 4.3) but sometimes the function that has to be mapped is $a \rightarrow b$ but the result mapping has an inverse order: $f b \rightarrow f a$. In the case the contravariant functor can help
class Contravariant f where
contramap :: (a -> b) -> f b -> f a

The contravariant functor should follow the following laws

contramap id = id
contramap f . contramap g = contramap (g . f)

Consider the following task. We have a predicate for Int type that returns True if the number is greater than 10 otherwise it returns False:

newtype Predicate a = Predicate { runPredicate :: a -> Bool}

intgt10 :: Predicate Int
intgt10 = Predicate (\i -> i > 10)

Now we want to create a predicate that accepts a string and verify it length greater than 10 or not. I.e. we want to have something of the following type:

strgt10 :: Predicate String

In the case the Contravariant functor helps.

instance Contravariant Predicate where
contramap f (Predicate p) = Predicate (p . f)

strgt10 :: Predicate [Char]
strgt10 = contramap length intgt10

4.4 Bifunctors

Definition 4.19 (Bifunctor). Bifunctor is a Functor whose Domain is a Category Product. I.e. if C₁, C₂, D are 3 categories then the Functor F : C₁ × C₂ ⇒ D is called bifunctor.

Example 4.20 (Bifunctor). [Set] Lets A, B, C and D are sets and f : A → C, g : B → D are two Functions. Then the Cartesian product with Product of morphisms form a Bifunctor ×.

Example 4.21 (Maybe as a bifunctor). [Hask] Lets show how the Maybe a type can be constructed from different Functors and as result show that the Maybe a is also a Functor.
data Maybe a = Nothing | Just a
-- This is equivalent to
data Maybe a = Either () (Identity a)
-- Either is a bifunctor and () == Const () a
-- Thus Maybe is a composition of 2 functors

Definition 4.22 (Profunctor). If we have a category C then the Bifunctor $C^{op} \times C \Rightarrow C$ is called \textit{profunctor}.

Example 4.23 (Profunctor). [Hask] TBD

```haskell
class Profunctor p where
  dimap :: (a' -> a) -> (b -> b') -> p a b -> p a' b'
  -- p a b == a -> b
  dimap f g h = g . h . f
```

Chapter 5

Natural transformation

Natural transformation is the most important part of the category theory. It provides a possibility to compare Functors via a standard tool.

5.1 Definitions

The natural transformation is not an easy concept compare other ones and requires some additional preparations before we can give the formal definition.

Consider 2 categories \mathcal{C}, \mathcal{D} and 2 Functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{C} \to \mathcal{D}$. If we have an Object $a \in \text{ob}(\mathcal{C})$ then it will be translated by different functors into different objects of category \mathcal{D}: $a_F = F(a), a_G = G(a) \in \text{ob}(\mathcal{D})$ (see fig. 5.1). There are 2 options possible

1. There is not any Morphism that connects a_F and a_G.

2. $\exists \alpha_a \in \text{hom}(a_F, a_G) \subset \text{hom}(\mathcal{D})$.

![Figure 5.1: Natural transformation: object mapping](image-url)
We can of course to create an artificial morphism that connects the objects but if we use natural morphisms then we can get a special characteristic of the considered functors and categories. For instance if we have such morphisms then we can say that the considered functors are related each other. Opposite example if there are no such morphisms then the functors can be considered as unrelated each other.

The functor is not just the object mapping but also the morphisms mapping. If we have 2 objects \(a \) and \(b \) in the category \(C \) then we potentially can have a morphism \(f \in \text{hom}_C(a, b) \). In this case the morphism is mapped by the functors \(F \) and \(G \) into 2 morphisms \(f_F \) and \(f_G \) in the category \(D \). As result we have 4 morphisms: \(\alpha_a, \alpha_b, f_F, f_G \in \text{hom}(D) \). It is natural to impose additional conditions on the morphisms especially that they form a Commutative diagram (see fig. 5.3):

\[
f_f \circ \alpha_b = \alpha_a \circ f_G.
\]

\(^1\)the word natural means that already existent morphisms from category \(D \) are used
5.2. CATEGORY OF FUNCTORS

Definition 5.1 (Natural transformation). Let F and G are 2 Functors from category C to the category D. The *natural transformation* is a set of Morphisms $\alpha \in \text{hom}(D)$ which satisfy the following conditions:

- For every Object $a \in \text{ob}(C)$ $\exists \alpha_a \in \text{hom}(a_F,a_G)$ 2 - Morphism in category D. The morphism α_a is called the component of the natural transformation.

- For every morphism $f \in \text{hom}(C)$ that connects 2 objects a and b, i.e. $f \in \text{hom}_C(a,b)$ the corresponding components of the natural transformation $\alpha_a, \alpha_b \in \alpha$ should satisfy the following conditions

$$f_G \circ \alpha_a = \alpha_b \circ f_F, \quad (5.1)$$

where $f_F = F(f), f_G = G(f)$. In other words the morphisms form a Commutative diagram shown on the fig. 5.3.

We use the following notation (arrow with a dot) for the natural transformation between functors F and G: $\alpha : F \rightarrow G$.

Definition 5.2 (Natural isomorphism). The Natural transformation $\alpha : F \rightarrow G$ is called *natural isomorphism* if all morphisms $\alpha \in \text{hom}(D)$ are Isomorphisms in D.

5.2 Category of functors

The functors can be considered as objects in a special category Fun. The morphisms in the category are *Natural transformations*.

To define a category we need to define composition operation that satisfied Composition (Axiom 1.9), identity morphism and verify Associativity (Axiom 1.11).

For the composition consider 2 Natural transformations α, β and consider how they act on an object $a \in \text{ob}(C)$ (see fig. 5.4). We always can construct the composition $\beta_a \circ \alpha_a$ i.e. we can define the composition of natural transformations α, β as $\beta \circ \alpha = \{\beta_a \circ \alpha_a | a \in \text{ob}(C)\}$.

The natural transformation is not just object mapping but also morphism mapping. We will require that all morphisms shown on fig. 5.5 commute. The composition defined in such way is called **Vertical composition**.

2 $a_F = F(a), a_G = G(a)$
Figure 5.4: Natural transformation vertical composition: object mapping

Figure 5.5: Natural transformation vertical composition: morphism mapping - commutative diagram
5.3. OPERATIONS WITH NATURAL TRANSFORMATIONS

Definition 5.3 (Vertical composition). Let F, G, H are functors between categories C and D. Also we have $\alpha : F \Rightarrow G, \beta : G \Rightarrow H$ - natural transformations. We can compose the α and β as follows

$$\alpha \circ \beta : F \Rightarrow H.$$

This composition is called *vertical composition*.

Definition 5.4 (Fun category). Let C and D are 2 categories. The category that contains functors $F : C \Rightarrow D$ as objects and Natural transformation as morphisms is called as functor category. The morphism composition is the Vertical composition in the category. The functor category between categories C and D is denoted as $[C, D]$.

Uniqueness of Natural transformation is the same to uniqueness of morphisms in the target category as soon as the natural transformation is a set of Morphisms in it. This fact leads to the following examples for initial and terminal objects in Fun category.

Example 5.5 (Terminal object). Let $[C, D]$ is the functor category between C and D. If $t \in \text{ob}(D)$ is the Terminal object in the category D then the Constant functor Δ_t is the Terminal object in the category $[C, D]$ [7].

Example 5.6 (Initial object). Let $[C, D]$ is the functor category between C and D. If $i \in \text{ob}(D)$ is the Initial object in the category D then the Constant functor Δ_i is the Initial object in the category $[C, D]$ [7].

5.3 Operations with natural transformations

Vertical composition is not the unique way to compose 2 functors. Another option is also possible.

Definition 5.7 (Horizontal composition). If we have 2 pairs of functors. The first one $F, G : C \Rightarrow D$ and another one $J, K : D \Rightarrow E$. We also have a natural transformation between each pair: $\alpha : F \Rightarrow G$ for the first one and $\beta : J \Rightarrow K$ for the second one. We can create a new transformation

$$\alpha \star \beta : F \circ J \Rightarrow G \circ K$$

that is called *horizontal composition*. Note that we use a special symbol \star for the composition.
Remark 5.8 (Bifunctor in the category of functors). If we have the same pair of functors as in definition 5.7 then we can consider the functors as Objects of 3 categories: \(A = [C, D] \), \(B = [D, E] \) and \(C = [C, E] \).

We can construct a Bifunctor \(\otimes : A \times B \Rightarrow C \) where for each pair of objects \(F \in \text{ob}(A) \), \(J \in \text{ob}(B) \) we get another object from \(C \). We used the ordinary functor’s composition as the operation for objects mapping. I.e.
\[
\otimes : F \times G \rightarrow F \circ G \in \text{ob}(C).
\]

The bifunctor is not just a map for objects. There is also a map between morphisms. Thus if we have 2 Morphisms: \(\alpha : F \rightarrow G \) and \(\beta : J \rightarrow K \) then we can construct the following mapping
\[
\otimes : \alpha \times \beta \rightarrow \alpha \star \beta \in \text{hom}(C).
\]

As result we just introduced mapping \(\otimes \) as a Bifunctor in the category of functors.

Definition 5.9 (Left whiskering). If we have 3 categories \(B, C, D \), Functors \(F, G : C \Rightarrow D, H : B \rightarrow C \) and Natural transformation \(\alpha : F \Rightarrow G \) then we can construct a new natural transformations:
\[
\alpha H : F \circ H \Rightarrow G \circ H
\]
that is called left whiskering of functor and natural transformation [18].

Definition 5.10 (Right whiskering). If we have 3 categories \(C, D, E \), Functors \(F, G : C \Rightarrow D, H : D \rightarrow E \) and Natural transformation \(\alpha : F \Rightarrow G \) then we can construct a new natural transformations:
\[
H \alpha : H \circ F \Rightarrow H \circ G
\]
that is called right whiskering of functor and natural transformation [18].

Definition 5.11 (Identity natural transformation). If \(F : C \Rightarrow D \) is a Functor then we can define identity natural transformation \(1_{F \Rightarrow F} \) that maps any Object \(a \in \text{ob}(C) \) into Identity morphism \(1_{F(a) \rightarrow F(a)} \in \text{hom}(D) \).

Remark 5.12 (Whiskering). With Identity natural transformation we can redefine Left whiskering and Right whiskering via Horizontal composition as follows.

For left whiskering:
\[
\alpha H = \alpha \star 1_{H \Rightarrow H}\tag{5.2}
\]

For right whiskering:
\[
H \alpha = 1_{H \Rightarrow H} \star \alpha \tag{5.3}
\]
5.4 Polymorphism and natural transformation

Polymorphism plays a certain role in programming languages. Category theory provides several facts about polymorphic functions which are very important.

Definition 5.13 (Parametrically polymorphic function). Polymorphism is *parametric* if all function instances behave uniformly i.e. have the same realization. The functions which satisfy the parametric polymorphism requirements are parametrically polymorphic.

Definition 5.14 (Ad-hoc polymorphism). Polymorphism is *ad-hoc* if the function instances can behave differently dependently on the type they are being instantiated with.

Theorem 5.15 (Reynolds). *Parametrically polymorphic functions are Natural transformations*

Proof. TBD

5.4.1 Hask category

In Haskell most of functions are *Parametrically polymorphic functions*.

Example 5.16 (Parametrically polymorphic function). [Hask] Consider the following function

\[
\text{safeHead :: [a] -> Maybe a}
\]

\[
\text{safeHead [] = Nothing}
\]

\[
\text{safeHead (x:xs) = Just x}
\]

The function is parametrically polymorphic and by Reynolds (Theorem 5.15) is *Natural transformation* (see fig. 5.6).

Therefore from the definition of the natural transformation (5.1) we have

\[
\text{fmap f . safeHead} = \text{safeHead . fmap f}
\]

i.e. it does not matter if we initially apply \text{fmap f} and then \text{safeHead} to the result or initially \text{safeHead} and then \text{fmap f}.

The statement can be verified directly. For empty list we have

\[
\text{fmap f . safeHead []}
\]

-- equivalent to

\[
\text{fmap f Nothing}
\]

-- equivalent to

\[
\text{Nothing}
\]

\[\text{\footnote{really in the run-time the functions are not Parametrically polymorphic functions}}\]
from other side

\[
\text{safeHead} \circ \text{fmap} \ f \ [a]
\]
-- equivalent to
\[
\text{safeHead} \ [a]
\]
-- equivalent to
\[
\text{Nothing}
\]

For a non-empty list we have

\[
\text{fmap} \ f \ . \ \text{safeHead} \ (x:xs)
\]
-- equivalent to
\[
\text{fmap} \ f \ (\text{Just} \ x)
\]
-- equivalent to
\[
\text{Just} \ (f \ x)
\]

from other side

\[
\text{safeHead} \circ \text{fmap} \ f \ (x:xs)
\]
-- equivalent to
\[
\text{safeHead} \ (f \ x: \text{fmap} \ f \ xs)
\]
-- equivalent to
\[
\text{Just} \ (f \ x)
\]

Using the fact that \text{fmap} \ f is an expensive operation if it is applied to the list we can conclude that the second approach is more productive. Such transformation allows compiler to optimize the code.

\footnote{It is not directly applied to Haskell because it has lazy evaluation that can perform optimization before that one}
Chapter 6

Monads

Monads are very important for pure functional programming languages such as Haskell. We will start with Monoid consideration, continue with the formal mathematical definition for monad and will finish with programming languages examples later.

6.1 Monoid in Set category

In the section 2.4 we considered definition and importance of Monoid concept. The definition was given in the terms of internal structure i.e. the ordinary and not Categorical approach was used. Now we are going to consider Monoid in the terms of Set theory but will try to give the definition that is based rather on morphisms then on internal set structure i.e. we will use Categorical approach. Let M is a set and by the monoid definition (definition 2.18) $\forall m_1, m_2 \in M$ we can define a new element of the set $\mu(m_1, m_2) \in M$. Later we will use the following notation for the μ:

$$\mu(m_1, m_2) \equiv m_1 \cdot m_2.$$

If the (M, \cdot) is monoid then the following 2 conditions have to be satisfied. The first one (associativity) declares that $\forall m_1, m_2, m_3 \in M$

$$m_1 \cdot (m_2 \cdot m_3) = (m_1 \cdot m_2) \cdot m_3. \quad (6.1)$$

The second one (identity presence) says that $\exists e \in M$ such that $\forall m \in M$:

$$m \cdot e = e \cdot m = m. \quad (6.2)$$

75
6.1.1 Associativity

Let's consider (6.1) in details. We can define μ as a Morphism in the following way

$$\mu : M \times M \to M,$$

where $M \times M$ is the Product (Example 2.12) in the Set category. I.e. $M \times M, M \in \text{ob}(\text{Set})$ and $\mu \in \text{hom}(\text{Set})$. Consider other objects of Set: $A = M \times (M \times M)$ and $A' = (M \times M) \times M$. They are not the same but there is a trivial Isomorphism between them $A \cong_{\alpha} A'$, where the isomorphism α defined as

$$\alpha(x, (y, z)) = ((x, y), z).$$

Consider the action of Product of morphisms $1_{M \to M} \times \mu$ on A:

$$[1_{M \to M} \times \mu] (x, (y, z)) = (1_{M \to M}(x), \mu (y, z)) = (x, y \cdot z) \in M \times M$$

i.e. $1_{M \to M} \times \mu : M \times (M \times M) \to M \times M$. If we act μ on the result then we can obtain:

$$\mu ([1_{M \to M} \times \mu] (x, (y, z))) =$$

$$= \mu (1_{M \to M}(x), \mu (y, z)) =$$

$$= \mu (x, y \cdot z) = x \cdot (y \cdot z) \in M,$$

i.e. $\mu \circ [1_{M \to M} \times \mu] : M \times (M \times M) \to M$.

For A' we have the following one:

$$\mu \circ [\mu \times 1_{M \to M}] ((x, y), z) = \mu (x \cdot y, z) = (x \cdot y) \cdot z.$$

Monoid associativity requires

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

i.e. the morphisms are shown in fig. 6.1 commute:

$$\mu \circ [\mu \times 1_{M \to M}] = \mu \circ [1_{M \to M} \times \mu] \circ \alpha. \quad (6.3)$$

Very often the isomorphism α is omitted i.e.

$$M \times (M \times M) = (M \times M) \times M = M^3$$

and the morphism equality (6.3) is written as follow

$$\mu \circ [\mu \times 1_{M \to M}] = \mu \circ [1_{M \to M} \times \mu].$$

The corresponding commutative diagram is shown in fig. 6.2.
6.1. MONOID IN SET CATEGORY

\[M \times (M \times M) \cong_\alpha (M \times M) \times M \]

\[\mu \times 1 \quad \text{and} \quad 1 \times \mu \]

\[M \times M \]

\[M \times M \]

\[M \times M \]

\[\mu \]

Figure 6.1: Commutative diagram for \(\mu \circ [\mu \times 1_{M \to M}] = \mu \circ [1_{M \to M} \times \mu] \circ \alpha. \)

\[M^3 \]

\[M \times M \]

\[\mu \times \mu \times 1 \quad \text{and} \quad 1 \times \mu \times 1 \]

\[M \times M \]

\[M \]

\[M \times M \]

Figure 6.2: Commutative diagram for \(\mu \circ [\mu \times 1_{M \to M}] = \mu \circ [1_{M \to M} \times \mu] \)
6.1.2 Identity presence

For (6.2) consider a morphism \(\eta \) from Singleton \(I = \{0\} \) to the special element \(e \in M \) such that \(\forall m \in M : e \cdot m = m \cdot e = m \). i.e. \(\eta : I \to M \) and \(e = \eta(0) \). Consider 2 sets \(B = I \times M \) and \(B' = M \times I \). We have 2 Isomorphisms: \(B \cong_\lambda M \) and \(B' \cong_\rho M \) such that

\[
\lambda(m) = (0, m) \in B = I \times M
\]

and

\[
\rho(m) = (m, 0) \in B' = M \times I.
\]

If we apply the products (see Product of morphisms) \(\eta \times 1_{M \to M} \) and \(1_{M \to M} \times \eta \) on \(B \) and \(B' \) respectively then we get

\[
[\eta \times 1_{M \to M}](0, m) = (e, m),
\]

\[
[1_{M \to M} \times \eta](m, 0) = (m, e).
\]

After the application of \(\mu \) on the result we obtain

\[
\mu \left([\eta \times 1_{M \to M}](0, m)\right) = \mu(e, m) = e \cdot m,
\]

\[
\mu \left([1_{M \to M} \times \eta](m, 0)\right) = \mu(m, e) = m \cdot e.
\]

The (6.2) leads to the following equation for morphisms

\[
\mu \circ (\eta \times 1_{M \to M}) \circ \rho = \mu \circ (1_{M \to M} \times \mu) \circ \lambda = 1_{M \to M}
\]

or the commutative diagram shown on fig. 6.3.

\(^1\)It also is called [11, p. 2] as a one point set.
6.1.3 Categorical definition for monoid

Before given a formal definition lets look at the operations were used for the construction. The first one is the product of 2 objects:

\[M \times M. \]

We also have 2 pairs of morphisms:

\[\mu : M \times M \to M, \]
\[1_{M\to M} : M \to M. \]

and

\[\eta : I \to M, \]
\[1_{M\to M} : M \to M. \]

The pairs can be combined into one using Product of morphisms as follows:

\[\mu \times 1_{M\to M} : (M \times M) \times M \to M \times M, \]
\[1_{M\to M} \times \mu : M \times (M \times M) \to M \times M \]

and

\[\eta \times 1_{M\to M} : I \times M \to M \times M, \]
\[1_{M\to M} \times \eta : M \times I \to M \times M. \]

The same structure \(^2\) is used by Functor and especially by Bifunctor (Example 4.20).

Now we are ready to provide the monoid definition in the terms of morphisms.

Definition 6.1 (Monoid). Consider Set category C with a Singleton \(t \in \text{ob}(C) \). The Cartesian product with Product of morphisms forms a Bifunctor \(\times \) (see example 4.20). The object \(m \in \text{ob}(C) \) is called monoid if the following conditions satisfied:

1. there is a Morphism \(\mu : m \times m \to m \) in the category

2. there is another morphism \(\eta : t \to m \) in the category

\(^2\)not only objects mapping but also morphisms mapping
3. the morphisms satisfy the following conditions:

\[\mu \circ (\mu \times 1_{M \to M}) = \mu \circ (1_{M \to M} \times \mu) \circ \alpha, \]

\[\mu \circ (\eta \times 1_{M \to M}) \circ \lambda = \mu \circ (1_{M \to M} \times \mu) \circ \rho = 1_{M \to M} \]

where \(\alpha \) (associator) is an Isomorphism between \(m \times (m \times m) \) and \((m \times m) \times m \). \(\lambda, \rho \) are other isomorphisms:

\[m \cong \lambda t \times m \]

and

\[m \cong \rho m \times t \]

6.1.4 Monoid importance

Why is the concept of Monoid so important? In pure math it provides the build blocks for important concepts such as Group, Ring, Field [16]. In programming languages it gives more simple and robust concept for software design [4].

We can notice that monoid definition (see definition 2.18) has the same requirements as morphisms in category theory. Moreover the monoid can be viewed as a Category (see section 2.4).

Monoid provides a closed collection of objects such that if you combine them you will get an object of the same type. This allows to create constructions which are more easy in maintenance. For instance there are 2 possible options to combine objects of type \(A \) in software architecture [4, 13]:

1. **Conventional architecture** assumes that a combination of several objects of type \(A \) will produce a “network” of the objects \(A \) i.e. new type \(B \)

2. **Haskell architecture** assumes that a combination of several objects of type \(A \) will produce a new object of the same type \(A \)

You can see that in the first case any modification of the base type \(A \) will require changes in the upper-layer class \(B \). This produce very complex structure of types if objects of type \(B \) will be combined into new type \(C \) etc.

You will not get the problems in the second case because you will be always in a closed collection of objects with the same type \(A \).
6.2 Monoidal category

As we saw in the categorical definition for monoid (see definition 6.1) the category \mathbf{C} should satisfy several conditions to have an object as monoid. Let’s formalise the conditions.

Definition 6.2 (Monoidal category). A category \mathbf{C} is called *monoidal category* if it is equipped with a Monoid structure i.e. there are

- *Bifunctor* $\otimes : \mathbf{C} \times \mathbf{C} \Rightarrow \mathbf{C}$ called *monoidal product*
- *an Object* e called unit object or identity object

The elements should satisfy (up to Isomorphism) several conditions. The first one: associativity:

$$a \otimes (b \otimes c) \cong_\alpha (a \otimes b) \otimes c,$$

where α is called associator. The second condition says that e can be treated as left and right identity:

$$a \cong_\lambda e \otimes a,$$
$$a \cong_\rho a \otimes e,$$

where λ, ρ are called as left and right unitors respectively.

In the *Set* category we have \times as the monoidal product (see example 4.20). There is also a morphism η from terminal object t to e [6] (see definition 6.1).

Definition 6.3 (Strict monoidal category). A Monoidal category \mathbf{C} is said to be *strict* if the associator, left and right unitors are all identity morphisms i.e.

$$\alpha = \lambda = \rho = 1_{\mathbf{C} \to \mathbf{C}}.$$

Remark 6.4 (Monoidal product). The monoidal product is a binary operation that specifies the exact monoidal structure. Often it is called as tensor product but we will avoid the naming because it is not always the same as the Tensor product introduced for Hilbert spaces. We also note that the monoidal product is a Bifunctor.
6.3 Tensor product in Quantum mechanics

Definition 6.5 (Tensor product). Let \(m, n \in \text{FdHilb} \). The tensor product \(m \otimes n \) is another finite dimensional Hilbert space equipped with a bilinear form

\[
\phi : m \times n \to m \otimes n
\]

such that \(\forall a \in \text{FdHilb} \) and for any bilinear

\[
f : m \times n \to a
\]

exists only one morphism \(\tilde{f} : m \times n \to a \) such that

\[
f = \tilde{f} \circ \phi
\]

i.e. the diagram on the fig. 6.4 commutes.

Figure 6.4: Commutative diagram for tensor product definition.

Remark 6.6 (Tensor product). Using the fact that Linear maps are Morphisms in \(\text{FdHilb} \) we can conclude that Tensor product is a Bifunctor.

The tensor product in quantum mechanics is used for representing a system that consists of multiple systems. For instance if we have an interaction between an 2 level atom (\(a \) is excited state \(b \) as a ground state) and one mode light then the atom has its own Hilber space \(\mathcal{H}_a \) with \(|a\rangle \) and \(|b\rangle \) as basis vectors. Light also has its own Hilber space \(\mathcal{H}_f \) with Fock state \(\{|n\rangle\} \) as the basis. The result system that describes both atom and light is represented as the tensor product \(\mathcal{H}_a \otimes \mathcal{H}_f \).

Remark 6.7 (Hilbert-Schmidt correspondence). The morphisms of \(\text{FdHilb} \) category have a connection with Tensor product. Consider the so called

\[\text{Really the } \mathcal{H}_f \text{ is infinite dimensional Hilber space and seems to be out of our assumption about } \text{FdHilb} \text{ category as a collection of finite dimensional Hilber spaces only.}\]
Hilbert-Schmidt correspondence for finite dimensional Hilbert spaces i.e. for given A and B there is a natural isomorphism between the tensor product and Linear maps (aka morphisms) between A and B:

$$A^* \otimes B \cong \text{hom}(A, B)$$

where A^* - Dual space.

6.4 Category of endofunctors

The **Fun category** is an example of a category. We can apply additional limitation and consider only **Endofunctors** i.e. we will look at the category $[C, C]$ - the category of functors from category C to the same category. One of the most popular math definition of a monad is the following: “All told, a monad in X is just a monoid in the category of endofunctors of X”[11, p. 138]. Later we will give an explanation for that one.

We start with the formal definition of category of endofunctors and a tensor product in the category

Definition 6.8 (Category of endofunctors). Let C is a category, then the category $[C, C]$ of functors from category C to the same category is called the category of endofunctors. The monoidal product in the category is the functor composition.

Definition 6.9 (Monad). The monad M is an Endofunctor with 2 Natural transformations:

$$\mu : M \circ M \rightarrow M \quad (6.6)$$

and

$$\eta : 1_{C \Rightarrow C} \rightarrow M, \quad (6.7)$$

where $1_{C \Rightarrow C}$ is Identity functor.

The η, μ should satisfy the following conditions:

$$\mu \circ M\mu = \mu \circ \mu M,$$

$$\mu \circ M\eta = \mu \circ \eta M = 1_{M \rightarrow M}, \quad (6.8)$$

where $M\mu, M\eta$ - Right whiskerings, $\mu M, \eta M$ - Left whiskerings, $1_{M \rightarrow M}$ - Identity natural transformation for M. Vertical composition is used in the equations.

The monad will be denoted later as $\langle M, \mu, \eta \rangle$.
Remark 6.10 (Monad term). The word monad is a concatenation of 2 words: monoid and triad [11, p. 138]. The first one points to the fact that the object looks like a monoid. The second one says that it is a set of 3 objects (Endofunctor and 2 Natural transformations) aka triad.

Let's look at the requirements (6.8) more closely. Notice that the functor composition is associative:

\[M \circ (M \circ M) = (M \circ M) \circ M = M^3. \]

Secondly all rewrite it with (5.2) and (5.3) as follows

\[\mu \circ (1_{M \rightarrow M} \ast \mu) = \mu \circ (\mu \ast 1_{M \rightarrow M}), \]
\[\mu \circ (1_{M \rightarrow M} \ast \eta) = \mu \circ (\eta \ast 1_{M \rightarrow M}) = 1_{M \rightarrow M}. \]

Thus we can notice that the pair of operations (composition \(\circ \) and Horizontal composition \(\ast \)) forms the bifunctor (see Bifunctor in the category of functors (Remark 5.8)).

The morphism \(1_{M \rightarrow M} \ast \mu \) acts on \(M \circ (M \circ M) \) as

\[1_{M \rightarrow M} \ast \mu : M \circ (M \circ M) \rightarrow M \circ (M \circ M) \]
thus

\[\mu \circ (1_{M \rightarrow M} \ast \mu) : M \circ (M \circ M) \rightarrow M \circ (M \circ M). \]

Similarly

\[\mu \circ (\mu \ast 1_{M \rightarrow M}) : (M \circ M) \circ M \rightarrow (M \circ M) \circ M. \]

I.e. the both morphisms start at the same object \(M^3 \) and finish also at the same point. The equality

\[\mu \circ (1_{M \rightarrow M} \ast \mu) = \mu \circ (\mu \ast 1_{M \rightarrow M}) \]

is similar to the conditions on the fig. 6.2 and can be written as fig. 6.5. Thus if we compare (6.10) and (6.4) then we can say that they are same if we replace \(\ast \) sign with \(\times \) one. I.e. in the case we can say that the monad looks like a Monoid.

For the identity element consider the same trick: replace in (6.5) tensor product \(\times \) with Horizontal composition \(\ast \) and morphisms \(1_{M \rightarrow M}, \rho, \lambda \) with identity natural transformation \(1_{M \rightarrow M} \). Thus the equation

\[\mu \circ (\eta \times 1_{M \rightarrow M}) \circ \lambda = \mu \circ (1_{M \rightarrow M} \times \mu) \circ \rho = 1_{M \rightarrow M} \]
will be replaced with

\[\mu \circ (\eta \ast 1_{M \rightarrow M}) = \mu \circ (1_{M \rightarrow M} \ast \mu) = 1_{M \rightarrow M} \]
that is the exact we want to get (see second equation of (6.9)).
6.5 Monads in programming languages

There are several examples of Monad implementation in different programming languages:

6.5.1 Haskell

Example 6.11 (Monad). [Hask] In Haskell monad can be defined from Functor (Example 4.3) as follows

```
class Functor m => Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> m b
```

To show how this one can be get we can start from a definition that is similar to the math definition:

```
class Functor m => Monad m where
    return :: a -> m a
    join :: m (m a) -> m a
```

where `return` can be treated as η (6.7) and `join` as μ (6.6). In the case the bind operator `>>=` can be implemented as follows

```
(>>=) :: m a -> (a -> m b) -> m b
ma >>= f = join ( fmap f ma )
```

As an application of the last example lets consider the next one

4real definition is quite different from the presented one
Example 6.12 (Monad). [Hask]

```haskell
joinHeads :: [[a]] -> [a]
joinHeads ys = ys >>= \xs -> [head xs]
```

The usage example is the following

```haskell
> joinHeads ["a123", "b123", "c123"]
"abc"
```

As one can see the fmap was appplied first with the result

```haskell
> fmap (\xs -> [head xs]) ["a123", "b123", "c123"]
["a","b","c"]
```

and finally the join will get us the required result - the list contained the first elements of internal lists.

6.5.2 C++

The monad in C++ use the functor definition from `Functor` (Example 4.5)

```cpp
// from functor.h
template < template< class ... > class M, class A, class B>
M<B> fmap(std::function<B(A)>, M<A>);

// file: monad.h

template < template< class ... > class M, class A>
M<A> pure(A);

template < template< class ... > class M, class A>
M<M<A>> join(M<M<A>>);
```

where `pure` can be treated as η (6.7) and `join` as μ (6.6). In the case the bind operator can be implemented as follows

```cpp
template < template< class ... > class M, class A, class B>
M<B> bind(std::function<M<B>(A) > f, M<A> a) {
  return join( fmap<>(f, a) );
};
```
6.5. MONADS IN PROGRAMMING LANGUAGES

6.5.3 Scala

Example 6.13 (Monad). [Scala] The monad concept is Scala is more close to formal math definition for Monad. It can be defined as follows\footnote{real definition is quite different from the presented one}

```scala
trait M[A] {
  def flatMap[B](f: A => M[B]): M[B]
}

def unit[A](x: A): M[A]
```

I.e. `flatMap` can be considered as μ and `unit` as η.

TBD
CHAPTER 6. MONADS
Chapter 7

Kleisli category

Definition 7.1 (Kleisli category). Let C is a category, M is an Endofunctor and $\langle M, \mu, \eta \rangle$ is a Monad. Then we can construct a new category CM as follows:

$$\text{ob}(CM) = \text{ob}(C),$$
$$\text{hom}_{CM}(a, b) = \text{hom}_C(a, M(b))$$

i.e. objects of categories C and CM are the same but morphisms from CM form a subset of morphisms C: $\text{hom}(CM) \subset \text{hom}(C)$. The category is called as Kleisli category.

The identity morphism in the Kleisli category is the Natural transformation η (6.7) defined by the monad $\langle M, \mu, \eta \rangle$:

$$1_{CM} \to CM = \eta$$

Remark 7.2 (Kleisli category composition). Kleisli category has a non trivial composition rules. If we have 2 Morphisms from $\text{hom}(CM)$:

$$f_M : a \to b$$

and

$$g_M : b \to c.$$

The morphisms have correspondent ones in C:

$$f : a \to M(b)$$

and

$$g : b \to M(c).$$
The composition \(g_M \circ f_M \) gives a new morphism

\[
h_M = g_M \circ f_M : a \to c.
\]

The corresponding one from \(\mathbf{C} \) is

\[
h : a \to M(c).
\]

It has to be pointed that the compositions in \(\mathbf{C} \) and \(\mathbf{C}_M \) are not the same:

\[
g_M \circ f_M \neq g \circ f.
\]

Kleisli category widely spread in programming especially it provides good description for different types of computations, for instance [15, 14]

- **Partiality** i.e. then a function not defined for each input, for instance the following expression is undefined (or partially defined) for \(x = 0 \):
 \[
f(x) = \frac{1}{x}
\]

- **Non-Determinism** i.e. then multiply output are possible

- **Side-effects** i.e. then a function communicates with an environment

- **Exception** i.e. when some input is incorrect and can produce an abnormal result. Therefore it is the same as **Partiality** and will be considered below as the same type of computation.

- **Continuation** i.e. when we need to save the current state of the computation and be able to restore it on demand later

- **Interactive input** i.e. a function that reads data from an input device (keyboard, mouse, etc.)

- **Interactive output** i.e. a function that writes data to an output device (monitor etc.)

7.1 Partiality and Exception

Partial functions and exceptions can be processed via monad be called as **Maybe**. There will be implementations in different languages below. And the usage example for the following function implementation

\[
h(x) = \frac{1}{2\sqrt{x}}.
\]
7.1. PARTIALITY AND EXCEPTION

The function is a composition of 3 functions:

\[
\begin{align*}
 f_1(x) &= \sqrt{x}, \\
 f_2(x) &= 2 \cdot x, \\
 f_3(x) &= \frac{1}{x}
\end{align*}
\]

(7.1)

and as result the goal can be implemented as the following composition:

\[
h = f_3 \circ f_2 \circ f_1.
\]

(7.2)

\(f_2\) is a Pure function and defined \(\forall x \in \mathbb{R}\). The functions \(f_1, f_3\) are partially defined.

7.1.1 Haskell example

Example 7.3 (Maybe monad). [Hask] The Maybe monad can be implemented as follows

```haskell
instance Monad Maybe where
    return = Just
    join Just (Just x) = Just x
    join _ = Nothing
```

Our functions (7.1) can be implemented as follows

\[
\begin{align*}
 f_1 :: & \ (\text{Ord } a, \text{Floating } a) \Rightarrow a \rightarrow \text{Maybe } a \\
 f_1 \ x &= \text{if } x \geq 0 \text{ then } \text{Just}(\sqrt{x}) \text{ else Nothing} \\
 f_2 :: & \ \text{Num } a \Rightarrow a \rightarrow \text{Maybe } a \\
 f_2 \ x &= \text{Just}(2 \times x) \\
 f_3 :: & \ (\text{Eq } a, \text{Fractional } a) \Rightarrow a \rightarrow \text{Maybe } a \\
 f_3 \ x &= \text{if } x /= 0 \text{ then } \text{Just}(1/x) \text{ else Nothing}
\end{align*}
\]

The \(h\) (7.2) is the composition via bind operator:

\[
\begin{align*}
 h :: & \ (\text{Ord } a, \text{Floating } a) \Rightarrow a \rightarrow \text{Maybe } a \\
 h \ x &= (\text{return } x) >>= f_1 >>= f_2 >>= f_3
\end{align*}
\]

The usage example is the following:
7.1.2 C++ example

Example 7.4 (Maybe monad). [C++] The Maybe monad can be implemented as follows

```cpp
template <class A> using Maybe = std::optional<A>;

template <class A, class B> Maybe<B> fmap(std::function<B(A)> f, Maybe<A> a) {
    if (a) {
        return f(a.value());
    }
    return {};
}

template <class A> Maybe<A> pure(A a) {
    return a;
}

template <class A> Maybe<A> join(Maybe<Maybe<A>> a) {
    if (a) {
        return a.value();
    }
    return {};
}
```

Our functions (7.1) can be implemented as follows

```cpp
std::function<Maybe<float>(float)> f1 = [] (float x) {
    if (x >= 0) {
```

7.2. NON-DETERMINISM

\[
\begin{align*}
\text{return } & \text{Maybe<float>}(\text{sqrt}(x)); \\
\text{return } & \text{Maybe<float>}(); \\
\end{align*}
\]

\[
\begin{align*}
\text{std::function<Maybe<float>(float)> f2 = [](float x) { return 2 * x; };}
\end{align*}
\]

\[
\begin{align*}
\text{std::function<Maybe<float>(float)> f3 =}
\end{align*}
\]

\[
\begin{align*}
\text{[](float x) {}
\end{align*}
\]

\[
\begin{align*}
\text{if (x != 0) {} return Maybe<float>(1 / x);}
\end{align*}
\]

\[
\begin{align*}
\text{return } & \text{Maybe<float>}(); \\
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]

The \(h (7.2) \) is the composition via bind operator:

\[
\begin{align*}
\text{auto h(float x) {}
\end{align*}
\]

\[
\begin{align*}
\text{Maybe<float> a = pure(x);}
\end{align*}
\]

\[
\begin{align*}
\text{return bind(f3,bind(f2,bind(f1, a))));}
\end{align*}
\]

7.2 Non-Determinism

The situation when a function returns several values is not applicable for Set category but can appear for Rel category. From other hand the non standard situation is required for practical applications and as result has to be modeled in programming languages. The List monad is used for it.

7.2.1 Haskell example

Example 7.5 (List monad). [Hask]

\[
\begin{align*}
\text{instance Monad [] where}
\end{align*}
\]

\[
\begin{align*}
\text{return } x = [x]
\end{align*}
\]

\[
\begin{align*}
\text{join } = \text{concat}
\end{align*}
\]

7.3 Side effects and interactive input/output

TBD
7.4 Continuation

TBD
Chapter 8

Limits

8.1 Definitions

![Diagram of shape]

Figure 8.1: Diagram of shape $F : I \Rightarrow C$. Objects $a_{i,j}^{(I)} \in \text{ob}(I)$ are mapped to $a_{i,j}^{(C)} \in \text{ob}(C)$. Morphisms $g_{i,j}^{(I)} \in \text{hom}(I)$ are mapped to $g_{i,j}^{(C)} \in \text{hom}(C)$

Definition 8.1 (Diagram of shape). Let I and C are 2 categories. The *diagram of shape* I in C is a **Functor** (see fig. 8.1)

$$F : I \Rightarrow C$$

Definition 8.2 (Index category). Category I in the definition 8.1 is called **Index category**.

8.1.1 Limit

![Diagram of a cone](image)

Figure 8.2: Cone $\text{cone}(c, f^{(c)})$

Definition 8.3 (Cone). Let F be a Diagram of shape \textbf{I} in \textbf{C}. A cone to F is an object $c \in \text{ob}(\textbf{C})$ with Morphisms $f^c = \{f^c_i : c \to a_i^{(c)}\}$, where $a_i^{(c)} = F(a_i^{(I)})$ indexed by objects from \textbf{I} (see fig. 8.2). The cone is denoted as $\text{cone}(c, f^{(c)})$.

8.1. DEFINITIONS

Definition 8.4 (Limit). Limit of Diagram of shape $F : \mathcal{I} \Rightarrow \mathcal{C}$ is a Cone $\text{cone}(l, f^{(l)})$ to F such that for any other cone$(c, f^{(c)})$ to F exists an unique morphism $u : c \rightarrow l$ such that $\forall a_i^{(l)} \in \text{ob}(\mathcal{I})$ $f_i^{(l)} \circ u = f_i^{(c)}$ i.e. diagram shown on fig. 8.3 commutes.

If we have 2 objects from \mathcal{C} ($c_1, c_2 \in \text{ob}(\mathcal{C})$) then we can have a lot of morphisms between the objects which form a set: $\text{hom}_{\mathcal{C}} (c_1, c_2)$. There is a subset of $\text{hom}_{\mathcal{C}} (c_1, c_2)$ that can be called as cone’s morphisms.

Definition 8.5 (Morphisms of cones). Let $c_1, c_2 \in \text{ob}(\mathcal{C})$ are 2 objects from category \mathcal{C} and cone$(c_1, f^{(c_1)})$, cone$(c_2, f^{(c_2)})$ are 2 Cones. The morphism $m \in \text{hom}_{\mathcal{C}} (c_1, c_2)$ is called as morphism of cones if $\forall i$

$$f_i^{(c_1)} = f_i^{(c_2)} \circ m,$$

i.e. the morphisms in fig. 8.4 commute.

Definition 8.6 (Category of cones to F). Let F is a Diagram of shape \mathcal{I} in \mathcal{C}.

TBD

The category of Cones is denoted as $\Delta \downarrow F$ [25]
CHAPTER 8. LIMITS

Figure 8.4: Morphism m between 2 cones $\text{cone}(c_1, f^{(c_1)})$ and $\text{cone}(c_2, f^{(c_2)})$

Remark 8.7 (Category of cones to F). Let F is a Diagram of shape I in C and $\Delta \downarrow F$ is the Category of cones to F. Then Limit is Terminal object in the category.
8.1.2 Colimit

\[a_i^C = F(a_i^I) \quad \text{and} \quad a_j^C = F(a_j^I) \]

Figure 8.5: Co-cone cocone\((c, f^c)\)

Definition 8.8 (Cocone). Let \(F \) is a Diagram of shape \(\mathbf{I} \) in \(\mathbf{C} \). A co-cone to \(F \) is an object \(d \in \text{ob}(\mathbf{C}) \) with Morphisms \(f^c = \{ f_i^c : a_i^C \to c \} \), where \(a_i^C = F(a_i^I) \) indexed by objects from \(\mathbf{I} \) (see fig. 8.5). The co-cone is denoted as \(\text{cocone}(c, f^c) \).
Definition 8.9 (Colimit). Co-Limit of Diagram of shape $F : I \Rightarrow C$ is a Cocone $\text{cocone}(l, f^{(l)})$ to F such that for any other cocone $(c, f^{(c)})$ to F exists an unique morphism $u : l \rightarrow c$ such that $\forall a_i^{(I)} \in \text{ob}(I)$ $u \circ f_i^{(c)} = f_i^{(l)}$ i.e. diagram shown on fig. 8.6 commutes.

Definition 8.10 (Category of co-cones from F). Let F is a Diagram of shape I in C.

TBD

The category of Cocones is denoted as $F \downarrow \Delta$ [25]

Remark 8.11 (Category of co-cones). Let F is a Diagram of shape I in C and $F \downarrow \Delta$ is the Category of co-cones from F. Then Colimit is Initial object in the category.

8.2 Cone as natural transformation

The Cone can be considered as a Natural transformation. There are 2 functors between categories I and C. The first one is the Diagram of shape $F : I \Rightarrow C$. The second one is the Constant functor: $\Delta_c : I \Rightarrow C$. The Natural transformation $\Delta_c \Rightarrow F$, by the definition, is the set of Morphisms
from \mathbf{C} with additional relations that are same as conditions defined for the Cone $\text{cone}(c, f^c)$. Therefore we can consider the Cone as a Natural transformation.

8.3 Categorical constructions as limits

Different choice for category \mathbf{I} gives different types of limits. There are several examples of such constructions below.

The empty category will give us the terminal object. The Discrete category with 2 elements produces Product as the Limit.

8.3.1 Initial and terminal objects

If we choose Empty category as the Index category (see fig. 8.7) then we can get Terminal object as Limit and Initial object as Colimit.

![Figure 8.7: Index category \mathbf{I} for initial and terminal objects. The category is empty](image)

Example 8.12 (Limit). [Terminal object] Let's choose Empty category as the Index category \mathbf{I}.

![Figure 8.8: Terminal object t as a limit](image)
The Cone consists from the apex \(c \) only (see fig. 8.8). The Limit will be Terminal object in the category \(C \).

Example 8.13 (Colimit). [Initial object] Lets choose Empty category as the Index category \(I \).

\[
\begin{align*}
\text{Figure 8.9: Initial object } i \text{ as a colimit}
\end{align*}
\]

The Cocone consists from the apex \(c \) only (see fig. 8.9). The Colimit will be Initial object in the category \(C \).

8.3.2 Product and sum

If choose Discrete category with 2 objects as the Index category (see fig. 8.10) then we can get Product as Limit and Sum as Colimit.

\[
\begin{align*}
\text{Figure 8.10: Index category } I \text{ for product and sum. It consists of 2 objects } a^{(I)}, b^{(I)} \text{ and 2 trivial (identity) morphisms } 1_{a^{(I)} \rightarrow a^{(I)}}, 1_{b^{(I)} \rightarrow b^{(I)}}
\end{align*}
\]

Example 8.14 (Limit). [Product] Lets choose Discrete category with 2 objects as the Index category \(I \).
The Diagram of shape F gives us the mapping into 2 objects in the category C (see fig. 8.11). The Limit of the Diagram of shape is the Product of the 2 objects in the category C.

Example 8.15 (Colimit). Let's choose Discrete category with 2 objects as the Index category I.

![Diagram of shape and product as a limit](image-url)
The Diagram of shape F gives us the mapping into 2 objects in the category \mathbf{C} (see fig. 8.12). The Colimit of the Diagram of shape is the Sum of the 2 objects in the category \mathbf{C}.

8.3.3 Equalizer

If choose a Category with 2 objects as the Index category (see fig. 8.13) and 2 Morphisms connecting one object with another then we can get equalizer as Limit.

![Figure 8.12: Sum as a colimit](image)

![Figure 8.13: Index category I for equalizer. It consists of 2 objects $a^{(I)}, b^{(I)}$, 2 trivial (identity) morphisms $1_{a^{(I)} \to a^{(I)}}, 1_{b^{(I)} \to b^{(I)}}$ and 2 additional morphisms $f^{(I)}, g^{(I)} \in \text{hom}_I \left(a^{(I)}, b^{(I)} \right)$](image)
Definition 8.16 (Equalizer). Let's choose a Category with 2 objects $a^{(I)}, b^{(I)}$ and 2 additional morphisms $f^{(I)}, g^{(I)} \in \text{hom}_I(a^{(I)}, b^{(I)})$ as the Index category I (see fig. 8.13).

![Equalizer Diagram]

Figure 8.14: Equalizer

The Diagram of shape F gives us the mapping into 2 objects and 2 morphisms in the category C. The Limit of the Diagram of shape (see fig. 8.14) is the equalizer. The equalizer is denoted as $eq(f, g)$.

The meaning of the Equalizer can be described in the Set category

Example 8.17 (Equalizer). [Set] In the Set category equalizer determines a solution for the following equation

$$f(x) = g(x)$$

We consider a TBD
Chapter 9

Yoneda’s lemma

Yoneda lemma is a fact about so called Hom functors. We will start with the definition and examples for both Covariant Hom functor and Contravariant Hom functor. The definition and examples for Yoneda lemma will be provided after that. In the chapter we will assume that the category C to be a Locally small category.

9.1 Hom functors

We are going to define the Hom functors. There are 2 hom functors: Covariant functor and Contravariant functor. For the Covariant Hom functor we pick up an object a from C and consider the collection of morphisms from a to an arbitrary object x from the category. The collection is a Set as soon as C is a Locally small category. Therefore we can associate a set (object from Set category) with the object x from the category C.

The same approach is used for Contravariant Hom functor. But in the case we consider set of morphisms from an arbitrary object x to the picked object a i.e. we revert Arrows in the case.

9.1.1 Covariant Hom functor

Definition 9.1 (Covariant Hom functor). Let C is a Locally small category and $a \in \text{ob}(C)$. Consider Functor from C to the Set category defined by the following rules

- $\forall x \in \text{ob}(C)$ define an object in the set category: $\text{hom}_C(a,x) \in \text{ob}(\text{Set})$

- $\forall f : x \to y \in \text{hom}(C)$ define a function in the set category $\text{hom}_C(a,f) : \text{hom}_C(a,x) \to \text{hom}_C(a,y)$ as follows $\text{hom}_C(a,f) = \{ f \circ g | g \in \text{hom}_C(a,x) \}$.

107
The **covariant Hom functor** is denoted as $\text{Hom}_C(a, -)$.

Example 9.2 (Covariant Hom functor). Consider category C in the fig. 9.1. It consists of 4 objects:

$$\text{ob}(C) = \{a, b, c, d\}.$$

We are going to construct $\text{Hom}_C(a, -)$ functor and therefore are interested in the following sets of morphisms:

$$\text{hom}_C(a, a) = \{1_{a \to a}\},$$

$$\text{hom}_C(a, b) = \{f_1^{(b)}, f_2^{(b)}\},$$

$$\text{hom}_C(a, c) = \{f_1^{(c)}, f_2^{(c)}, g_1 = f \circ f_1^{(b)}, g_2 = f \circ f_2^{(b)}\},$$

$$\text{hom}_C(a, d) = \emptyset.$$

There is also a single **Morphism** f between b and c.

The corresponding objects in the **Set category** is described in the fig. 9.2:

$$a' = \text{hom}_C(a, a) = \{1_{a \to a}\},$$

$$b' = \text{hom}_C(a, b) = \{f_1^{(b)}, f_2^{(b)}\},$$

$$c' = \text{hom}_C(a, c) = \{f_1^{(c)}, f_2^{(c)}, g_1, g_2\},$$

$$d' = \text{hom}_C(a, d) = \emptyset.$$

The $\text{Hom}_C(a, -)$ does the following mapping between objects:

$$a \Rightarrow \text{hom}_C(a, a) = a',$$

$$b \Rightarrow \text{hom}_C(a, b) = b',$$

$$c \Rightarrow \text{hom}_C(a, c) = c',$$

$$d \Rightarrow \text{hom}_C(a, d) = \emptyset.$$
9.1. HOM FUNCTORS

The functor maps morphisms in addition to objects. There are mapping for trivial Identity morphisms:

\[1_{a \to a} \Rightarrow 1_{a' \to a'}, \]
\[1_{b \to b} \Rightarrow 1_{b' \to b'}, \]
\[1_{c \to c} \Rightarrow 1_{c' \to c'}, \]
\[1_{d \to d} \Rightarrow 1_{\emptyset \to \emptyset}, \]

and for a single non trivial morphism \(f \Rightarrow f' \) that is defined by the following rules:

\[f'(f^{(b)}_1) = g_1, \]
\[f'(f^{(b)}_2) = g_2, \]

i.e. the Image of \(f' \) is a subset of \(\text{hom}_{\mathcal{C}}(a, c) \):

\[\text{Im } f' \subseteq \text{hom}_{\mathcal{C}}(a, c). \]

9.1.2 Contravariant Hom functor

If we revert Arrows in the definition 9.1 then we can get a definition for Contravariant functor as follows.

Definition 9.3 (Contravariant Hom functor). Let \(\mathcal{C} \) is a Locally small category and \(a \in \text{ob}(\mathcal{C}) \). Consider Functor from \(\mathcal{C} \) to the Set category defined by the following rules

- \(\forall x \in \text{ob}(\mathcal{C}) \) define an object in the set category: \(\text{hom}_{\mathcal{C}}(x, a) \in \text{ob}(\text{Set}) \)
Figure 9.3: Contravariant Hom functor $\text{Hom}_D (-, a)$ example. Category \mathbf{D}

- $\forall h : x \to y \in \text{hom}(\mathbf{C})$ define a function in the set category $\text{hom}_\mathbf{C} (h, a) : \text{hom}_\mathbf{C} (y, a) \to \text{hom}_\mathbf{C} (x, a)$ as follows $\text{hom}_\mathbf{C} (h, a) = \{ g \circ h | g \in \text{hom}_\mathbf{C} (y, a) \}$.

The contravariant Hom functor is denoted as $\text{Hom}_\mathbf{C} (-, a)$.

From the definition of Contravariant functor follows that we can get it simply reverting Arrows in the initial category. Lets do it for example 9.2 as follows

Example 9.4 (Contravariant Hom functor). Consider category \mathbf{D} in the fig. 9.3. It is similar to the category \mathbf{C} from example 9.2 and has the same set of objects and morphisms but all morphisms are reverted i.e. $\mathbf{D} = \mathbf{C}^{op}$. Therefore the category consists of 4 objects:

$$\text{ob}(\mathbf{D}) = \{ a, b, c, d \}.$$

We are going to construct $\text{Hom}_\mathbf{D} (-, a)$ functor and therefore are interested in the following sets of morphisms:

$$\text{hom}_\mathbf{D} (a, a) = \{ 1_{a \to a} \},$$

$$\text{hom}_\mathbf{D} (b, a) = \{ h_1^{(b)}, h_2^{(b)} \},$$

$$\text{hom}_\mathbf{D} (c, a) = \{ h_1^{(c)}, h_2^{(c)}, g_1 = h_1^{(b)} \circ h, g_2 = h_2^{(b)} \circ h \},$$

$$\text{hom}_\mathbf{D} (d, a) = \emptyset.$$

There is also a single Morphism h between c and b.
9.1. HOM FUNCTORS

The corresponding objects in the Set category is described in the fig. 9.4:

- \(a' = \text{hom}_D(a, a) = \{1_{a\to a}\} \),
- \(b' = \text{hom}_D(b, a) = \{f_1^{(b)}, f_2^{(b)}\} \),
- \(c' = \text{hom}_D(c, a) = \{f_1^{(c)}, f_2^{(c)}, g_1, g_2\} \),
- \(d' = \text{hom}_D(d, a) = \emptyset \).

The \(\text{Hom}_D(_, a) \) does the following mapping between objects:

- \(a \Rightarrow \text{hom}_D(a, a) = a' \),
- \(b \Rightarrow \text{hom}_D(b, a) = b' \),
- \(c \Rightarrow \text{hom}_D(c, a) = c' \),
- \(d \Rightarrow \text{hom}_D(d, a) = \emptyset \).

The functor maps morphisms in addition to objects. There are mapping for trivial Identity morphisms:

- \(1_{a\to a} \Rightarrow 1_{a'\to a'} \),
- \(1_{b\to b} \Rightarrow 1_{b'\to b'} \),
- \(1_{c\to c} \Rightarrow 1_{c'\to c'} \),
- \(1_{d\to d} \Rightarrow 1_{\emptyset\to \emptyset} \),

and for a single non trivial morphism \(h \Rightarrow h' \) that is defined by the following rules:

- \(h'(h_1^{(b)}) = g_1 \),
- \(h'(h_2^{(b)}) = g_2 \).
i.e. the Image of h' is a subset of $\text{hom}_D(c,a)$:

$$\text{Im} \, h' \subseteq \text{hom}_D(c,a).$$

9.1.3 Representable functor

Definition 9.5 (Representable functor). Let \mathbf{C} is a Locally small category. The functor $F : \mathbf{C} \Rightarrow \text{Set}$ is called **representable** if it is naturally isomorphic (see Natural isomorphism) to $\text{Hom}_\mathbf{C}(a,-)$ for some object $a \in \text{ob}(\mathbf{C})$.

Representation of F is a pair (a, α) where

$$\alpha : \text{Hom}_\mathbf{C}(a,-) \to F$$

is a Natural isomorphism.

Example 9.6 (Representable functor). [Hask] Consider a Representable functor F. We will mark it as a small letter f in the example. \footnote{There is a requirement from Haskell to use small but not capital letter for it.} Representable functor is defined by a pair: (a, α) where a is the object from \mathbf{C} and α is a Natural isomorphism. The first condition for a can be written as follows in Haskell category

```haskell
    type Rep f :: *
```

where $\text{Rep} \ f$ is the type a that represent our functor f.

The second condition for Natural isomorphism requires 2 Natural transformations:

$$\text{tabulate} : \text{Hom}_\mathbf{C}(a,-) \to F,$$

$$\text{index} : F \to \text{Hom}_\mathbf{C}(a,-).$$

In Haskell the 2 functions can be written as follows

```haskell
    tabulate :: (Rep f -> x) -> f x
    index :: f x -> Rep f -> x
```

From Reynolds (Theorem 5.15) we know that such functions are Natural transformations and therefore can be 2 parts of the required Natural isomorphism α. Combining these conditions together we can obtain the following definition for Representable functor in Haskell category

```haskell
    class Representable f where
        type Rep f :: *
        tabulate :: (Rep f -> x) -> f x
        index :: f x -> Rep f -> x
```

```haskell
1 There is a requirement from Haskell to use small but not capital letter for it.
```
Consider the following type as a concrete example of the Representable functor

```haskell
data Pair a = P a a
```

The representation type for `Pair` is `Bool`

```haskell
instance Representable Pair where
    type Rep Pair = Bool

    index :: Pair a -> (Bool -> a)
    index (P x _) False = x
    index (P _ y) True = y

    tabulate :: (Bool -> a) -> Pair a
    tabulate generate = P (generate False) (generate True)
```

Remark 9.7 (Functor logarithm). Consider category `C`. Set of morphisms `\text{hom}_C(a, x)` is the same as the Exponential 2, i.e.

\[
\text{hom}_C(a, x) \cong x^a.
\]

Therefore, formally, we can write

\[
\text{Hom}_C(a, -) \cong (-)^a.
\]

If functor F is a Representable functor then

\[
F \cong \text{Hom}_C(a, -) \cong (-)^a.
\]

Thus we can define the logarithm operation for a Representable functor as follows

\[
\log F = a.
\]

9.2 Yoneda’s lemma

Lemma 9.8 (Yoneda). Let C is a Locally small category and F is a functor from C to Set i.e.

\[
F \in \text{ob}([C, \text{Set}])
\]

and also we have

\[
\text{Hom}_C(a, -) \in \text{ob}([C, \text{Set}]).
\]

Then

\[
\text{hom}_{[C, \text{Set}]}(\text{Hom}_C(a, -), F) \cong F(a)
\]
CHAPTER 9. YONEDA’S LEMMA

Figure 9.5: Category C. We look at 2 objects x and y and a morphism f between them

![Diagram](image)

Figure 9.6: Commutative diagram for components of natural transformation α_x and α_y

Proof. Let's start with 2 objects x, y from category C and a morphism f between the 2 objects fig. 9.5.

Functor $\text{Hom}_C(a, -)$ maps x into $\text{hom}_C(a, x)$ and y into $\text{hom}_C(a, x)$. Functor F maps the 2 objects into $F(x)$ and $F(y)$ respectively. There is a Natural transformation α between the functors. I.e. $\alpha \in \text{hom}_{[C, \text{Set}]}(\text{Hom}_C(a, -), F)$.

We are interested in 2 components of the natural transformations:

$$\alpha_x : \text{hom}_C(a, x) \rightarrow F(x)$$

and

$$\alpha_y : \text{hom}_C(a, y) \rightarrow F(y).$$

The components of natural transformation should satisfy the naturality conditions (5.1) i.e. the commutative diagram fig. 9.6 should commute.

We can replace object x with a in $\text{hom}_C(a, x)$. The result set $\text{hom}_C(a, a)$ should contain Identity morphism $1_{a \rightarrow a}$. Let's look how the morphism is mapped by the commutative diagram from fig. 9.6.

2TBD add the explanation for the fact
As we can see in fig. 9.7, morphism α_a pick up an element p of the set $F(a)$. There is an arbitrary element that is determined by α_a. All others elements in fig. 9.7 is completely determined by the choice of p. From definition 9.1 we have
\[
\text{hom}_C(a, f) = \{ f \circ g | g \in \text{hom}_C(a, x) \}
\]
i.e. if $g = 1_{a \to a}$ then
\[
\text{hom}_C(a, f)(1_{a \to a}) = f \circ 1_{a \to a} = f.
\]
From other side we have mapping $F(f) : p \to q$ where $q = (F(f))(p)$. I.e. if we pick an arbitrary object $y \in \text{ob}(C)$ when we can pick a morphism $f : a \to y$. This leads to the definition for an arbitrary component α_y of Natural transformation α as soon as only one component α_a is defined:
\[
\alpha_y(f) = (F(f))(p).
\]
Therefore from only one element $p \in F(a)$ we can got the Natural transformation $\alpha \in \text{hom}_{C,\text{Set}}(\text{Hom}_C(a, -), F)$. We also can go in other direction i.e. $\alpha_a(1_{a \to a})$ will gives as an element p from the set $F(a)$. \qed
Chapter 10

Topos

Every Set can be considered from a categorical point of view (see Categorical approach) i.e. every set can be considered as a category. From other side not every category can be considered as a set. Toposes are categories that have all properties required to be a set.

TBD
Appendices
Appendix A

Abstract algebra

A.1 Groups

Definition A.1 (Group). Let we have a set of elements G with a defined binary operation \circ that satisfied the following properties.

1. Closure: $\forall a, b \in G: a \circ b \in G$
2. Associativity: $\forall a, b, c \in G: a \circ (b \circ c) = (a \circ b) \circ c$
3. Identity element: $\exists e \in G$ such that $\forall a \in G: e \circ a = a \circ e = a$
4. Inverse element: $\forall a \in G \exists a^{-1} \in G$ such that $a \circ a^{-1} = e$

In this case (G, \circ) is called as group.

Therefore the group is a Monoid with inverse element property.

Example A.2 (Group $\mathbb{Z}/2\mathbb{Z}$). Consider a set of 2 elements: $G = \{0, 1\}$ with the operation \circ defined by the table A.1.

The identity element is 0 i.e. $e = 0$. Inverse element is the element itself because $\forall a \in G: a \circ a = 0 = e$.

Definition A.3 (Abelian group). Let we have a Group (G, \circ). The group is called an Abelian or commutative if $\forall a, b \in G$ it holds $a \circ b = b \circ a$.

$$
\begin{array}{c|cc}
\circ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
$$

Table A.1: Cayley table for $\mathbb{Z}/2\mathbb{Z}$
A.2 Rings and Fields

A.2.1 Rings

Definition A.4 (Ring). Consider a set R with 2 binary operations defined. The first one \oplus (addition) and elements of R forms an Abelian group under this operation. The second one is \odot (multiplication) and the elements of R forms a Monoid under the operation. The two binary operations are connected each other via the following distributive law

- Left distributivity: $\forall a, b, c \in R: a \odot (b \oplus c) = a \odot b \oplus a \odot c$
- Right distributivity: $\forall a, b, c \in R: (a \oplus b) \odot c = a \odot c \oplus b \odot c$

The identity element for (R, \oplus) is denoted as 0 (additive identity). The identity element for (R, \odot) is denoted as 1 (multiplicative identity).

The inverse element to a in (R, \oplus) is denoted as $-a$

In this case (R, \oplus, \odot) is called as ring.

The Ring is a generalization of integer numbers conception.

Example A.5 (Ring of integers \mathbb{Z}). The set of integer numbers \mathbb{Z} forms a Ring under $+$ and \cdot operations i.e. addition \oplus is $+$ and multiplication \odot is \cdot. Thus for integer numbers we have the following Ring: $(\mathbb{Z}, +, \cdot)$

A.2.2 Fields

Definition A.6 (Field). The ring (R, \oplus, \odot) is called as a field if $(R \setminus \{0\}, \odot)$ is an Abelian group.

The inverse element to a in $(R \setminus \{0\}, \odot)$ is denoted as a^{-1}

Example A.7 (Field \mathbb{Q}). Note that \mathbb{Z} is not a field because not for every integer number an inverse exists. But if we consider a set of fractions $\mathbb{Q} = \{a/b \mid a \in \mathbb{Z}, b \in \mathbb{Z} \setminus \{0\}\}$ when it will be a field.

The inverse element to a/b in $(\mathbb{Q} \setminus \{0\}, \cdot)$ will be b/a.

A.3 Linear algebra

Definition A.8 (Vector space). Let F is a Field. The set V is called as vector space under F if the following conditions are satisfied

1. We have a binary operation $V \times V \rightarrow V$ (addition): $(x, y) \rightarrow x + y$

with the following properties:
A.3. LINEAR ALGEBRA

(a) \(x + y = y + x \)
(b) \((x + y) + z = x + (y + z) \)
(c) \(\exists 0 \in V \) such that \(\forall x \in V : x + 0 = x \)
(d) \(\forall x \in V \exists -x \in V \) such that \(x + (-x) = x - x = 0 \)

2. We have a binary operation \(F \times V \rightarrow V \) (scalar multiplication) with the following properties

(a) \(1_F \cdot x = x \)
(b) \(\forall a, b \in F, x \in V : a \cdot (b \cdot x) = (ab) \cdot x. \)
(c) \(\forall a, b \in F, x \in V : (a + b) \cdot x = a \cdot x + b \cdot x \)
(d) \(\forall a \in F, x, y \in V : a \cdot (x + y) = a \cdot x + a \cdot y \)
Index

C++ category, 7, 51
 definition, 27
C++ toy category
 example, 29
Cat category, 7
 definition, 63
FdHilb category, 7, 53
 definition, 32
Fun category, 8, 71, 83
 definition, 71
Hask category, 7, 49, 50, 52, 53, 112
 definition, 27
Hask toy category
 example, 27
Hask toy category example, 28, 29
Proof category, 7, 57
 definition, 57
Rel category, 8, 32, 93
 definition, 30
Scala category, 8, 52, 53
 definition, 27
Scala toy category
 example, 28
Set category, 8, 19, 30, 40–42, 44, 46, 48, 76, 79, 81, 93, 105, 107–109, 111
 definition, 21
 remark, 22
 “one-to-one” correspondence, 24
 “one-to-one” function, 17, 24
 “onto” function, 18, 22
Abelian group, 122
 definition, 121
Ad-hoc polymorphism
 definition, 73
Arrow, 9, 41, 44, 107, 109, 110
 definition, 14
Associativity axiom, 18, 39, 69
 declaration, 15
Associator, 81
 definition, 81
Bifunctor, 65, 66, 72, 79, 81, 82
 Set example, 65
 definition, 65
Bifunctor example, 79
Bifunctor in the category of
 functors
 remark, 72
Bifunctor in the category of
 functors remark, 84
Bijection, 22, 24, 49
 definition, 24
Binary relation, 21, 30, 32
 definition, 21
 example, 21
Cardinality, 8, 47
 definition, 21
Cartesian closed category, 49, 50, 57
definition, 49
Cartesian closed category theorem
declaration, 49
Cartesian product, 21, 32, 42, 65, 79
definition, 21
Categorical approach, 33, 34, 38, 39, 45, 75, 117
definition, 33
Category, 7, 11, 18, 19, 24, 27–29, 39–41, 63, 64, 80, 104, 105
Fun example, 71
Set, 21
definition, 18
dual, 19
large, 19, 22
locally small, 19
opposite, 19
small, 19
Category of co-cones
remark, 100
Category of co-cones from \(F \), 9, 100
definition, 100
Category of cones to \(F \), 8, 98
definition, 97
remark, 98
Category of endofunctors
definition, 83
Category Product, 65
definition, 64
Class, 13, 17, 18
definition, 13
Class of Morphisms
remark, 17
Class of Objects
remark, 13
Cocone, 7, 100, 102
definition, 99
Codomain, 8, 14, 16, 19, 22, 23
definition, 14
example, 22
Colimit, 100–102, 104
definition, 99
Initial object example, 102
Sum example, 103
Commutative diagram, 16, 40, 47, 68, 69
definition, 16
Composition
opposite category, 19
remark, 15
Composition axiom, 15, 16, 18, 19, 21, 28, 39, 64, 69
declaration, 15
Cone, 7, 97, 100–102
definition, 96
Conjunction, 57
definition, 56
Constant functor, 8, 71, 100
Hask example, 64
definition, 64
Contravariant functor, 64, 65, 107, 109, 110
Hask example, 64
definition, 64
Contravariant Hom functor, 7, 107
definition, 109
example, 110
coproduct, 44
Covariant functor, 64, 107
deinition, 64
Covariant Hom functor, 7, 107
definition, 107
example, 108
Currying, 8
definition, 48
remark, 49
Currying and Exponential
remark, 49
INDEX

Diagram, 16
 definition, 16
Diagram of shape, 96–100, 103–105
 definition, 95
Dirac notation
 example, 31
Direct sum of Hilber spaces, 32, 53
 definition, 31
Discrete category, 24, 101–103
 definition, 24
Disjoint union, 44
 definition, 44
Disjunction, 57
 definition, 56
Distributive category, 46, 49, 50, 57
 Hask example, 50
 definition, 46
 example, 46
Domain, 8, 14, 16, 19, 22, 23, 65
 definition, 14
 example, 22
Dual space, 31, 83
 definition, 31
Empty category, 64, 101, 102
 definition, 19
Endofunctor, 63, 83, 84, 89
 definition, 63
Epimorphism, 23, 33
 definition, 17
Equalizer, 9, 105
 Set example, 105
 definition, 105
Exponential, 8, 47–49, 51, 57, 113
 Hask example, 51
 Set example, 47
 definition, 47
Exponential notation
 remark, 47
False, 57
 definition, 55
Field, 31, 80, 122
 definition, 122
Field \(\mathbb{Q}\)
 example, 122
Function, 21, 30, 32, 39, 65
 definition, 21
Function vs Binary relation
 remark, 21
Functor, 9, 11, 62–65, 67, 69, 72, 79, 95, 107, 109
 C++ example, 62
 Hask example, 62
 Scala example, 62
 definition, 61
 logarithm, 113
 remark, 62
Functor composition, 9, 63
 definition, 63
Functor example, 85, 86
Functor logarithm
 remark, 113
Group, 80, 121
 definition, 121
Group \(\mathbb{Z}/2\mathbb{Z}\)
 example, 121
Haskell lazy evaluation
 remark, 26
Haskell lazy evaluation remark, 26, 49
Hilbert space, 8, 31, 32, 81, 82
 definition, 31
Hilbert-Schmidt correspondence
 remark, 82
Hom Functor
 definition, 107
Homset, 19, 46, 47
 definition, 19
example, 46
Horizontal composition, 7, 72, 84
definition, 71
Identity functor, 8, 63, 83
definition, 63
remark, 63
Identity is unique theorem, 16
declaration, 40
Identity morphism, 8, 16, 18, 19,
21, 24, 26, 27, 30, 40, 63,
72, 109, 111, 114
definition, 15
Identity natural transformation, 8,
72, 83
definition, 72
Image, 8, 109, 112
definition, 22
Implication, 9, 57
definition, 56
Index category, 101–105
definition, 95
Initial object, 32, 40–42, 46, 49,
52, 53, 57, 64, 71, 100–102
C++ example, 51
Cat example, 64
FdHilb example, 53
Fun example, 71
Hask example, 49
Proof example, 57
Scala example, 52
Set example, 40
Colimit example, 102
definition, 40
Initial object example, 52
Initial object is unique theorem
declaration, 40
Injection, 17, 22, 24, 33
definition, 24
example, 24
Injection vs Monomorphism
remark, 24
Isomorphism, 8, 18, 39–41, 69, 76,
78, 80, 81
definition, 18
remark, 18
Kleisli category, 7, 89, 90
declaration, 89
Kleisli category composition
remark, 89
Lagrangian, 36
Large category, 22
definition, 19
Left unitor, 81
definition, 81
Left whiskering, 7, 72, 83
definition, 72
Limit, 98, 101–105
definition, 96
Product example, 102
Terminal object example, 101
Linear map, 31, 32, 82, 83
definition, 31
remark, 31
List monad
Hask example, 93
Locally small category, 19, 107,
109, 112, 113
definition, 19
Maybe as a bifunctor
Hask example, 65
Maybe monad
C++ example, 92
Hask example, 92
Modus ponens
definition, 56
Monad, 8, 11, 85, 87, 89
Hask example, 85, 86
Scala example, 87
definition, 83
Monad term
remark, 84
Monoid, 45, 46, 75, 80, 81, 84, 121, 122
Hask example, 45
definition, 45, 79
example, 45
importance, 80
remark, 45
Monoidal product
definition, 81
Monoidal category, 81
definition, 81
Monoidal product
remark, 81
Monomorphism, 9, 24, 33
definition, 17
Morphism, 9, 11, 14, 15, 17–19,
21, 24, 26–30, 32, 33, 39,
42, 44, 47, 57, 62–64, 67,
69, 71, 72, 76, 79, 82, 89,
96, 99, 100, 104, 108, 110
C++ example, 29
FdHilb category, 32
Fun example, 71
Hask example, 27
Rel category, 30
Scala example, 28
Set category, 21
definition, 14
remark, 14
Morphisms equality
definition, 39
Morphisms of cones
definition, 97
Natural isomorphism, 112
definition, 69
Natural transformation, 7, 11, 69,
71–73, 83, 84, 89, 100,
101, 112, 114, 115
definition, 68
Horizontal composition, 71
Vertical composition, 71
Newton’s second law for a particle
example, 36
Non-categorical approach, 34, 45
definition, 33
Object, 8, 11, 13–15, 18, 19, 21,
26–30, 32, 39–44, 46, 52,
57, 62–64, 67, 69, 72, 81
C++ example, 29
FdHilb category, 32
Fun example, 71
Hask example, 27
Rel category, 30
Scala example, 28
Set category, 21
definition, 13
Objects equality, 40, 41
definition, 39
Opposite category, 7, 19, 41
definition, 19
Parametric polymorphism, 73
Parametrically polymorphic
function, 73
Hask example, 73
definition, 73
principle of least action, 37
Product, 8, 32, 34, 42–44, 46–51,
53, 57, 101–103
C++ example, 51
FdHilb example, 53
Hask example, 50
Proof example, 57
Set example, 42
definition, 42
Limit example, 102
Product example, 76
Product of morphisms, 65, 76, 78,
79

INDEX
example, 51
Universal property, 34–36, 42, 44, 46
definition, 33
Mechanics remark, 37
Optics remark, 35
Vector space, 31
definition, 122
Vertical composition, 7, 69, 71, 83
definition, 71
Whiskering
remark, 72
Yoneda lemma
declaration, 113
Bibliography

BIBLIOGRAPHY

Creative Commons Legal Code

Attribution-NonCommercial 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

(a) “Adaptation” means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or performance and includes cinematographic adaptations or any other form in which the Work may be recast,
transformed, or adapted including in any form recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in timed-relation with a moving image (“synching”) will be considered an Adaptation for the purpose of this License.

(b) “Collection” means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with one or more other contributions, each constituting separate and independent works in themselves, which together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this License.

(c) “Distribute” means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership.

(d) “Licensor” means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.

(e) “Original Author” means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

(f) “Work” means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same
nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical composition with or without words; a cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a literary or artistic work.

(g) “You” means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.

(h) “Publicly Perform” means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire or wireless means or public digital performances; to make available to the public Works in such a way that members of the public may access these Works from a place and at a place individually chosen by them; to perform the Work to the public by any means or process and the communication to the public of the performances of the Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.

(i) “Reproduce” means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpet-
ual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

(a) to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections;

(b) to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation could be marked “The original work was translated from English to Spanish,” or a modification could indicate “The original work has been modified.”;

(c) to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

(d) to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

(a) You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection,
upon notice from any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(c), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove from the Adaptation any credit as required by Section 4(c), as requested.

(b) You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with the exchange of copyrighted works.

(c) If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution (“Attribution Parties”) in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and, (iv) consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., “French translation of the Work by Original Author,” or “Screenplay based on original Work by Original Author”). The credit required by this Section 4(c) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.

(d) For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme can be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by You of the rights granted under this License if Your exercise of such rights is for a purpose or use which is otherwise than non-commercial as permitted under Section 4(b) and otherwise waives the right to collect royalties through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether individually or, in the event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any exercise by You of the rights granted under this License that is for a purpose or use which is otherwise than noncommercial as permitted under Section 4(c).

(e) Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author’s honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author’s honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You
to reasonably exercise Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination
(a) This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Adaptations or Collections from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

(b) Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous
(a) Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.

(b) Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.

(c) If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.

(d) No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

(e) This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.

(f) The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the license of any rights under applicable law.
Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages whatsoever, including without limitation any general, special, incidental or consequential damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, Creative Commons does not authorize the use by either party of the trademark “Creative Commons” or any related trademark or logo of Creative Commons without the prior written consent of Creative Commons. Any permitted use will be in compliance with Creative Commons’ then-current trademark usage guidelines, as may be published on its website or otherwise made available upon request from time to time. For the avoidance of doubt, this trademark restriction does not form part of the License.

Creative Commons may be contacted at https://creativecommons.org/.