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Abstract. GRIN is short for Graph Reduction Intermediate Notation,
a modern back end for lazy functional languages. Most of the currently
available compilers for such languages share a common flaw: they can
only optimize programs on a per-module basis. The GRIN framework
allows for interprocedural whole program analysis, enabling optimizing
code transformations across functions and modules as well.
Some implementations of GRIN already exist, but most of them were
developed only for experimentation purposes. Thus, they either compro-
mise on low level efficiency or contain ad hoc modifications compared to
the original specification.
Our goal is to provide a full-fledged implementation of GRIN by combin-
ing the currently available best technologies like LLVM, and evaluate the
framework’s effectiveness by measuring how the optimizer improves the
performance of certain programs. We also present some improvements
to the already existing components of the framework. Some of these im-
provements include a typed representation for the intermediate language
and an interprocedural program optimization, the dead data elimination.

Keywords: grin · compiler · whole program optimization · intermediate
representation · dead code elimination

1 Introduction

Over the last few years, the functional programming paradigm has become even
more popular and prominent than it was before. More and more industrial appli-
cations emerge, the paradigm itself keeps evolving, existing functional languages
are being refined day by day, and even completely new languages appear. Yet,
it seems the corresponding compiler technology lacks behind a bit.

Functional languages come with a multitude of interesting features that al-
low us to write programs on higher abstraction levels. Some of these features
include higher-order functions, laziness and sophisticated type systems based
on SystemFC [28], some even supporting dependent types. Although these fea-
tures make writing code more convenient, they also complicate the compilation
process.

∗The project has been supported by the European Union, co-financed by the Euro-
pean Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).
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Compiler front ends usually handle these problems very well, but the back
ends often struggle to produce efficient low level code. The reason for this is
that back ends have a hard time optimizing code containing functional artifacts.
These functional artifacts are the by-products of high-level language features
mentioned earlier. For example, higher-order functions can introduce unknown
function calls and laziness can result in implicit value evaluation which can prove
to be very hard to optimize. As a consequence, compilers generally compromise
on low level efficiency for high-level language features.

Moreover, the paradigm itself also encourages a certain programming style
which further complicates the situation. Functional code usually consist of many
smaller functions, rather than fewer big ones. This style of coding results in more
composable programs, but also presents more difficulties for compilation, since
optimizing only individual functions is no longer sufficient.

In order to resolve these problems, we need a compiler back end that can
optimize across functions as well as allow the optimization of laziness in some
way. Also, it would be beneficial if the back end could theoretically handle any
front end language.

In this paper we present a modern look at the GRIN framework. We explain
some of its core concepts, and also provide a number of improvements to it. The
main contributions presented in the paper are the following.

1. Extension of the heap points-to analysis with more accurate basic value
tracking

2. Specification of a type inference algorithm for GRIN using the extended heap
points-to analysis

3. Implementation of an LLVM back end for the GRIN framework
4. Extension of the dead data elimination transformation with typed dum-

mification and an overview of an alternative transformation for producer-
consumer groups

5. Implementation of an Idris front end for the GRIN framework

2 Graph Reduction Intermediate Notation

GRIN is short for Graph Reduction Intermediate Notation. GRIN consists of an
intermediate representation language (IR in the followings) as well as the entire
compiler back end framework built around it. GRIN tries to resolve the issues
highlighted in Section 1 by using interprocedural whole program optimization.

Interprocedural program analysis is a type of data-flow analysis that propa-
gates information about certain program elements through function calls. Using
interprocedural analyses instead of intraprocedural ones, allows for optimizations
across functions. This means the framework can handle the issue of large sets
of small interconnecting functions presented by the composable programming
style.

Whole program analysis enables optimizations across modules. This type
of data-flow analysis has all the available information about the program at



A modern look at GRIN 3

once. As a consequence, it is possible to analyze and optimize global functions.
Furthermore, with the help of whole program analysis, laziness can be made
explicit. In fact, the evaluation of suspended computations in GRIN is done by
an ordinary function called eval. This is a global function uniquely generated
for each program, meaning it can be optimized just like any other function by
using whole program analysis.

Finally, since the analyses and optimizations are implemented on a general
intermediate representation, all other languages can benefit from the features
provided by the GRIN back end. The intermediate layer of GRIN between the
front end language and the low level machine code serves the purpose of elimi-
nating functional artifacts from programs. This is achieved by using optimizing
program transformations specific to the GRIN IR and functional languages in
general. The simplified programs can then be optimized further by using conven-
tional techniques already available. For example, it is possible to compile GRIN
to LLVM and take advantage of an entire compiler framework providing a huge
array of very powerful tools and features.

3 Related Work

This section will introduce the reader to the state-of-the-art concerning func-
tional language compiler technologies and whole program optimization. It will
compare these systems’ main goals, advantages, drawbacks and the techniques
they use.

3.1 The Glasgow Haskell Compiler

GHC [15] is the de facto Haskell compiler. It is an industrial strength com-
piler supporting Haskell2010 with a multitude of language extensions. It has
full support for multi-threading, asynchronous exception handling, incremental
compilation and software transactional memory.

GHC is the most feature-rich stable Haskell compiler. However, its optimizer
part is lacking in two respects. Firstly, neither of its intermediate representations
(STG and Core) can express laziness explicitly, which means that the strictness
analysis cannot be as optimal as it could be. Secondly, GHC only supports op-
timization on a per-module basis by default, and only optimizes across modules
after inlining certain specific functions. This can drastically limit the informa-
tion available for the optimization passes, hence decreasing their efficiency. The
following sections will show alternative compilation techniques to resolve the
issues presented above.

3.2 GRIN

Graph Reduction Intermediate Notation is an intermediate representation for
lazy1 functional languages. Due to its simplicity and high expressive power, it
was utilized by several compiler back ends.

1Strict semantics can be expressed as well.
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Boquist The original GRIN framework was developed by U. Boquist, and first
described in the article [8], then in his PhD thesis [7]. This version of GRIN used
the Chalmers Haskell-B Compiler [4] as its front end and RISC as its back end.
The main focus of the entire framework is to produce highly efficient machine
code from high-level lazy functional programs through a series of optimizing
code transformations. At that time, Boquist’s implementation of GRIN already
compared favorably to the existing Glasgow Haskell Compiler of version 4.01.

The language itself has very simple syntax and semantics, and is capable of
explicitly expressing laziness. It only has very few built-in instructions (store,
fetch and update) which can be interpreted in two ways. Firstly, they can be
seen as simple heap operations; secondly, they can represent graph reduction
semantics [25]. For example, we can imagine store creating a new node, and
update reducing those nodes.

GRIN also supports whole program optimization. Whole program optimiza-
tion is a compiler optimization technique that uses information regarding the
entire program instead of localizing the optimizations to functions or translation
units. One of the most important whole program analyses used by the framework
is the heap-points-to analysis, a variation of Andersen’s pointer analysis [3].

UHC The Utrecht Haskell Compiler [12] is a completely standalone Haskell
compiler with its own front end. The main idea behind UHC is to use attribute
grammars to handle the ever-growing complexity of compiler construction in an
easily manageable way. Mainly, the compiler is being used for education, since
utilizing a custom system, the programming environment can be fine-tuned for
the students, and the error messages can be made more understandable.

UHC also uses GRIN as its IR for its back-end part, however the main focus
has diverted from low level efficiency, and broadened to the spectrum of the entire
compiler framework. It also extended the original IR with synchronous exception
handling by introducing new syntactic constructs for try/catch blocks [13].
Also, UHC can generate code for many different targets including LLVM [18],
.Net, JVM and JavaScript.

JHC JHC [17] is another complete compiler framework for Haskell, developed
by John Meacham. JHC’s goal is to generate not only efficient, but also very
compact code without the need of any runtime. The generated code only has to
rely on certain system calls. JHC also has its own front end and back end just
like UHC, but they serve different purposes.

The front end of JHC uses a very elaborate type system called the pure type
system [6, 29]. In theory, the pure type system can be seen as a generalization
of the lambda cube [5], in practice it behaves similarly to the Glasgow Haskell
Compiler’s Core representation. For example, similar transformations can be
implemented on them.

For its intermediate representation, JHC uses an alternate version of GRIN.
Meacham made several modifications to the original specification of GRIN. Some
of the most relevant additions are mutable variables, memory regions (heap
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and stack) and throw-only IO exceptions. JHC’s exceptions are rather simple
compared to those of UHC, since they can only be thrown, but never caught.

JHC generates completely portable ISO C from the intermediate GRIN code.

AJHC Originally, AJHC [22] was a fork of JHC, but later it was remerged with
all of its functionalities. The main goal of AJHC was to utilize formal methods
in systems programming. It was used implementing a NetBSD sound driver in
high-level Haskell.

LHC The LLVM Haskell Compiler [11] is a Haskell compiler made from reusable
libraries using JHC-style GRIN as its intermediate representation. As its name
suggests, it generates LLVM IR code from the intermediate GRIN.

3.3 Other Intermediate Representations

GRIN is not the only IR available for functional languages. In fact, it is not
even the most advanced one. Other representations can either be structurally
different or can have different expressive power. For example GRIN and LLVM
are both structurally and expressively different representations, because GRIN
has monadic structure, while LLVM uses basic blocks, and while GRIN has sum
types, LLVM has vector instructions. In general, different design choices can
open up different optimization opportunities.

Intel Research Compiler The Intel Labs Haskell Research Compiler [20]
was a result of a long running research project of Intel focusing on functional
language compilation. The project’s main goal was to generate very efficient code
for numerical computations utilizing whole program optimization.

The compiler reused the front end part of GHC, and worked with the exter-
nal Core representation provided by it. Its optimizer part was written in MLton
and was a general purpose compiler back end for strict functional languages.
Differently from GRIN, it used basic blocks which can open up a whole spec-
trum of new optimization opportunities. Furthermore, instead of whole program
defunctionalization (the generation of global eval), their compiler used func-
tion pointers and data-flow analysis techniques to globally analyze the program.
They also supported synchronous exceptions and multi-threading.

One of their most relevant optimizations was the SIMD vectorization pass [24].
Using this optimization, they could transform sequential programs into vector-
ized ones. In conjunction with their other optimizations, they achieved perfor-
mance metrics comparable to native C [23].

MLton MLton [31] is a widely used Standard ML compiler. It also uses whole
program optimization, and focuses on efficiency.

MLton has a wide array of distinct intermediate representations, each serv-
ing a different purpose. Each IR can express a certain aspect of the language
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more precisely than the others, allowing for more convenient implementation
of the respective analyses and transformations. They use a technique similar
to defunctionalization called 0CFA, a higher-order control flow analysis. This
method serves a very similar purpose to defunctionalization, but instead of fol-
lowing function tags, it tracks function closures. Also, 0CFA can be general-
ized to k-CFA, where k represents the number of different contexts the analysis
distinguishes. The variant used by MLton distinguishes zero different contexts,
meaning it is a context insensitive analysis. The main advantage of this technique
is that it can be applied to higher-order languages as well.

Furthermore, MLton supports contification [14], a control flow based trans-
formation, which turns function calls into continuations. This can expose a lot of
additional control flow information, allowing for a broad range of optimizations
such as tail recursive function call optimization.

As for its back end, MLton has its own native code generator, but it can also
generate LLVM IR code [19].

4 Compiling to LLVM

LLVM is a collection of compiler technologies consisting of an intermediate repre-
sentation called the LLVM IR, a modularly built compiler framework and many
other tools built on these technologies. This section discusses the benefits and
challenges of compiling GRIN to LLVM.

4.1 Benefits and Challenges

The main advantage LLVM has over other CISC and RISC based languages lies
in its modular design and library based structure. The compiler framework built
around LLVM is entirely customizable and can generate highly optimized low
level machine code for most architectures. Furthermore, it offers a vast range of
tools and features out of the box, such as different debugging tools or compilation
to WebAssembly.

However, compiling unrefined functional code to LLVM does not yield the
results one would expect. Since LLVM was mainly designed for imperative lan-
guages, functional programs may prove to be difficult to optimize. The reason for
this is that functional artifacts or even just the general structuring of functional
programs can render conventional optimization techniques useless.

While LLVM acts as a transitional layer between architecture independent,
and architecture specific domains, GRIN serves the same purpose for the func-
tional and imperative domains. Figure 4.1 illustrates this domain separtion. The
purpose of GRIN is to eliminate functional artifacts and restructure functional
programs in a way so that they can be efficiently optimized by conventional
techniques.

The main challenge of compiling GRIN to LLVM has to do with the discrep-
ancy between the respective type systems of these languages: GRIN is untyped,
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Fig. 4.1: Possible representations of different functional languages

while LLVM has static typing. In order to make compilation to LLVM possible1,
we need a typed representation for GRIN as well. Fortunately, this problem can
be circumvented by implementing a type inference algorithm for the language.
To achieve this, we can extend an already existing component of the framework,
the heap points-to data-flow analysis.

4.2 Heap points-to Analysis

Heap points-to analysis (HPT in the followings), or pointer analysis is a com-
monly used data-flow analysis in the context of imperative languages. The result
of the analysis contains information about the possible variables or heap loca-
tions a given pointer can point to. In the context of GRIN, it is used to determine
the type of data constructors (or nodes) a given variable could have been con-
structed with. The result is a mapping of variables and abstract heap locations
to sets of data constructors.

The original version of the analysis presented in [7] and further detailed in [8]
only supports node level granularity. This means, that the types of literals are not
differentiated, they are unified under a common ”basic value” type. Therefore,
the analysis cannot be used for type inference as it is. In order to facilitate type
inference, HPT has to be extended, so that it propagates type information about
literals as well. This can be easily achieved by defining primitive types for the
literal values. Using the result of the modified algorithm, we can generate LLVM
IR code from GRIN.

However, in some cases the monomorphic type inference algorithm presented
above is not sufficient. For example, the Glasgow Haskell Compiler has polymor-
phic primitive operations. This means, that despite GRIN being a monomorphic
language, certain compiler front ends can introduce external polymorphic func-
tions to GRIN programs. To resolve this problem, we have to further extend the
heap points-to analysis. The algorithm now needs a table of external functions
with their respective type information. These functions can be polymorphic,

1As a matter of fact, compiling untyped GRIN to LLVM is possible, since only
the registers are statically typed in LLVM, the memory is not. So in principle, if all
variables were stored in memory, generating LLVM code from untyped GRIN would
be plausible. However, this approach would prove to be very inefficient.
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hence they need special treatment during the analysis. When encountering ex-
ternal function applications, the algorithm has to determine the concrete type
of the return value based on the possible types of the function arguments. Es-
sentially, it has to fill all the type variables present in the type of the return
value with concrete types. This can be achieved by unification. Fortunately, the
unification algorithm can be expressed in terms of the same data-flow operations
HPT already uses.

5 Dead Code Elimination

Dead code elimination is one of the most well-known compiler optimization tech-
niques. The aim of dead code elimination is to remove certain parts of the pro-
gram that neither affect its final result nor its side effects. This includes code
that can never be executed, and also code which only consists of irrelevant oper-
ations on dead variables. Dead code elimination can reduce the size of the input
program, as well as increase its execution speed. Furthermore, it can facilitate
other optimizing transformation by restructuring the code.

5.1 Dead Code Elmination in GRIN

The original GRIN framework has three different type of dead code eliminating
transformations. These are dead function elimination, dead variable elimination
and dead function paramater elimination. In general, the effectiveness of most
optimizations solely depends on the accuracy of the information it has about
the program. The more precise information it has, the more agressive it can be.
Furthermore, running the same transformation but with additional information
available, can often yield more efficient code.

In the original framework, the dead code eliminating transformations were
provided only a very rough approximation of the liveness of variables and func-
tion parameters. In fact, a variable was deemed dead only if it was never used in
the program. As a consequence, the required analyses were really fast, but the
transformations themselves were very limited.

5.2 Interprocedural Liveness Analysis

In order to improve the effectiveness of dead code elimination, we need more so-
phisticated data-flow analyses. Liveness analysis is a standard data-flow analysis
that determines which variables are live in the program and which ones are not.
It is important to note, that even if a variable is used in the program, it does
not necessarily mean it is live. See Program code 5.1.

In the first example, we can see a program where the variable n is used, it is
put into a CInt node, but despite this, it is obvious to see that n is still dead.
Moreover, the liveness analysis can determine this fact just by examining the
function body locally. It does not need to analyze any function calls. However,
in the second example, we can see a very similar situation, but here n is an
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1 main =

2 n <- pure 5

3 y <- pure (CInt n)

4 pure 0

(a) Put into a data constructor

1 main =

2 n <- pure 5

3 foo n

4 foo x = pure 0

(b) Argument to a function call

Program code 5.1: Examples demonstrating that a used variable can still be
dead

argument to a function call. To calculate the liveness of n, the analysis either
has to assume that the arguments of foo are always live, or it has to analyze
the body of the function. The former decision yields a faster, but less precise
intraprocedural analysis, the latter results in a bit more costly, but also more
accurate interprocedural analysis.

By extending the analysis with interprocedural elements, we can obtain quite
a good estimate of the live variables in the program, while minimizing the cost
of the algorithm. Using the information gathered by the liveness analysis, the
original optimizations can remove even more dead code segments.

6 Dead Data Elimination

Conventional dead code eliminating optimizations usually only remove state-
ments or expressions from programs; however, dead data elimination can trans-
form the underlying data structures themselves. Essentially, it can specialize
a certain data structure for a given use-site by removing or transforming un-
necessary parts of it. It is a powerful optimization technique that — given the
right circumstances — can significantly decrease memory usage and reduce the
number of executed heap operations.

Within the framework of GRIN, it was Remi Turk, who presented the ini-
tial version of dead data elimination in his master’s thesis [30]. His original
implementation used intraprocedural analyses and an untyped representation of
GRIN. We extended the algorithm with interprocedural analyses, and improved
the “dummification” process (see Sections 6.4 and 6.5). In the followings we
present a high level overview of the original dead data elimination algorithm, as
well as detail some of our modifications.

6.1 Dead Data Elimination in GRIN

In the context of GRIN, dead data elimination removes dead fields of data con-
structors (or nodes) for both definition- and use-sites. In the followings, we will
refer to definition-sites as producers and to use-sites as consumers. Producers
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and consumers are in a many-to-many relationship with each other. A producer
can define a variable used by many consumers, and a consumer can use a variable
possibly defined by many producers. It only depends on the control flow of the
program. Program code 6.1 illustrates dead data elimination on a very simple
example with a single producer and a single consumer.

1 main =

2 x <- pure (CPair 0 1)

3 y <- snd x

4 pure y

5

6 snd p =

7 (CPair a b) <- pure p

8 pure b

(a) Before the transformation

a is dead
=====⇒

1 main =

2 x <- pure (CPair' 1)

3 y <- snd x

4 pure y

5

6 snd p =

7 (CPair' b) <- pure p

8 pure b

(b) After the transformation

Program code 6.1: A simple example for dead data elimination

As we can see, the first component of the pair is never used, so the optimiza-
tion can safely eliminate the first field of the node. It is important to note, that
the transformation has to remove the dead field for both the producer and the
consumer. Furthermore, the name of the node also has to be changed to preserve
type correctness, since the transformation is specific to each producer-consumer
group. This means, the data constructor CPair still exists, and it can be used
by other parts of the program, but a new, specialized version is introduced for
any optimizable producer-consumer group1.

Dead data elimination requires a considerable amount of data-flow analyses
and possibly multiple transformation passes. First of all, it has to identify po-
tentially removable dead fields of a node. This information can be acquired by
running liveness analysis on the program (see Section 5.2). After that, it has to
connect producers with consumers by running the created-by data-flow analysis.
Then it has to group producers together sharing at least one common consumer,
and determine whether a given field for a given producer can be removed glob-
ally, or just dummified locally. Finally, it has to transform both the producers
and the consumers.

6.2 Created-by Analysis

The created-by analysis, as its name suggests is responsible for determining the
set of producers a given variable-was possibly created by. For our purposes, it is

1Strictly speaking, a new version is only introduced for each different set of live
fields used by producer-consumer groups.
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sufficient to track only node valued variables, since these are the only potential
candidates for dead data elimination. Analysis example 6.1 demonstrates how
the algorithm works on a simple program.

1 null xs =

2 y <- case xs of

3 (CNil) ->

4 a <- pure (CTrue)

5 pure a

6 (CCons z zs) ->

7 b <- pure (CFalse)

8 pure b

9 pure y

(a) Input program

Var Producers

xs {CNil[. . . ], CCons[. . . ]}1

a {CTrue[a]}
b {CFalse[b]}
y {CTrue[a], CFalse[b]}

(b) Anyalsis result

Analysis example 6.1: An example demonstrating the created-by analysis

The result of the analysis is a mapping from variable names to set of pro-
ducers grouped by their tags. For example, we could say that ”variable y was
created by the producer a given it was constructed with the CTrue tag”. Natu-
rally, a variable can be constructed with many different tags, and each tag can
have multiple producers. Also, it is important to note that some variables are
their own producers. This is because producers are basically definitions-sites or
bindings, identified by the name of the variable on their left-hand sides. However,
not all bindings have variables on their left-hand side, and some values may not
be bound to variables. Fortunately, this problem can be easily solved by a simple
program transformation.

6.3 Grouping Producers

On a higher abstraction level, the result of the created-by analysis can be in-
terpreted as a bipartite graph between producers and consumers. One group of
nodes represents the producers and the other one represents the consumers. A
producer is connected to a consumer if and only if the value created by the pro-
ducer can be consumed by the consumer. Furthermore, each component of the
graph corresponds to one producer-consumer group. Each producer inside the
group can only create values consumed by the consumers inside the same group,
and a similar statement holds for the consumers as well.

1For the sake of simplicity, we will assume that xs was constructed with the CNil

and CCons tags. Also its producers are irrelevant in this example.
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6.4 Transforming Producers and Consumers

As mentioned earlier, the transformation applied by dead data elimination can
be specific for each producer-consumer group, and both the producers and the
consumers have to be transformed. Also, the transformation can not always
simply remove the dead field of a producer. Take a look at Figure 6.1.

P1 P2

C2C1 C3

Fig. 6.1: Producer-consumer group

As we can see, producers P1 and P2 share a common consumer C2. Let’s
assume, that the shared value is a CPair node with two fields, and neither C1,
nor C2 uses the first field of that node. This means, the first field of the CPair

node is locally dead for producer P1. Also, suppose that C3 does use the first
field of that node, meaning it is live for P2, hence it cannot be removed. In this
situation, if the transformation were to remove the locally dead field from P1,
then it would lead to a type mismatch at C2, since C2 would receive two CPair

nodes with different number of arguments, with possibly different types for their
first fields. In order to resolve this issue the transformation has to rename the
tag at P1 to CPair’, and create new patterns for CPair’ at C1 and C2 by
duplicating and renaming the existing ones for CPair. This way, we can avoid
potential memory operations at the cost of code duplication.

In fact, even the code duplication can be circumvented by introducing the
notion of basic blocks to the intermediate representation. This way, we still need
to generate new alternatives (new patterns), but their right-hand sides will be
simple jump instructions to the basic blocks of the original alternative’s right-
hand side.

6.5 The undefined value

Another option would be to only dummify the locally dead fields. In other words,
instead of removing the field at the producer and restructuring the consumers,
the transformation could simply introduce a dummy value for that field. The
dummy value could be any placeholder with the same type as the locally dead
field. For instance, it could be any literal of that type. A more sophisticated
solution would be to introduce an undefined value. The undefined value is a
placeholder as well, but it carries much more information. By marking certain
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values undefined instead of just introducing placeholder literals, we can facilitate
other optimizations down the pipeline. However, each undefined value has to
be explicitly type annotated for the heap points-to analysis to work correctly.
Just like the other approach mentioned earlier, this alternative also solves the
problem of code duplication at the cost of some modifications to the intermediate
representation.

7 Idris Front End

Currently, our compiler uses the Idris compiler as its front end. The infrastruc-
ture can be divided into three components: the front end, that is responsible
for generating GRIN IR from the Idris byte code; the optimizer, that applies
GRIN-to-GRIN transformations to the GRIN program, possibly improving its
performance; and the back end, that compiles the optimized GRIN code into an
executable.

7.1 Front end

The front end uses the bytecode produced by the Idris compiler to generate the
GRIN intermediate representation. The Idris bytecode is generated without any
optimizations by the Idris compiler. The code generation from Idris to GRIN is
really simple, the difficult part of refining the original program is handled by the
optimizer.

7.2 Optimizer

The optimization pipeline consists of three stages, as can be seen in Figure 7.1.
In the first stage, the optimizer iteratively runs the so-called regular optimiza-
tions. These are the program transformations described in Urban Boquist’s PhD
thesis [7]. A given pipeline of these transformations are run until the code reaches
a fixed-point, and cannot be optimized any further. This set of transformation
are not formally proven to be confluent, so theoretically different pipelines can
result in different fixed-points1. Furthermore, some of these transformations can
work against each other, so a fixed-point may not always exist. In this case,
the pipeline can be caught in a loop, where the program returns to the same
state over and over again. Fortunately, these loops can be detected, and the
transformation pipeline can be terminated.

Following that, in the second stage, the optimizer runs the dead data elimina-
tion pass. This pass can be quite demanding on both the memory usage and the
execution time due to the several data-flow analyses the transformation requires.
Also, it is a rather specific transformation, which means, running it multiple
times might not improve the code any further. As a consequence, the dead data
elimination pass is executed only a single time during the entire optimization

1Although, experiments suggest that these transformations are confluent.
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GRIN code gen. DDE

Regular opts.

Regular opts.

Binary generation

iteratively

iteratively

Fig. 7.1: Idris compilation pipeline

process. Since the dead data elimination pass can enable other optimizations,
the optimizer runs the regular optimizations a second time right after the DDE
pass.

7.3 Back end

After the optimization process, the optimized GRIN code is passed onto the back
end, which then generates an executable using the LLVM compiler framework.
The input of the back end consists of the optimized GRIN code, the primitive
operations of Idris and a minimal runtime (the latter two are both implemented
in C). Currently, the runtime is only responsible for allocating heap memory for
the program, and at this point it does not include a garbage collector.

The first task of the back end is to compile the GRIN code into LLVM
IR code which is then optimized further by the LLVM Modular Optimizer [2].
Currently, the back end uses the default LLVM optimization pipeline. After that,
the optimized LLVM code is compiled into an object file by the LLVM Static
Compiler [1]. Finally, Clang links together the object file with the C-implemented
primitive operations and the runtime, and generates an executable binary.

8 Results

In this section, we present the initial results of our implementation of the GRIN
framework. The measurements presented here can only be considered prelimi-
nary, given the compiler needs further work to be comparable to systems like the
Glasgow Haskell Compiler or the Idris compiler [9]. Nevertheless, these statistics
are still relevant, since they provide valuable information about the effectiveness
of the optimizer.

8.1 Measured programs

The measurements were taken using the Idris front end and LLVM back end of
the compiler. Each test program — besides “Length” — was adopted from the
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book Type-driven development with Idris [10] by Edwin Brady. These are small
Idris programs demonstrating a certain aspect of the language.

“Length” is an Idris program, calculating the length of a list containing the
natural numbers from 1 to 100. This example was mainly constructed to test
how the dead data elimination pass can transform the inner structure of a list
into a simple natural number (see Section 6).

8.2 Measured metrics

Each test program went trough the compilation pipeline described in Section 7,
and measurements were taken at certain points during the compilation. The
programs were subject to three different types of measurements.

– Static, compile time measurements of the GRIN code.
– Dynamic, runtime measurements of the interpreted GRIN code.
– Dynamic, runtime measurements of the executed binaries.

The compile time measurements were taken during the GRIN optimization
passes, after each transformation. The measured metrics were the number of
stores, fetches and function definitions. These measurements ought to illus-
trate how the GRIN code becomes more and more efficient during the opti-
mization process. The corresponding diagrams for the static measurements are
Diagrams 8.1b to 8.4b. On the horizontal axis, we can see the indices of the
transformations in the pipeline, and on the vertical axis, we can see the number
of the corresponding syntax tree nodes. Reading these diagram from left to right,
we can observe the continuous evolution of the GRIN program throughout the
optimization process.

The runtime measurements of the interpreted GRIN programs were taken at
three points during the compilation process. First, right after the GRIN code
is generated from the Idris byte code; second, after the regular optimization
passes; and finally, at the end of the entire optimization pipeline. As can be
seen on Figure 7.1, the regular optimizations are run a second time right after
the dead data elimination pass. This is because the DDE pass can enable fur-
ther optimizations. To clarify, the third runtime measurement of the interpreted
GRIN program was taken after the second set of regular optimizations. The mea-
sured metrics were the number of executed function calls, case pattern matches,
stores and fetches. The goal of these measurements is to compare the GRIN
programs at the beginning and at the end of the optimization pipeline, as well as
to evaluate the efficiency of the dead data elimination pass. The corresponding
diagrams for these measurement are Diagrams 8.1a to 8.4a.

The runtime measurements of the binaries were taken at the exact same
points as the runtime measurements of the interpreted GRIN code. Their goal
is similar as well, however they ought to compare the generated binaries instead
of the GRIN programs. The measured metrics were the size of the binary, the
number of executed user-space instructions, stores and loads. The binaries were
generated by the LLVM back end described in Section 7.3 with varying opit-
mization levels for the LLVM Optimizer. The optimization levels are indicated
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in the corresponding tables: Tables 8.1 to 8.4. Where the optimization level is
not specified, the default, O0 level was used. As for the LLVM Static Compiler
and Clang, the most aggressive, O3 level was set for all the measurements.

8.3 Measurement setup

All the measurements were performed on a machine with Intel(R) Core(TM)

i7-4710HQ CPU @ 2.50GHz processor and Ubuntu 18.04 bionic operating sys-
tem with 4.15.0-46-generic kernel. The Idris compiler used by the front-end
is of version 1.3.1, and the LLVM used by the back end is of version 7.

The actual commands for the binary generation are detailed in Program code 8.1.
That script has two parameters: N and llvm-in. N is the optimization level for
the LLVM Optimizer, and llvm-in is the LLVM program generated from the
optimized GRIN code.

1 opt-7 -ON <llvm-in> -o <llvm-out>

2 llc-7 -O3 -relocation-model=pic -filetype=obj -o <object-file>

3 clang-7 -O3 prim_ops.c runtime.c <object-file> -s -o <executable>

Program code 8.1: Commands for binary generation

As for the runtime measurements of the binary, we used the perf tool. The
used command can be seen in Program code 8.2.

1 perf stat -e cpu/mem-stores/u -e "r81d0:u" -e instructions:u

<executable>↪→

Program code 8.2: Command for runtime measurements of the binary

8.4 Length

The first thing we can notice on the runtime statistics of the GRIN code, is that
the GRIN optimizer significantly reduced the number of heap operations, as well
as the number of function calls and case pattern matches. Moreover, the DDE
pass could further improve the program’s performance by removing additional
heap operations.

The compile time statistics demonstrate an interesting phenomena. The num-
ber of stores and function definitions continuously keep decreasing, but at a
certain point, the number of fetches suddenly increase by a relatively huge
margin. This is due to the fact that the optimizer usually performs some prelim-
inary transformations on the GRIN program before inlining function definitions.
This explains the sudden rise in the number of fetches during the early stages
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of the optimization process. Following that spike, the number of heap opera-
tions and function definitions gradually decrease until the program cannot be
optimized any further.

Diagram 8.1: Length - GRIN statistics

(a) Runtime (b) Compile time

The runtime statistics for the executed binary are particularly interesting.
First, observing the O0 statistics, we can see that the regular optimizations sub-
stantially reduced the number of executed instructions and memory operations,
just as we saw with the interpreted GRIN code. However, on the one hand the
DDE optimized binary did not perform any better than the regularly optimized
one, but on the other hand its size decreased by more than 20%.

Table 8.1: Length - CPU binary statistics

Stage Size Instructions Stores Loads

normal-O0 23928 769588 212567 233305

normal-O3 23928 550065 160252 170202

regular-opt 19832 257397 14848 45499

dde-O0 15736 256062 14243 45083

dde-O3 15736 284970 33929 54555

Also, it is interesting to see that the aggressively optimized DDE binary per-
formed much worse than the O0 version. This is because the default optimization
pipeline of LLVM is designed for the C and C++ languages. As a consequence,
in certain scenarios it may perform poorly for other languages. In the future, we
plan to construct a better LLVM optimization pipeline for GRIN.
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8.5 Exact length

For the GRIN statistics of “Exact length”, we can draw very similar conclu-
sions as for “Length“. However, closely observing the statistics, we can see, that
the DDE pass completely eliminated all heap operations from the program. In
principle, this means, that all the variables can be put into registers during the
execution of the program. In practice, some variables will be spilled onto stack,
but the heap will never be used.

Diagram 8.2: Exact length - GRIN statistics

(a) Runtime (b) Compile time

As for the binary statistics, we do not see any major improvements besides the
significant reduction in the size of the binary. Although, it is worth pointing out,
that the cost of memory operations can be considerably higher when accessing
heap memory, and that the statistics presented here do not account for that.

Table 8.2: Exact length - CPU binary statistics

Stage Size Instructions Stores Loads

normal-O0 18800 188469 14852 46566

normal-O3 14704 187380 14621 46233

regular-opt 10608 183560 13462 45214

dde-O0 10608 183413 13431 45189

dde-O3 10608 183322 13430 44226
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8.6 Type level functions

The GRIN statistics for this program may not be particularly interesting, but
they demonstrate that the GRIN optimizations work for programs with many
type level computations as well.

Diagram 8.3: Type level functions - GRIN statistics

(a) Runtime (b) Compile time

The binary statistics look promising for “Type level functions”. Each mea-
sured performance metric is strictly decreasing, which suggests that even the
default LLVM optimization pipeline can work for GRIN.

Table 8.3: Type level functions - CPU binary statistics

Stage Size Instructions Stores Loads

normal-O0 65128 383012 49191 86754

normal-O3 69224 377165 47556 84156

regular-opt 36456 312122 34340 71162

dde-O0 32360 312075 34331 70530

dde-O3 28264 309822 33943 70386

8.7 Reverse

Unlike, the previous programs, “Reverse” could not have been optimized by the
dead data elimination pass. The pass had no effect on it. Fortunately, the regular
optimizations alone could considerably improve both the runtime and compile
time metrics of the GRIN code.

The binary statistics are rather promising. The binary size decreased by a
substantial margin and the number of executed memory operations has also been
reduced by quite a lot.
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Diagram 8.4: Reverse - GRIN statistics

(a) Runtime (b) Compile time

Table 8.4: Reverse - CPU binary statistics

Stage Size Instructions Stores Loads

normal-O0 27112 240983 25018 58253

normal-O3 31208 236570 23808 56617

regular-opt-O0 14824 222085 19757 53125

regular-opt-O3 14824 220837 19599 52827

8.8 General conclusions

In general, the measurements demonstrate that the GRIN optimizer can consid-
erably improve the performance metrics of a given GRIN program. The regular
optimizations themselves can usually produce highly efficient programs, how-
ever, in certain cases the dead data elimination pass can facilitate additional
optimizations, and can further improve the performance.

The results of the binary measurements indicate that the GRIN optimizer
performs optimizations orthogonal to the LLVM optimizations. This supports
the motivation behind the framework, which is to transform functional programs
into a more manageable format for LLVM by eliminating the functional artifacts.
This is backed up by the fact, that none of the fully optimized normal programs
could perform as well as the regularly or DDE optimized ones. Also, it is inter-
esting to see, that there is not much difference between the O0 and O3 default
LLVM optimization pipelines for GRIN. This motivates further research to find
an optimal pipeline for GRIN.

Finally, it is rather surprising to see, that the dead data elimination pass
did not really impact the performance metrics of the executed binaries, but it
significantly reduced their size. The former can be explained by the fact, that
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most of these programs are quite simple, and do not contain any compound data
structures. Dead data elimination can shine when a data structure is used in a
specific way, so that it can be locally restructured for each use site. However,
when applying it to simple programs, we can obtain sub par results.

9 Future Work

Currently, the framework only supports the compilation of Idris, but we are
working on supporting Haskell by integrating the Glasgow Haskell Compiler as
a new front end. As of right now, the framework can generate GRIN IR code
from GHC’s STG representation, but the generated programs still contain unim-
plemented primitive operations. The main challenge is to somehow handle these
primitive operations. In fact, there is only a small set of primitive operations
that cannot be trivially incorporated into the framework, but these might even
require extending the GRIN IR with additional built-in instructions.

Besides the addition of built-in instructions, the GRIN intermediate repre-
sentation can be improved further by introducing the notion of function point-
ers and basic blocks. Firstly, the original specification of GRIN does not support
modular compilation. However, extending the IR with function pointers can help
to achieve incremental compilation. Each module could be compiled separately
with indirect calls to other modules through function pointers, then by using
different data-flow analyses and program transformations, all modules could be
optimized together incrementally. In theory, if the entire program is available for
analysis at compile time, incremental compilation could produce the same result
as whole program compilation. Secondly, the original GRIN IR has a monadic
structure which can make it difficult to analyze and transform the control flow
of the program. Fortunately, replacing the monadic structure with basic blocks
can resolve this issue.

Whole program analysis is a powerful tool for optimizing compilers, but it
can be quite demanding on execution time. This being said, there are certain
techniques to speed up these analyses. The core of the GRIN optimizer is the
heap points-to analysis, an Andersen-style inclusion based pointer analysis [3].
This type of data-flow analysis is very well researched, and there are several
ways to improve the algorithm’s performance. Firstly, cyclic references could be
detected and eliminated between data-flow nodes at runtime. This optimization
allows the algorithm to analyze millions of lines of code within seconds [16].
Secondly, the algorithm itself could be parallelized for both CPU and GPU [21],
achieving considerable speedups. Furthermore, some alternative algorithms could
also be considered. For example, Steengaard’s unification based algorithm [27]
is a less precise analysis, but it runs in almost linear time. It could be used as
a preliminary analysis for some simple transformations at the beginning of the
pipeline. Finally, Shapiro’s algorithm [26] could act as a compromise between
Steengaard’s and Andersen’s algorithm. In a way, Shapiro’s analysis lies some-
where between the other two analyses. It is slower than Steengaard’s, but also
much more precise; and it is less precise than Andersen’s, but also much faster.
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10 Conclusions

In this paper we presented a modern look at GRIN, an optimizing functional
language back end originally published by Urban Bouquist.

We gave an overview of the GRIN framework, and introduced the reader
to the related research on compilers utilizing GRIN and whole program opti-
mization. Then we gave an extension for the heap points-to analysis with more
accurate basic value tracking. This allowed for defining a type inference algo-
rithm for the GRIN intermediate representation, which then was used in the
implementation of the LLVM back end. Following that, we detailed the dead
data elimination pass and the required data-flow analyses, originally published
by Remi Turk. We also presented an extension of the dummification transforma-
tion which is compatible with the typed representation of GRIN by extending
the IR with the undefined value. Furthermore, we gave an alternative method
for transforming producer-consumer groups by using basic blocks. Our last con-
tribution was the implementation of the Idris front end.

We evaluated our implementation of GRIN using simple Idris programs taken
from the book Type-driven development with Idris [10] by Edwin Brady. We
measured the optimized GRIN programs, as well as the generated binaries. It is
important to note, that the measurements presented in this paper can only be
considered preliminary, given the compiler needs further work to be comparable
to other systems. Nevertheless, these statistics are still relevant, since they pro-
vide valuable information about the effectiveness of the optimizer. The results
demonstrate that the GRIN optimizer can significantly improve the performance
of GRIN programs. Furthermore, they indicate that the GRIN optimizer per-
forms optimizations orthogonal to the LLVM optimizations, which supports the
motivation behind the framework. As for dead data elimination, we found that
it can facilitate other transformations during the optimization pipeline, and that
it can considerably reduce the size of the generated binaries.

All things considered, the current implementation of GRIN brought adequate
results. However, there are still many promising ideas left to research.
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