6. Subpattern Coverage

PROBLEM: Given a 2-dimensional array, find the smallest $T L$ subarray that can exactly tile the original array. A TL subarray is part of the array that starts in the Top Left corner of the original array.
For example, consider the 12×8 array below:

1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0

The smallest $T L$ subarray that can exactly tile the original is the 4×2 array that is shaded above. When it tiles the array, it appears 12 times: 4 times on each of the 3 rows. By smallest, we refer to the number of elements in the array.
Here are some other $T L$ subarrays and the reason why they don't tile the original:

| 1 | 1 | | 1 1 1 0 1 1 | 0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | | 0 | 0 | 0 | 0 |
| This TL subarray tiles the
 first two rows only. | This TL subarray doesn't
 even tile the first row! | This isn't a valid TL subarray
 of the array above. | | | | |

INPUT: There will be 10 lines of input. Each line will contain an array of 0 s and1s. The format of each line is the integer R, followed by the integer C, followed by R hex strings that, when each hex digit is converted to 4 binary digits, will fill the R rows of the array from top to bottom and left to right.
If the conversion produces more digits than needed, delete the unneeded trailing digits. For example, if there are 5 columns A7 would convert to binary as 10100111 and the 5 columns would be filled with 10100 .
OUTPUT: For each line of input, find the smallest TL subarray that exactly tiles the input array. Print the size of the $T L$ subarray as two numbers: the number of rows followed by the number of columns. We guarantee that there is a unique answer to each input array. If there is no $T L$ subarray smaller than the input array that can tile the input array, then print the size of the input array.

6. Subpattern Coverage

SAMPLE INPUT

```
8 FF AA 55 00 FF AA 55 00
4 F F F F
```


SAMPLE OUTPUT

```
1. 4 2
```

2. 1 1
```
4 4 1 1 1 1
3. 1 4
3 4 A A A
4 CC AA CC AA
4 6 22 B1 22 B1
6 4 3 A F 3 A F
6 6 B1 D2 21 B1 D2 21
6 8 \text { AA AA AA AA AA AA}
5 5 00 00 00 00 00
```

3. 14
4. 12
5. 24
6. 26
7. 34
8. 36
9. 12
10. 11

TEST DATA

TEST INPUT

```
8 8 BC DE BC DE BC DE BC DE
4 A A A A
6 6 24 2C 34 24 2C 34
2 8 11 11
2 12 AAA 555
9 4 A 8 4 A 8 4 A 8 4
6 8 AF BE CD DC EB FA
5 5 01 01 01 01 01
4 1 0 0 0 0
```

128 FF AA 5500 FF AA 5500 FF AA 5500

TEST OUTPUT

- 28
- 12
- 36
- 14
- 22
- 34
- 68
- 11
- 11
- 42

