PROBLEM: From Wikipedia: In mathematics, the look-and-say sequence is the sequence of integers beginning as follows:

$$
1,11,21,1211,111221,312211,13112221,1113213211, \ldots
$$

To generate a member of the sequence from the previous member, read off the digits of the previous member, counting the number of digits in groups of the same digit. For example:

- 1 is read off as "one 1 " or 11 .
- 11 is read off as "two 1 s " or 21 .
- 21 is read off as "one 2 , then one 1 " or 1211 .
- 1211 is read off as "one 1 , one 2 , then two 1 s " or 111221.
- 111221 is read off as "three 1 s , two 2 s , then one 1 " or 312211.

INPUT: There will be 10 lines of input. Each line will contain 3 integers: m, n, and p.

OUTPUT: For each line of input, find the $m^{\text {th }}$ term and print the string of digits starting with the $n^{\text {th }}$ digit and continuing through the $(n+p)^{\text {th }}$ digit.

SAMPLE INPUT
220
311
422
542
612
724
844
973
10105
11156

SAMPLE OUTPUT

1. 1
2. 21
3. 211
4. 221
5. 312
6.31122
6. 32132
7. 1113
8. 231131
9. 1321132

5. Look and Say

TEST DATA

TEST INPUT
12102
13154

14205
16256
18407
2010010
212005
223008
2340010
2450010

TEST OUTPUT

1. 123
2. 13122
3. 112111
4. 3112111
5. 12211121
6. 12221131112
7. 321133
8. 112311332
9. 21321231231
10. 21113122113
