Financial KPIs can be used to drive investment decisions. So it was my goal to create a comprehensive set of KPIs across different dimensions that are based on the information which can be determined from EDGAR:
In this document we demonstrate the approach on how to calculate the Surprises
We install the dependencies with Maven
%classpath config resolver maven-public http://software.pschatzmann.ch/repository/maven-public/
%%classpath add mvn
ch.pschatzmann:smart-edgar:LATEST
ch.pschatzmann:jupyter-jdk-extensions:0.0.1-SNAPSHOT
Added new repo: maven-public
import ch.pschatzmann.edgar.reporting.company._
import ch.pschatzmann.display.Displayers
Displayers.setup
true
The simplest approach to determine a Surprise is to calculate the forecasted value and to compare it with the effectivly reported value.
The calculation can be done with the forecast() method. The surprisePercent() gives the difference in % of the effective value compared to the forecast value.
val values = new CompanyEdgarValuesDB(new CompanySelection().setTradingSymbol("AAPL"))
.setAddTime(true)
.setFilter(new FilterQuarterlyCumulated())
.setParameterNames("NetIncomeLoss", "Revenues","SalesRevenueNet","EarningsPerShareBasic")
.addFormula("Revenue","Edgar.coalesce('Revenues', 'SalesRevenueNet')")
.addFormula("NetIncomeForecasted","Edgar.forecast('NetIncomeLoss')")
.addFormula("RevenueForecasted","Edgar.forecast('Revenue')")
.addFormula("EarningsPerShareForecasted","Edgar.forecast('EarningsPerShareBasic')")
.addFormula("NetIncomeSurprise%","Edgar.surprisePercent('NetIncomeLoss')")
.addFormula("RevenueSurprise%","Edgar.surprisePercent('Revenue')")
.addFormula("EarningsPerShareSurprise%","Edgar.surprisePercent('EarningsPerShareBasic')")
.removeParameterNames("Revenues","SalesRevenueNet")
ch.pschatzmann.edgar.reporting.company.CompanyEdgarValuesDB@1e690cdb
values.getTable
We convert the data to Scala as a preparation so that we can create some charts
import scala.collection.JavaConverters._
val scalaValues = values.toList.asScala
.map(map => map.asScala.toMap)
.toSeq
scalaValues.size
41
We check if the forecast make any sense
val plot = new SimpleTimePlot {
data = scalaValues
columns = Seq("NetIncomeLoss","NetIncomeForecasted")
}
And last but not least we finish with the plot of the calculated Surprises:
val plot = new SimpleTimePlot {
data = scalaValues
columns = Seq("NetIncomeSurprise%","RevenueSurprise%","EarningsPerShareSurprise%")
}
import ch.pschatzmann.common.table.TableCalculated
val formulas = values.getTable().getBaseTableOfClass("TableCalculated").asInstanceOf[TableCalculated].getFormulas
formulas.getForecast
ch.pschatzmann.edgar.table.forecast.ForecastQuartersCumulated@6dc599e3
We can change the Forecasting method by setting the Forecast implementation on the Formulas object. This needs to be done before the values are renderend. In the following example we use the Arima forecast implementation
import ch.pschatzmann.edgar.table.forecast.ForecastQuartersCumulatedARIMA
val values1 = new CompanyEdgarValuesDB(new CompanySelection().setTradingSymbol("AAPL"))
.setAddTime(true)
.setFilter(new FilterQuarterlyCumulated())
.setParameterNames("NetIncomeLoss", "Revenues","SalesRevenueNet","EarningsPerShareBasic")
.addFormula("Revenue","Edgar.coalesce('Revenues', 'SalesRevenueNet')")
.addFormula("NetIncomeForecasted","Edgar.forecast('NetIncomeLoss')")
.addFormula("RevenueForecasted","Edgar.forecast('Revenue')")
.addFormula("EarningsPerShareForecasted","Edgar.forecast('EarningsPerShareBasic')")
.addFormula("NetIncomeSurprise%","Edgar.surprisePercent('NetIncomeLoss')")
.addFormula("RevenueSurprise%","Edgar.surprisePercent('Revenue')")
.addFormula("EarningsPerShareSurprise%","Edgar.surprisePercent('EarningsPerShareBasic')")
.removeParameterNames("Revenues","SalesRevenueNet")
val formulas1 = values1.getTable().getBaseTableOfClass("TableCalculated").asInstanceOf[TableCalculated].getFormulas
formulas1.setForecast(new ForecastQuartersCumulatedARIMA())
values1.getTable
import scala.collection.JavaConverters._
val scalaValues1 = values1.toList.asScala
.map(map => map.asScala.toMap)
.toSeq
val plot = new SimpleTimePlot {
data = scalaValues1
columns = Seq("NetIncomeSurprise%","RevenueSurprise%","EarningsPerShareSurprise%")
}