We compare the temperature data from ERA-20c and CERA-20c.
TDLR; gobal trends are similar but ERA-20c has spurious (cold) temperatures in many parts of the world.
import xarray as xr
import cartopy
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from oggm import utils
t_c20c = utils.file_downloader('https://cluster.klima.uni-bremen.de/~fmaussion/climate/cera-20c/cera-20c_t2m_1901-2010.nc')
t_20c = utils.file_downloader('https://cluster.klima.uni-bremen.de/~fmaussion/climate/era-20c/era-20c_t2m_1901-2010.nc')
ds_c20c = xr.open_dataset(t_c20c)
ds_20c = xr.open_dataset(t_20c)
ds_c20c
<xarray.Dataset> Dimensions: (latitude: 181, longitude: 360, number: 10, time: 1320) Coordinates: * longitude (longitude) float32 0.0 1.0 2.0 3.0 ... 356.0 357.0 358.0 359.0 * latitude (latitude) float32 90.0 89.0 88.0 87.0 ... -88.0 -89.0 -90.0 * number (number) int32 0 1 2 3 4 5 6 7 8 9 * time (time) datetime64[ns] 1901-01-01 1901-02-01 ... 2010-12-01 Data variables: t2m (time, number, latitude, longitude) float32 ... Attributes: Conventions: CF-1.6 history: 2019-05-26 18:33:08 GMT by grib_to_netcdf-2.12.0: grib_to_n...
ds_20c
<xarray.Dataset> Dimensions: (latitude: 181, longitude: 360, time: 1320) Coordinates: * longitude (longitude) float32 0.0 1.0 2.0 3.0 ... 356.0 357.0 358.0 359.0 * latitude (latitude) float32 90.0 89.0 88.0 87.0 ... -88.0 -89.0 -90.0 * time (time) datetime64[ns] 1901-01-01 1901-02-01 ... 2010-12-01 Data variables: d2m (time, latitude, longitude) float32 ... Attributes: Conventions: CF-1.6 history: 2019-05-26 15:36:48 GMT by grib_to_netcdf-2.12.0: grib_to_n...
ds_c20c = ds_c20c.chunk(chunks={'number':1, 'longitude':180})
fig = plt.figure(figsize=(12, 5))
ax = plt.axes(projection=ccrs.Robinson())
(ds_20c.d2m.mean(dim='time') - 273.15).plot(ax=ax, transform=ccrs.PlateCarree())
ax.coastlines(); ax.gridlines(); plt.title('ERA-20C average temperature');
fig = plt.figure(figsize=(12, 5))
ax = plt.axes(projection=ccrs.Robinson())
(ds_c20c.t2m.mean(dim=['time', 'number']) - 273.15).plot(ax=ax, transform=ccrs.PlateCarree())
ax.coastlines(); ax.gridlines(); plt.title('CERA-20C average temperature');
fig = plt.figure(figsize=(12, 5))
ax = plt.axes(projection=ccrs.Robinson())
(ds_20c.d2m.mean(dim='time') - ds_c20c.t2m.mean(dim=['time', 'number'])).plot(ax=ax, transform=ccrs.PlateCarree())
ax.coastlines(); ax.gridlines(); plt.title('Diff ERA-20C - CERA-20C');
# Weight
weight = np.cos(np.deg2rad(ds_c20c.latitude))
weight = ds_20c.d2m.mean(dim='time') * 0. + weight
weight = weight / weight.sum()
ts_c20c = (ds_c20c.t2m.mean(dim=['number']) * weight).sum(dim=['latitude','longitude']) - 273.15
ts_20c = (ds_20c.d2m * weight).sum(dim=['latitude','longitude']) - 273.15
ts_c20c_a = ts_c20c.resample(time='AS').mean(dim='time')
ts_20c_a = ts_20c.resample(time='AS').mean(dim='time')
ts_c20c_a.plot(label='CERA-20c');
ts_20c_a.plot(label='ERA-20c');
plt.legend();
(ts_c20c_a - ts_c20c_a.sel(time=slice('1961', '1990')).mean(dim='time')).plot(label='CERA-20c');
(ts_20c_a - ts_20c_a.sel(time=slice('1961', '1990')).mean(dim='time')).plot(label='ERA-20c');
plt.legend();
ts_c20c_members = (ds_c20c.t2m * weight).sum(dim=['latitude','longitude']) - 273.15
fig = plt.figure(figsize=(12, 8))
ts_c20c_members.resample(time='AS').mean(dim='time').plot.line(x='time');