#!/usr/bin/env python # coding: utf-8 # # # # # The Outgoing Gravitational Wave Weyl scalar $\psi_4$ # # ## Author: Zach Etienne # # ## This notebook presents the construction of $\psi_4$, a complex scalar for gravitational wave analysis. Using the ADM spatial metric, extrinsic curvature, and arbitrary tetrad vectors, a detailed process is outlined to form $\psi_4$ following [Baker, Campanelli, Lousto (2001)](https://arxiv.org/pdf/gr-qc/0104063.pdf). # # **Notebook Status:** Validated # # **Validation Notes:** This module has been validated as follows: # # * Agreement (to roundoff error) with the WeylScal4 ETK thorn in Cartesian coordinates (as it agrees to roundoff error with Patrick Nelson's [Cartesian Weyl Scalars & Invariants NRPy+ tutorial notebook](Tutorial-WeylScalarsInvariants-Cartesian.ipynb), which itself was validated against WeylScal4). # * In SinhSpherical coordinates this module yields amplitude falloff and phase agreement with black hole perturbation theory for the $l=2,m=0$ (dominant, spin-weight -2 spherical harmonic) mode of a ringing Brill-Lindquist black hole remnant to more than 7 decades in amplitude, surpassing the agreement seen in Fig. 6 of [Ruchlin, Etienne, & Baumgarte](https://arxiv.org/pdf/1712.07658.pdf). (as shown in [corresponding start-to-finish notebook](Tutorial-Start_to_Finish-BSSNCurvilinear-Two_BHs_Collide-Psi4.ipynb); must choose EvolOption = "high resolution"). # * Above head-on collision calculation was performed with the [Einstein Toolkit](https://einsteintoolkit.org/), and results were found to match in the case of all spherical harmonic modes. # * An equal-mass binary black hole calculation (QC-0) was performed using this module for $\psi_4$ (SinhSpherical coordinates in a region where gravitational waves extracted), and excellent agreement was observed for all (spin-weight -2 spherical harmonic) modes up to and including $l=4$, when compared with the same calculation performed with the [Einstein Toolkit](https://einsteintoolkit.org/). # # ### NRPy+ Source Code for this module: [BSSN/Psi4.py](../edit/BSSN/Psi4.py) # # ## Introduction: # This module constructs $\psi_4$, a quantity that is immensely useful when extracting gravitational wave content from a numerical relativity simulation. $\psi_4$ is related to the gravitational wave strain via # # $$ # \psi_4 = \ddot{h}_+ - i \ddot{h}_\times. # $$ # # We construct $\psi_4$ from the standard ADM spatial metric $\gamma_{ij}$ and extrinsic curvature $K_{ij}$, and their derivatives. The full expression is given by Eq. 5.1 in [Baker, Campanelli, Lousto (2001)](https://arxiv.org/pdf/gr-qc/0104063.pdf): # # \begin{align} # \psi_4 &= \left[ {R}_{ijkl}+2K_{i[k}K_{l]j}\right] # {n}^i\bar{m}^j{n}^k\bar{m}^l \\ # & -8\left[ K_{j[k,l]}+{\Gamma }_{j[k}^pK_{l]p}\right] # {n}^{[0}\bar{m}^{j]}{n}^k\bar{m}^l \\ # & +4\left[ {R}_{jl}-K_{jp}K_l^p+KK_{jl}\right] # {n}^{[0}\bar{m}^{j]}{n}^{[0}\bar{m}^{l]}, # \end{align} # # Note that $\psi_4$ is complex, with the imaginary components originating from the tetrad vector $m^\mu$. This module does not specify a tetrad; instead, it only constructs the above expression leaving $m^\mu$ and $n^\mu$ unspecified. The [next module on tetrads defines these tetrad quantities](Tutorial-Psi4_tetrads.ipynb) (currently only a quasi-Kinnersley tetrad is supported). # # ### A Note on Notation: # # As is standard in NRPy+, # # * Greek indices range from 0 to 3, inclusive, with the zeroth component denoting the temporal (time) component. # * Latin indices range from 0 to 2, inclusive, with the zeroth component denoting the first spatial component. # # As a corollary, any expressions involving mixed Greek and Latin indices will need to offset one set of indices by one: A Latin index in a four-vector will be incremented and a Greek index in a three-vector will be decremented (however, the latter case does not occur in this tutorial notebook). # # # # # Table of Contents # $$\label{toc}$$ # # This tutorial notebook is organized as follows # # 1. [Step 1](#initializenrpy): Initialize needed NRPy+ modules # 1. [Step 2](#riemann): Constructing the 3-Riemann tensor $R_{ik\ell m}$ # 1. [Step 3](#rank4termone): Constructing the rank-4 tensor in Term 1 of $\psi_4$: $R_{ijkl} + 2 K_{i[k} K_{l]j}$ # 1. [Step 4](#rank3termtwo): Constructing the rank-3 tensor in Term 2 of $\psi_4$: $-8 \left(K_{j[k,l]} + \Gamma^{p}_{j[k} K_{l]p} \right)$ # 1. [Step 5](#rank2termthree): Constructing the rank-2 tensor in term 3 of $\psi_4$: $+4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right)$ # 1. [Step 6](#psifour): Constructing $\psi_4$ through contractions of the above terms with arbitrary tetrad vectors $n^\mu$ and $m^\mu$ # 1. [Step 7](#code_validation): Code Validation against `BSSN.Psi4` NRPy+ module # 1. [Step 8](#latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF file # # # # Step 1: Initialize core NRPy+ modules \[Back to [top](#toc)\] # $$\label{initializenrpy}$$ # # Let's start by importing all the needed modules from NRPy+: # In[1]: # Step 1.a: import all needed modules from NRPy+: import sympy as sp import NRPy_param_funcs as par import indexedexp as ixp import reference_metric as rfm # Step 1.b: Set the coordinate system for the numerical grid # Note that this parameter is assumed to be set # prior to calling the Python Psi4.py module, # so this Step will not appear there. par.set_parval_from_str("reference_metric::CoordSystem","Spherical") # Step 1.c: Given the chosen coordinate system, set up # corresponding reference metric and needed # reference metric quantities # The following function call sets up the reference metric # and related quantities, including rescaling matrices ReDD, # ReU, and hatted quantities. rfm.reference_metric() # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is # a 3+1-dimensional decomposition of the general # relativistic field equations) DIM = 3 # Step 1.e: Import all ADM quantities as written in terms of BSSN quantities import BSSN.ADM_in_terms_of_BSSN as AB AB.ADM_in_terms_of_BSSN() # Step 1.f: Initialize tetrad vectors. # mre4U = $\text{Re}(m^\mu)$ # mim4U = $\text{Im}(m^\mu)$, and # n4U = $n^\mu$ # Note that in the separate Python Psi4.py # module, these will be set to the tetrad # chosen within the Psi4_tetrads.py module. # We choose the most general form for the # tetrad vectors here instead, to ensure complete # code validation. mre4U = ixp.declarerank1("mre4U",DIM=4) mim4U = ixp.declarerank1("mim4U",DIM=4) n4U = ixp.declarerank1("n4U" ,DIM=4) # # # # Step 2: Constructing the 3-Riemann tensor $R_{ik\ell m}$ \[Back to [top](#toc)\] # $$\label{riemann}$$ # # Analogously to Christoffel symbols, the Riemann tensor is a measure of the curvature of an $N$-dimensional manifold. Thus the 3-Riemann tensor is not simply a projection of the 4-Riemann tensor (see e.g., Eq. 2.7 of [Campanelli *et al* (1998)](https://arxiv.org/pdf/gr-qc/9803058.pdf) for the relation between 4-Riemann and 3-Riemann), as $N$-dimensional Riemann tensors are meant to define a notion of curvature given only the associated $N$-dimensional metric. # # So, given the ADM 3-metric, the Riemann tensor in arbitrary dimension is given by the 3-dimensional version of Eq. 1.19 in Baumgarte & Shapiro's *Numerical Relativity*. I.e., # # $$ # R^i_{jkl} = \partial_k \Gamma^{i}_{jl} - \partial_l \Gamma^{i}_{jk} + \Gamma^i_{mk} \Gamma^m_{jl} - \Gamma^{i}_{ml} \Gamma^{m}_{jk}, # $$ # where $\Gamma^i_{jk}$ is the Christoffel symbol associated with the 3-metric $\gamma_{ij}$: # # $$ # \Gamma^l_{ij} = \frac{1}{2} \gamma^{lk} \left(\gamma_{ki,j} + \gamma_{kj,i} - \gamma_{ij,k} \right) # $$ # # Notice that this equation for the Riemann tensor is equivalent to the equation given in the Wikipedia article on [Formulas in Riemannian geometry](https://en.wikipedia.org/w/index.php?title=List_of_formulas_in_Riemannian_geometry&oldid=882667524): # # $$ # R^\ell{}_{ijk}= # \partial_j \Gamma^\ell{}_{ik}-\partial_k\Gamma^\ell{}_{ij} # +\Gamma^\ell{}_{js}\Gamma_{ik}^s-\Gamma^\ell{}_{ks}\Gamma^s{}_{ij}, # $$ # with the replacements $i\to \ell$, $j\to i$, $k\to j$, $l\to k$, and $s\to m$. Wikipedia also provides a simpler form in terms of second-derivatives of three-metric itself (using the definition of the Christoffel symbol), so that we need not define derivatives of the Christoffel symbol: # # $$ # R_{ik\ell m}=\frac{1}{2}\left( # \gamma_{im,k\ell} # + \gamma_{k\ell,im} # - \gamma_{i\ell,km} # - \gamma_{km,i\ell} \right) # +\gamma_{np} \left( # \Gamma^n{}_{k\ell} \Gamma^p{}_{im} - # \Gamma^n{}_{km} \Gamma^p{}_{i\ell} \right). # $$ # # First, we construct the term on the left: # In[2]: # Step 2: Construct the (rank-4) Riemann curvature tensor associated with the ADM 3-metric: RDDDD = ixp.zerorank4() gammaDDdDD = AB.gammaDDdDD for i in range(DIM): for k in range(DIM): for l in range(DIM): for m in range(DIM): RDDDD[i][k][l][m] = sp.Rational(1,2) * \ (gammaDDdDD[i][m][k][l] + gammaDDdDD[k][l][i][m] - gammaDDdDD[i][l][k][m] - gammaDDdDD[k][m][i][l]) # ... then we add the term on the right: # In[3]: # ... then we add the term on the right: gammaDD = AB.gammaDD GammaUDD = AB.GammaUDD for i in range(DIM): for k in range(DIM): for l in range(DIM): for m in range(DIM): for n in range(DIM): for p in range(DIM): RDDDD[i][k][l][m] += gammaDD[n][p] * \ (GammaUDD[n][k][l]*GammaUDD[p][i][m] - GammaUDD[n][k][m]*GammaUDD[p][i][l]) # # # # Step 3: Constructing the rank-4 tensor in Term 1 of $\psi_4$: $R_{ijkl} + 2 K_{i[k} K_{l]j}$ \[Back to [top](#toc)\] # $$\label{rank4termone}$$ # # Following Eq. 5.1 in [Baker, Campanelli, Lousto (2001)](https://arxiv.org/pdf/gr-qc/0104063.pdf), the rank-4 tensor in the first term of $\psi_4$ is given by # # $$ # R_{ijkl} + 2 K_{i[k} K_{l]j} = R_{ijkl} + K_{ik} K_{lj} - K_{il} K_{kj} # $$ # In[4]: # Step 3: Construct the (rank-4) tensor in term 1 of psi_4 (referring to Eq 5.1 in # Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf rank4term1DDDD = ixp.zerorank4() KDD = AB.KDD for i in range(DIM): for j in range(DIM): for k in range(DIM): for l in range(DIM): rank4term1DDDD[i][j][k][l] = RDDDD[i][j][k][l] + KDD[i][k]*KDD[l][j] - KDD[i][l]*KDD[k][j] # # # # Step 4: Constructing the rank-3 tensor in Term 2 of $\psi_4$: $-8 \left(K_{j[k,l]} + \Gamma^{p}_{j[k} K_{l]p} \right)$ \[Back to [top](#toc)\] # $$\label{rank3termtwo}$$ # # Following Eq. 5.1 in [Baker, Campanelli, Lousto (2001)](https://arxiv.org/pdf/gr-qc/0104063.pdf), the rank-3 tensor in the second term of $\psi_4$ is given by # # $$ # -8 \left(K_{j[k,l]} + \Gamma^{p}_{j[k} K_{l]p} \right) # $$ # First let's construct the first term in this sum: $K_{j[k,l]} = \frac{1}{2} (K_{jk,l} - K_{jl,k})$: # In[5]: # Step 4: Construct the (rank-3) tensor in term 2 of psi_4 (referring to Eq 5.1 in # Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf rank3term2DDD = ixp.zerorank3() KDDdD = AB.KDDdD for j in range(DIM): for k in range(DIM): for l in range(DIM): rank3term2DDD[j][k][l] = sp.Rational(1,2)*(KDDdD[j][k][l] - KDDdD[j][l][k]) # ... then we construct the second term in this sum: $\Gamma^{p}_{j[k} K_{l]p} = \frac{1}{2} (\Gamma^{p}_{jk} K_{lp}-\Gamma^{p}_{jl} K_{kp})$: # In[6]: # ... then we construct the second term in this sum: # \Gamma^{p}_{j[k} K_{l]p} = \frac{1}{2} (\Gamma^{p}_{jk} K_{lp}-\Gamma^{p}_{jl} K_{kp}): for j in range(DIM): for k in range(DIM): for l in range(DIM): for p in range(DIM): rank3term2DDD[j][k][l] += sp.Rational(1,2)*(GammaUDD[p][j][k]*KDD[l][p] - GammaUDD[p][j][l]*KDD[k][p]) # Finally, we multiply the term by $-8$: # In[7]: # Finally, we multiply the term by $-8$: for j in range(DIM): for k in range(DIM): for l in range(DIM): rank3term2DDD[j][k][l] *= sp.sympify(-8) # # # # Step 5: Constructing the rank-2 tensor in term 3 of $\psi_4$: $+4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right)$ \[Back to [top](#toc)\] # $$\label{rank2termthree}$$ # # Following Eq. 5.1 in [Baker, Campanelli, Lousto (2001)](https://arxiv.org/pdf/gr-qc/0104063.pdf), the rank-2 tensor in the third term of $\psi_4$ is given by # # $$ # +4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right), # $$ # where # \begin{align} # R_{jl} &= R^i_{jil} \\ # &= \gamma^{im} R_{ijml} \\ # K &= K^i_i \\ # &= \gamma^{im} K_{im} # \end{align} # # Let's build the components of this term: $R_{jl}$, $K^p_l$, and $K$, as defined above: # In[8]: # Step 5: Construct the (rank-2) tensor in term 3 of psi_4 (referring to Eq 5.1 in # Baker, Campanelli, Lousto (2001); https://arxiv.org/pdf/gr-qc/0104063.pdf # Step 5.1: Construct 3-Ricci tensor R_{ij} = gamma^{im} R_{ijml} RDD = ixp.zerorank2() gammaUU = AB.gammaUU for j in range(DIM): for l in range(DIM): for i in range(DIM): for m in range(DIM): RDD[j][l] += gammaUU[i][m]*RDDDD[i][j][m][l] # Step 5.2: Construct K^p_l = gamma^{pi} K_{il} KUD = ixp.zerorank2() for p in range(DIM): for l in range(DIM): for i in range(DIM): KUD[p][l] += gammaUU[p][i]*KDD[i][l] # Step 5.3: Construct trK = gamma^{ij} K_{ij} trK = sp.sympify(0) for i in range(DIM): for j in range(DIM): trK += gammaUU[i][j]*KDD[i][j] # Next we put these terms together to construct the entire term: # $$ # +4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right), # $$ # In[9]: # Next we put these terms together to construct the entire term in parentheses: # +4 \left(R_{jl} - K_{jp} K^p_l + K K_{jl} \right), rank2term3DD = ixp.zerorank2() for j in range(DIM): for l in range(DIM): rank2term3DD[j][l] = RDD[j][l] + trK*KDD[j][l] for p in range(DIM): rank2term3DD[j][l] += - KDD[j][p]*KUD[p][l] # Finally we multiply by +4: for j in range(DIM): for l in range(DIM): rank2term3DD[j][l] *= sp.sympify(4) # # # # Step 6: Constructing $\psi_4$ through contractions of the above terms with arbitrary tetrad vectors $m^\mu$ and $n^\mu$ \[Back to [top](#toc)\] # $$\label{psifour}$$ # # Eq. 5.1 in [Baker, Campanelli, Lousto (2001)](https://arxiv.org/pdf/gr-qc/0104063.pdf) writes $\psi_4$ (which is complex) as the contraction of each of the above terms with products of tetrad vectors: # # \begin{align} # \psi_4 &= \left[ {R}_{ijkl}+2K_{i[k}K_{l]j}\right] # {n}^i\bar{m}^j{n}^k\bar{m}^l \\ # & -8\left[ K_{j[k,l]}+{\Gamma }_{j[k}^pK_{l]p}\right] # {n}^{[0}\bar{m}^{j]}{n}^k\bar{m}^l \\ # & +4\left[ {R}_{jl}-K_{jp}K_l^p+KK_{jl}\right] # {n}^{[0}\bar{m}^{j]}{n}^{[0}\bar{m}^{l]}, # \end{align} # where $\bar{m}^\mu$ is the complex conjugate of $m^\mu$, and $n^\mu$ is real. The third term is given by # \begin{align} # {n}^{[0}\bar{m}^{j]}{n}^{[0}\bar{m}^{l]} # &= \frac{1}{2}({n}^{0}\bar{m}^{j} - {n}^{j}\bar{m}^{0} )\frac{1}{2}({n}^{0}\bar{m}^{l} - {n}^{l}\bar{m}^{0} )\\ # &= \frac{1}{4}({n}^{0}\bar{m}^{j} - {n}^{j}\bar{m}^{0} )({n}^{0}\bar{m}^{l} - {n}^{l}\bar{m}^{0} )\\ # &= \frac{1}{4}({n}^{0}\bar{m}^{j}{n}^{0}\bar{m}^{l} - {n}^{j}\bar{m}^{0}{n}^{0}\bar{m}^{l} - {n}^{0}\bar{m}^{j}{n}^{l}\bar{m}^{0} + {n}^{j}\bar{m}^{0}{n}^{l}\bar{m}^{0}) # \end{align} # # Only $m^\mu$ is complex, so we can separate the real and imaginary parts of $\psi_4$ by hand, defining $M^\mu$ to now be the real part of $\bar{m}^\mu$ and $\mathcal{M}^\mu$ to be the imaginary part. All of the above products are of the form ${n}^\mu\bar{m}^\nu{n}^\eta\bar{m}^\delta$, so let's evaluate the real and imaginary parts of this product once, for all such terms: # # \begin{align} # {n}^\mu\bar{m}^\nu{n}^\eta\bar{m}^\delta # &= {n}^\mu(M^\nu - i \mathcal{M}^\nu){n}^\eta(M^\delta - i \mathcal{M}^\delta) \\ # &= \left({n}^\mu M^\nu {n}^\eta M^\delta - # {n}^\mu \mathcal{M}^\nu {n}^\eta \mathcal{M}^\delta \right)+ # i \left( # -{n}^\mu M^\nu {n}^\eta \mathcal{M}^\delta # -{n}^\mu \mathcal{M}^\nu {n}^\eta M^\delta # \right) # \end{align} # In[10]: # Step 6: Construct real & imaginary parts of psi_4 # by contracting constituent rank 2, 3, and 4 # tensors with input tetrads mre4U, mim4U, & n4U. def tetrad_product__Real_psi4(n,Mre,Mim, mu,nu,eta,delta): return +n[mu]*Mre[nu]*n[eta]*Mre[delta] - n[mu]*Mim[nu]*n[eta]*Mim[delta] def tetrad_product__Imag_psi4(n,Mre,Mim, mu,nu,eta,delta): return -n[mu]*Mre[nu]*n[eta]*Mim[delta] - n[mu]*Mim[nu]*n[eta]*Mre[delta] # We split psi_4 into three pieces, to expedite & possibly parallelize C code generation. psi4_re_pt = [sp.sympify(0),sp.sympify(0),sp.sympify(0)] psi4_im_pt = [sp.sympify(0),sp.sympify(0),sp.sympify(0)] # First term: for i in range(DIM): for j in range(DIM): for k in range(DIM): for l in range(DIM): psi4_re_pt[0] += rank4term1DDDD[i][j][k][l] * \ tetrad_product__Real_psi4(n4U,mre4U,mim4U, i+1,j+1,k+1,l+1) psi4_im_pt[0] += rank4term1DDDD[i][j][k][l] * \ tetrad_product__Imag_psi4(n4U,mre4U,mim4U, i+1,j+1,k+1,l+1) # Second term: for j in range(DIM): for k in range(DIM): for l in range(DIM): psi4_re_pt[1] += rank3term2DDD[j][k][l] * \ sp.Rational(1,2)*(+tetrad_product__Real_psi4(n4U,mre4U,mim4U, 0,j+1,k+1,l+1) -tetrad_product__Real_psi4(n4U,mre4U,mim4U, j+1,0,k+1,l+1) ) psi4_im_pt[1] += rank3term2DDD[j][k][l] * \ sp.Rational(1,2)*(+tetrad_product__Imag_psi4(n4U,mre4U,mim4U, 0,j+1,k+1,l+1) -tetrad_product__Imag_psi4(n4U,mre4U,mim4U, j+1,0,k+1,l+1) ) # Third term: for j in range(DIM): for l in range(DIM): psi4_re_pt[2] += rank2term3DD[j][l] * \ (sp.Rational(1,4)*(+tetrad_product__Real_psi4(n4U,mre4U,mim4U, 0,j+1,0,l+1) -tetrad_product__Real_psi4(n4U,mre4U,mim4U, j+1,0,0,l+1) -tetrad_product__Real_psi4(n4U,mre4U,mim4U, 0,j+1,l+1,0) +tetrad_product__Real_psi4(n4U,mre4U,mim4U, j+1,0,l+1,0))) psi4_im_pt[2] += rank2term3DD[j][l] * \ (sp.Rational(1,4)*(+tetrad_product__Imag_psi4(n4U,mre4U,mim4U, 0,j+1,0,l+1) -tetrad_product__Imag_psi4(n4U,mre4U,mim4U, j+1,0,0,l+1) -tetrad_product__Imag_psi4(n4U,mre4U,mim4U, 0,j+1,l+1,0) +tetrad_product__Imag_psi4(n4U,mre4U,mim4U, j+1,0,l+1,0))) # # # # Step 7: Code validation against `BSSN.Psi4` NRPy+ module \[Back to [top](#toc)\] # $$\label{code_validation}$$ # # As a code validation check, we verify agreement in the SymPy expressions for the RHSs of the BSSN equations between # 1. this tutorial and # 2. the NRPy+ [BSSN.Psi4](../edit/BSSN/Psi4.py) module. # # By default, we compare all quantities in Spherical coordinates, though other coordinate systems may be chosen. # In[11]: # Call the BSSN_RHSs() function from within the # BSSN/BSSN_RHSs.py module, # which should do exactly the same as in Steps 1-16 above. import BSSN.Psi4 as BP4 BP4.Psi4(specify_tetrad=False) print("Consistency check between this tutorial and BSSN.Psi4 NRPy+ module: ALL SHOULD BE ZERO.") for part in range(3): print("psi4_im_pt["+str(part)+"] - BP4.psi4_im_pt["+str(part)+"] = " + str(psi4_im_pt[part] - BP4.psi4_im_pt[part])) print("psi4_re_pt["+str(part)+"] - BP4.psi4_re_pt["+str(part)+"] = " + str(psi4_re_pt[part] - BP4.psi4_re_pt[part])) # # # # Step 8: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](#toc)\] # $$\label{latex_pdf_output}$$ # # The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename # [Tutorial-Psi4.pdf](Tutorial-Psi4.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) # In[12]: import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-Psi4")