#!/usr/bin/env python # coding: utf-8 # # # # # BSSN Time-Evolution Equations for the Gauge Fields $\alpha$ and $\beta^i$ # # ## Authors: Zach Etienne & Terrence Pierre Jacques # ### Formatting improvements courtesy Brandon Clark # # [comment]: <> (Abstract: TODO, or make the introduction an abstract and addiotnal notes section, and write a new Introduction) # # **Notebook Status:** Validated # # **Validation Notes:** All expressions generated in this module have been validated against a trusted code (the original NRPy+/SENR code, which itself was validated against [Baumgarte's code](https://arxiv.org/abs/1211.6632)). # # ### NRPy+ Source Code for this module: [BSSN/BSSN_gauge_RHSs.py](../edit/BSSN/BSSN_gauge_RHSs.py) # # # ## Introduction: # This tutorial notebook constructs SymPy expressions for the right-hand sides of the time-evolution equations for the gauge fields $\alpha$ (the lapse, governing how much proper time elapses at each point between one timestep in a 3+1 solution to Einstein's equations and the next) and $\beta^i$ (the shift, governing how much proper distance numerical grid points move from one timestep in a 3+1 solution to Einstein's equations and the next). # # Though we are completely free to choose gauge conditions (i.e., free to choose the form of the right-hand sides of the gauge time evolution equations), very few have been found robust in the presence of (puncture) black holes. So we focus here only on a few of the most stable choices. # # # # # # Table of Contents # $$\label{toc}$$ # # This notebook is organized as follows # # 1. [Step 1](#initializenrpy): Initialize needed Python/NRPy+ modules # 1. [Step 2](#lapseconditions): Right-hand side of $\partial_t \alpha$ # 1. [Step 2.a](#onepluslog): $1+\log$ lapse # 1. [Step 2.b](#harmonicslicing): Harmonic slicing # 1. [Step 2.c](#frozen): Frozen lapse # 1. [Step 2.d](#statictrumpet_onepluslog): Alternative 1+log condition for Static Trumpet initial data # 1. [Step 3](#shiftconditions): Right-hand side of $\partial_t \beta^i$: Second-order Gamma-driving shift conditions # 1. [Step 3.a](#origgammadriving): Original, non-covariant Gamma-driving shift condition # 1. [Step 3.b](#covgammadriving): [Brown](https://arxiv.org/abs/0902.3652)'s suggested covariant Gamma-driving shift condition # 1. [Step 3.b.i](#partial_beta): The right-hand side of the $\partial_t \beta^i$ equation # 1. [Step 3.b.ii](#partial_upper_b): The right-hand side of the $\partial_t B^i$ equation # 1. [Step 3.c](#statictrumpet_nonadvecgammadriving): Non-advecting Gamma-driving shift condition (used for evolving "Static Trumpet" initial data) # 1. [Step 4](#rescale): Rescale right-hand sides of BSSN gauge equations # 1. [Step 5](#code_validation): Code Validation against `BSSN.BSSN_gauge_RHSs` NRPy+ module # 1. [Step 6](#latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF file # # # # Step 1: Initialize needed Python/NRPy+ modules \[Back to [top](#toc)\] # $$\label{initializenrpy}$$ # # Let's start by importing all the needed modules from Python/NRPy+: # In[1]: # Step 1: Import all needed modules from NRPy+: import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import NRPy_param_funcs as par # NRPy+: Parameter interface import grid as gri # NRPy+: Functions having to do with numerical grids import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support import reference_metric as rfm # NRPy+: Reference metric support import BSSN.BSSN_quantities as Bq # NRPy+: Computes useful BSSN quantities import BSSN.BSSN_RHSs as Brhs # NRPy+: Constructs BSSN right-hand-side expressions import sys # Standard Python modules for multiplatform OS-level functions # Step 1.c: Declare/initialize parameters for this module thismodule = "BSSN_gauge_RHSs" par.initialize_param(par.glb_param("char", thismodule, "LapseEvolutionOption", "OnePlusLog")) par.initialize_param(par.glb_param("char", thismodule, "ShiftEvolutionOption", "GammaDriving2ndOrder_Covariant")) # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is # a 3+1-dimensional decomposition of the general # relativistic field equations) DIM = 3 # Step 1.e: Given the chosen coordinate system, set up # corresponding reference metric and needed # reference metric quantities # The following function call sets up the reference metric # and related quantities, including rescaling matrices ReDD, # ReU, and hatted quantities. rfm.reference_metric() # Step 1.f: Define BSSN scalars & tensors (in terms of rescaled BSSN quantities) import BSSN.BSSN_quantities as Bq Bq.BSSN_basic_tensors() Bq.betaU_derivs() import BSSN.BSSN_RHSs as Brhs Brhs.BSSN_RHSs() # # # # Step 2: Right-hand side of $\partial_t \alpha$ \[Back to [top](#toc)\] # $$\label{lapseconditions}$$ # # # ## Step 2.a: $1+\log$ lapse \[Back to [top](#toc)\] # $$\label{onepluslog}$$ # # The [$1=\log$ lapse condition](https://arxiv.org/abs/gr-qc/0206072) is a member of the [Bona-Masso family of lapse choices](https://arxiv.org/abs/gr-qc/9412071), which has the desirable property of singularity avoidance. As is common (e.g., see [Campanelli *et al* (2005)](https://arxiv.org/abs/gr-qc/0511048)), we make the replacement $\partial_t \to \partial_0 = \partial_t - \beta^i \partial_i$ to ensure lapse characteristics advect with the shift. The bracketed term in the $1+\log$ lapse condition below encodes the shift advection term: # # \begin{align} # \partial_0 \alpha &= -2 \alpha K \\ # \implies \partial_t \alpha &= \left[\beta^i \partial_i \alpha\right] - 2 \alpha K # \end{align} # In[2]: # Step 2.a: The 1+log lapse condition: # \partial_t \alpha = \beta^i \alpha_{,i} - 2*\alpha*K # First import expressions from BSSN_quantities cf = Bq.cf trK = Bq.trK alpha = Bq.alpha betaU = Bq.betaU # Implement the 1+log lapse condition if par.parval_from_str(thismodule+"::LapseEvolutionOption") == "OnePlusLog": alpha_rhs = -2*alpha*trK alpha_dupD = ixp.declarerank1("alpha_dupD") for i in range(DIM): alpha_rhs += betaU[i]*alpha_dupD[i] # # # ## Step 2.b: Harmonic slicing \[Back to [top](#toc)\] # $$\label{harmonicslicing}$$ # # As defined on Pg 2 of https://arxiv.org/pdf/gr-qc/9902024.pdf , this is given by # # $$ # \partial_t \alpha = \partial_t e^{6 \phi} = 6 e^{6 \phi} \partial_t \phi # $$ # # If # # $$\text{cf} = W = e^{-2 \phi},$$ # # then # # $$ # 6 e^{6 \phi} \partial_t \phi = 6 W^{-3} \partial_t \phi. # $$ # # However, # $$ # \partial_t \phi = -\partial_t \text{cf} / (2 \text{cf})$$ # # (as described above), so if `cf`$=W$, then # \begin{align} # \partial_t \alpha &= 6 e^{6 \phi} \partial_t \phi \\ # &= 6 W^{-3} \left(-\frac{\partial_t W}{2 W}\right) \\ # &= -3 \text{cf}^{-4} \text{cf}\_\text{rhs} # \end{align} # # **Exercise to students: Implement Harmonic slicing for `cf`$=\chi$** # In[3]: # Step 2.b: Implement the harmonic slicing lapse condition if par.parval_from_str(thismodule+"::LapseEvolutionOption") == "HarmonicSlicing": if par.parval_from_str("BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "W": alpha_rhs = -3*cf**(-4)*Brhs.cf_rhs elif par.parval_from_str("BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "phi": alpha_rhs = 6*sp.exp(6*cf)*Brhs.cf_rhs else: print("Error LapseEvolutionOption==HarmonicSlicing unsupported for EvolvedConformalFactor_cf!=(W or phi)") sys.exit(1) # # # ## Step 2.c: Frozen lapse \[Back to [top](#toc)\] # $$\label{frozen}$$ # # This slicing condition is given by # $$\partial_t \alpha = 0,$$ # # which is rarely a stable lapse condition. # In[4]: # Step 2.c: Frozen lapse # \partial_t \alpha = 0 if par.parval_from_str(thismodule+"::LapseEvolutionOption") == "Frozen": alpha_rhs = sp.sympify(0) # # # ## Step 2.d: Alternative $1+\log$ lapse for Static Trumpet initial data \[Back to [top](#toc)\] # $$\label{statictrumpet_onepluslog}$$ # # An alternative to the standard 1+log condition to be used with Static Trumpet initial data, the lapse is evolved according to a # condition consistent with staticity, given by equation 67 in [Ruchlin, Etienne, & Baumgarte (2018)](https://arxiv.org/pdf/1712.07658.pdf) # # \begin{align} # \partial_0 \alpha &= -\alpha(1 - \alpha) K \\ # \implies \partial_t \alpha &= \left[\beta^i \partial_i \alpha\right] -\alpha(1 - \alpha) K # \end{align} # In[5]: # Step 2.d: Alternative 1+log lapse condition: # \partial_t \alpha = \beta^i \alpha_{,i} -\alpha*(1 - \alpha)*K # Implement the alternative 1+log lapse condition if par.parval_from_str(thismodule+"::LapseEvolutionOption") == "OnePlusLogAlt": alpha_rhs = -alpha*(1 - alpha)*trK alpha_dupD = ixp.declarerank1("alpha_dupD") for i in range(DIM): alpha_rhs += betaU[i]*alpha_dupD[i] # # # # Step 3: Right-hand side of $\partial_t \beta^i$: Second-order Gamma-driving shift conditions \[Back to [top](#toc)\] # $$\label{shiftconditions}$$ # # The motivation behind Gamma-driving shift conditions are well documented in the book [*Numerical Relativity* by Baumgarte & Shapiro](https://www.amazon.com/Numerical-Relativity-Einsteins-Equations-Computer/dp/052151407X/). # # # # ## Step 3.a: Original, non-covariant Gamma-driving shift condition \[Back to [top](#toc)\] # $$\label{origgammadriving}$$ # # **Option 1: Non-Covariant, Second-Order Shift** # # We adopt the [*shifting (i.e., advecting) shift*](https://arxiv.org/abs/gr-qc/0605030) non-covariant, second-order shift condition: # \begin{align} # \partial_0 \beta^i &= B^{i} \\ # \partial_0 B^i &= \frac{3}{4} \partial_{0} \bar{\Lambda}^{i} - \eta B^{i} \\ # \implies \partial_t \beta^i &= \left[\beta^j \partial_j \beta^i\right] + B^{i} \\ # \partial_t B^i &= \left[\beta^j \partial_j B^i\right] + \frac{3}{4} \partial_{0} \bar{\Lambda}^{i} - \eta B^{i}, # \end{align} # where $\eta$ is the shift damping parameter, and $\partial_{0} \bar{\Lambda}^{i}$ in the right-hand side of the $\partial_{0} B^{i}$ equation is computed by adding $\beta^j \partial_j \bar{\Lambda}^i$ to the right-hand side expression given for $\partial_t \bar{\Lambda}^i$ in the BSSN time-evolution equations as listed [here](Tutorial-BSSN_formulation.ipynb), so no explicit time dependence occurs in the right-hand sides of the BSSN evolution equations and the Method of Lines can be applied directly. # In[6]: # Step 3.a: Set \partial_t \beta^i # First import expressions from BSSN_quantities BU = Bq.BU betU = Bq.betU betaU_dupD = Bq.betaU_dupD # Define needed quantities beta_rhsU = ixp.zerorank1() B_rhsU = ixp.zerorank1() if par.parval_from_str(thismodule+"::ShiftEvolutionOption") == "GammaDriving2ndOrder_NoCovariant": # Step 3.a.i: Compute right-hand side of beta^i # * \partial_t \beta^i = \beta^j \beta^i_{,j} + B^i for i in range(DIM): beta_rhsU[i] += BU[i] for j in range(DIM): beta_rhsU[i] += betaU[j]*betaU_dupD[i][j] # Compute right-hand side of B^i: eta = par.Cparameters("REAL", thismodule, ["eta"],2.0) # Step 3.a.ii: Compute right-hand side of B^i # * \partial_t B^i = \beta^j B^i_{,j} + 3/4 * \partial_0 \Lambda^i - eta B^i # Step 3.a.iii: Define BU_dupD, in terms of derivative of rescaled variable \bet^i BU_dupD = ixp.zerorank2() betU_dupD = ixp.declarerank2("betU_dupD","nosym") for i in range(DIM): for j in range(DIM): BU_dupD[i][j] = betU_dupD[i][j]*rfm.ReU[i] + betU[i]*rfm.ReUdD[i][j] # Step 3.a.iv: Compute \partial_0 \bar{\Lambda}^i = (\partial_t - \beta^i \partial_i) \bar{\Lambda}^j Lambdabar_partial0 = ixp.zerorank1() for i in range(DIM): Lambdabar_partial0[i] = Brhs.Lambdabar_rhsU[i] for i in range(DIM): for j in range(DIM): Lambdabar_partial0[j] += -betaU[i]*Brhs.LambdabarU_dupD[j][i] # Step 3.a.v: Evaluate RHS of B^i: for i in range(DIM): B_rhsU[i] += sp.Rational(3,4)*Lambdabar_partial0[i] - eta*BU[i] for j in range(DIM): B_rhsU[i] += betaU[j]*BU_dupD[i][j] # # # ## Step 3.b: [Brown](https://arxiv.org/abs/0902.3652)'s suggested covariant Gamma-driving shift condition \[Back to [top](#toc)\] # $$\label{covgammadriving}$$ # # # ### Step 3.b.i: The right-hand side of the $\partial_t \beta^i$ equation \[Back to [top](#toc)\] # $$\label{partial_beta}$$ # # This is [Brown's](https://arxiv.org/abs/0902.3652) suggested formulation (Eq. 20b; note that Eq. 20a is the same as our lapse condition, as $\bar{D}_j \alpha = \partial_j \alpha$ for scalar $\alpha$): # $$\partial_t \beta^i = \left[\beta^j \bar{D}_j \beta^i\right] + B^{i}$$ # Based on the definition of covariant derivative, we have # $$ # \bar{D}_{j} \beta^{i} = \beta^i_{,j} + \bar{\Gamma}^i_{mj} \beta^m, # $$ # so the above equation becomes # \begin{align} # \partial_t \beta^i &= \left[\beta^j \left(\beta^i_{,j} + \bar{\Gamma}^i_{mj} \beta^m\right)\right] + B^{i}\\ # &= {\underbrace {\textstyle \beta^j \beta^i_{,j}}_{\text{Term 1}}} + # {\underbrace {\textstyle \beta^j \bar{\Gamma}^i_{mj} \beta^m}_{\text{Term 2}}} + # {\underbrace {\textstyle B^i}_{\text{Term 3}}} # \end{align} # In[7]: # Step 3.b: The right-hand side of the \partial_t \beta^i equation if par.parval_from_str(thismodule+"::ShiftEvolutionOption") == "GammaDriving2ndOrder_Covariant": # Step 3.b Option 2: \partial_t \beta^i = \left[\beta^j \bar{D}_j \beta^i\right] + B^{i} # First we need GammabarUDD, defined in Bq.gammabar__inverse_and_derivs() Bq.gammabar__inverse_and_derivs() GammabarUDD = Bq.GammabarUDD # Then compute right-hand side: # Term 1: \beta^j \beta^i_{,j} for i in range(DIM): for j in range(DIM): beta_rhsU[i] += betaU[j]*betaU_dupD[i][j] # Term 2: \beta^j \bar{\Gamma}^i_{mj} \beta^m for i in range(DIM): for j in range(DIM): for m in range(DIM): beta_rhsU[i] += betaU[j]*GammabarUDD[i][m][j]*betaU[m] # Term 3: B^i for i in range(DIM): beta_rhsU[i] += BU[i] # # # ### Step 3.b.ii: The right-hand side of the $\partial_t B^i$ equation \[Back to [top](#toc)\] # $$\label{partial_upper_b}$$ # # $$\partial_t B^i = \left[\beta^j \bar{D}_j B^i\right] + \frac{3}{4}\left( \partial_t \bar{\Lambda}^{i} - \beta^j \bar{D}_j \bar{\Lambda}^{i} \right) - \eta B^{i}$$ # # Based on the definition of covariant derivative, we have for vector $V^i$ # $$ # \bar{D}_{j} V^{i} = V^i_{,j} + \bar{\Gamma}^i_{mj} V^m, # $$ # so the above equation becomes # \begin{align} # \partial_t B^i &= \left[\beta^j \left(B^i_{,j} + \bar{\Gamma}^i_{mj} B^m\right)\right] + \frac{3}{4}\left[ \partial_t \bar{\Lambda}^{i} - \beta^j \left(\bar{\Lambda}^i_{,j} + \bar{\Gamma}^i_{mj} \bar{\Lambda}^m\right) \right] - \eta B^{i} \\ # &= {\underbrace {\textstyle \beta^j B^i_{,j}}_{\text{Term 1}}} + # {\underbrace {\textstyle \beta^j \bar{\Gamma}^i_{mj} B^m}_{\text{Term 2}}} + # {\underbrace {\textstyle \frac{3}{4}\partial_t \bar{\Lambda}^{i}}_{\text{Term 3}}} - # {\underbrace {\textstyle \frac{3}{4}\beta^j \bar{\Lambda}^i_{,j}}_{\text{Term 4}}} - # {\underbrace {\textstyle \frac{3}{4}\beta^j \bar{\Gamma}^i_{mj} \bar{\Lambda}^m}_{\text{Term 5}}} - # {\underbrace {\textstyle \eta B^i}_{\text{Term 6}}} # \end{align} # In[8]: if par.parval_from_str(thismodule+"::ShiftEvolutionOption") == "GammaDriving2ndOrder_Covariant": # Step 3.c: Covariant option: # \partial_t B^i = \beta^j \bar{D}_j B^i # + \frac{3}{4} ( \partial_t \bar{\Lambda}^{i} - \beta^j \bar{D}_j \bar{\Lambda}^{i} ) # - \eta B^{i} # = \beta^j B^i_{,j} + \beta^j \bar{\Gamma}^i_{mj} B^m # + \frac{3}{4}[ \partial_t \bar{\Lambda}^{i} # - \beta^j (\bar{\Lambda}^i_{,j} + \bar{\Gamma}^i_{mj} \bar{\Lambda}^m)] # - \eta B^{i} # Term 1, part a: First compute B^i_{,j} using upwinded derivative BU_dupD = ixp.zerorank2() betU_dupD = ixp.declarerank2("betU_dupD","nosym") for i in range(DIM): for j in range(DIM): BU_dupD[i][j] = betU_dupD[i][j]*rfm.ReU[i] + betU[i]*rfm.ReUdD[i][j] # Term 1: \beta^j B^i_{,j} for i in range(DIM): for j in range(DIM): B_rhsU[i] += betaU[j]*BU_dupD[i][j] # Term 2: \beta^j \bar{\Gamma}^i_{mj} B^m for i in range(DIM): for j in range(DIM): for m in range(DIM): B_rhsU[i] += betaU[j]*GammabarUDD[i][m][j]*BU[m] # Term 3: \frac{3}{4}\partial_t \bar{\Lambda}^{i} for i in range(DIM): B_rhsU[i] += sp.Rational(3,4)*Brhs.Lambdabar_rhsU[i] # Term 4: -\frac{3}{4}\beta^j \bar{\Lambda}^i_{,j} for i in range(DIM): for j in range(DIM): B_rhsU[i] += -sp.Rational(3,4)*betaU[j]*Brhs.LambdabarU_dupD[i][j] # Term 5: -\frac{3}{4}\beta^j \bar{\Gamma}^i_{mj} \bar{\Lambda}^m for i in range(DIM): for j in range(DIM): for m in range(DIM): B_rhsU[i] += -sp.Rational(3,4)*betaU[j]*GammabarUDD[i][m][j]*Bq.LambdabarU[m] # Term 6: - \eta B^i # eta is a free parameter; we declare it here: eta = par.Cparameters("REAL", thismodule, ["eta"],2.0) for i in range(DIM): B_rhsU[i] += -eta*BU[i] # # # ## Step 3.c: Non-advecting Gamma-driving shift condition (used for evolving "Static Trumpet" initial data) \[Back to [top](#toc)\] # $$\label{statictrumpet_nonadvecgammadriving}$$ # # # For the shift vector evolution equation, we desire only that the right-hand sides vanish analytically (although numerical error is expected to result in specious evolution). To this end, we adopt the nonadvecting Gamma-driver condition, given by equations 68a and 68b in [Ruchlin, Etienne, & Baumgarte (2018)](https://arxiv.org/pdf/1712.07658.pdf) # # \begin{align} # \partial_t \beta^i &= B^{i} \\ # \partial_t B^i &= \frac{3}{4} \partial_{t} \bar{\Lambda}^{i} - \eta B^{i}, # \end{align} # In[9]: # Step 3.c: Set \partial_t \beta^i if par.parval_from_str(thismodule+"::ShiftEvolutionOption") == "NonAdvectingGammaDriving": # Step 3.c.i: Compute right-hand side of beta^i # * \partial_t \beta^i = B^i for i in range(DIM): beta_rhsU[i] += BU[i] # Compute right-hand side of B^i: eta = par.Cparameters("REAL", thismodule, ["eta"],2.0) # Step 3.c.ii: Compute right-hand side of B^i # * \partial_t B^i = 3/4 * \partial_t \Lambda^i - eta B^i # Step 3.c.iii: Evaluate RHS of B^i: for i in range(DIM): B_rhsU[i] += sp.Rational(3,4)*Brhs.Lambdabar_rhsU[i] - eta*BU[i] # # # # Step 4: Rescale right-hand sides of BSSN gauge equations \[Back to [top](#toc)\] # $$\label{rescale}$$ # # Next we rescale the right-hand sides of the BSSN equations so that the evolved variables are $\left\{h_{i j},a_{i j},\text{cf}, K, \lambda^{i}, \alpha, \mathcal{V}^i, \mathcal{B}^i\right\}$ # In[10]: # Step 4: Rescale the BSSN gauge RHS quantities so that the evolved # variables may remain smooth across coord singularities vet_rhsU = ixp.zerorank1() bet_rhsU = ixp.zerorank1() for i in range(DIM): vet_rhsU[i] = beta_rhsU[i] / rfm.ReU[i] bet_rhsU[i] = B_rhsU[i] / rfm.ReU[i] #print(str(Abar_rhsDD[2][2]).replace("**","^").replace("_","").replace("xx","x").replace("sin(x2)","Sin[x2]").replace("sin(2*x2)","Sin[2*x2]").replace("cos(x2)","Cos[x2]").replace("detgbaroverdetghat","detg")) #print(str(Dbarbetacontraction).replace("**","^").replace("_","").replace("xx","x").replace("sin(x2)","Sin[x2]").replace("detgbaroverdetghat","detg")) #print(betaU_dD) #print(str(trK_rhs).replace("xx2","xx3").replace("xx1","xx2").replace("xx0","xx1").replace("**","^").replace("_","").replace("sin(xx2)","Sinx2").replace("xx","x").replace("sin(2*x2)","Sin2x2").replace("cos(x2)","Cosx2").replace("detgbaroverdetghat","detg")) #print(str(bet_rhsU[0]).replace("xx2","xx3").replace("xx1","xx2").replace("xx0","xx1").replace("**","^").replace("_","").replace("sin(xx2)","Sinx2").replace("xx","x").replace("sin(2*x2)","Sin2x2").replace("cos(x2)","Cosx2").replace("detgbaroverdetghat","detg")) # # # # Step 5: Code Validation against `BSSN.BSSN_gauge_RHSs` NRPy+ module \[Back to [top](#toc)\] # $$\label{code_validation}$$ # # Here, as a code validation check, we verify agreement in the SymPy expressions for the RHSs of the BSSN gauge equations between # # 1. this tutorial and # 2. the NRPy+ [BSSN.BSSN_gauge_RHSs](../edit/BSSN/BSSN_gauge_RHSs.py) module. # # By default, we analyze the RHSs in Spherical coordinates and with the covariant Gamma-driving second-order shift condition, though other coordinate systems & gauge conditions may be chosen. # In[11]: # Step 5: We already have SymPy expressions for BSSN gauge RHS expressions # in terms of other SymPy variables. Even if we reset the # list of NRPy+ gridfunctions, these *SymPy* expressions for # BSSN RHS variables *will remain unaffected*. # # Here, we will use the above-defined BSSN gauge RHS expressions # to validate against the same expressions in the # BSSN/BSSN_gauge_RHSs.py file, to ensure consistency between # this tutorial and the module itself. # # Reset the list of gridfunctions, as registering a gridfunction # twice will spawn an error. gri.glb_gridfcs_list = [] # Step 5.a: Call the BSSN_gauge_RHSs() function from within the # BSSN/BSSN_gauge_RHSs.py module, # which should generate exactly the same expressions as above. import BSSN.BSSN_gauge_RHSs as Bgrhs par.set_parval_from_str("BSSN.BSSN_gauge_RHSs::ShiftEvolutionOption","GammaDriving2ndOrder_Covariant") Bgrhs.BSSN_gauge_RHSs() print("Consistency check between BSSN.BSSN_gauge_RHSs tutorial and NRPy+ module: ALL SHOULD BE ZERO.") print("alpha_rhs - bssnrhs.alpha_rhs = " + str(alpha_rhs - Bgrhs.alpha_rhs)) for i in range(DIM): print("vet_rhsU["+str(i)+"] - bssnrhs.vet_rhsU["+str(i)+"] = " + str(vet_rhsU[i] - Bgrhs.vet_rhsU[i])) print("bet_rhsU["+str(i)+"] - bssnrhs.bet_rhsU["+str(i)+"] = " + str(bet_rhsU[i] - Bgrhs.bet_rhsU[i])) # # # # Step 6: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](#toc)\] # $$\label{latex_pdf_output}$$ # # The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename # [Tutorial-BSSN_time_evolution-BSSN_gauge_RHSs.pdf](Tutorial-BSSN_time_evolution-BSSN_gauge_RHSs.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) # In[12]: import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-BSSN_time_evolution-BSSN_gauge_RHSs")