#!/usr/bin/env python # coding: utf-8 # # The $z$-Transform # # *This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Comunications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).* # ## Summary of Properties, Theorems and Transforms # # The [properties](properties.ipynb), [theorems](theorems.ipynb) and transforms of the two-sided $z$-transform as derived in the previous sections are summarized in the following. The corresponding tables serve as a reference for the application of the $z$-transform in the theory of signals and systems. Please refer to the respective sections for details. # ### Definition # # The $z$-transform and its inverse are defined as # # \begin{align} # X(z) &= \sum_{k = -\infty}^{\infty} x[k] \, z^{-k} \\ # x[k] &= \frac{1}{2 \pi j} \oint_{C} X(z) \, z^{k - 1} \; dz # \end{align} # # where $z \in \text{ROC} \{ x[k] \}$. # ### Properties and Theorems # # The properties and theorems of the two-sided $z$-transform are given as # # |  | $x[k]$ | $X(z) = \mathcal{Z} \{ x[k] \}$ | ROC | # |:---|:---:|:---:|:---| # | [Linearity](properties.ipynb#Linearity) | $A \, x_1[k] + B \, x_2[k]$ | $A \, X_1(z) + B \, X_2(z)$ | $\supseteq \text{ROC}\{x_1[k]\} \cap \text{ROC}\{x_2[k]\}$ | # | [Conjugation](properties.ipynb#Symmetry-for-Real-Valued-Signals) | $x^*[k]$ | $X^*(z^*)$ | $\text{ROC}\{ x[k] \}$ | # | [Real-valued signal](properties.ipynb#Symmetry-for-Real-Valued-Signals) | $x[k] = x^*[k]$ | $X(z) = X^*(z^*)$ | | # | [Linear Convolution](theorems.ipynb#Convolution-Theorem) | $x[k] * h[k]$ | $X(z) \cdot H(z)$ | $\supseteq \text{ROC}\{x[k]\} \cap \text{ROC}\{h[k]\}$ | # | [Shift](theorems.ipynb#Shift-Theorem) | $x[k - \kappa]$ | $z^{- \kappa} \cdot X(z)$ | $\supseteq \text{ROC}\{x[k]\} \setminus \{0, \infty \}$ | # | [Modulation](theorems.ipynb#Modulation-Theorem) | $z_0^k \cdot x[k]$ | $X\left( \frac{z}{z_0} \right)$ | $\{z: \frac{z}{z_0} \in \text{ROC} \{ x[k] \} \}$ | # | [Reversal](theorems.ipynb#Reversal) | $x[-k]$ | $X \left( \frac{1}{z} \right)$ | $\{z: \frac{1}{z} \in \text{ROC} \{ x[k] \} \}$ | # # where $A, B, z_0 \in \mathbb{C}$ and $\kappa \in \mathbb{Z}$ # ### Selected Transforms # # Two-sided $z$-transforms which are frequently used are given as # # | $x[k]$ | $X(z) = \mathcal{Z} \{ x[k] \}$ | ROC | # |:---:|:---:|:---| # | $\delta[k]$ | $1$ | $\mathbb{C}$ | # | $\epsilon[k]$ | $\frac{z}{z-1}$ | $|z| > 1$ | # | $k \epsilon[k]$ | $\frac{z}{(z-1)^2}$ | $|z| > 1$ | # | $z_0^{k} \epsilon[k]$ | $\frac{z}{z - z_0}$ | $|z| > |z_0|$ | # | $-z_0^{k} \epsilon[-k-1]$ | $\frac{z}{z - z_0}$ | $|z| < |z_0|$ | # | $\sin(\Omega_0 k) \epsilon[k]$ | $\frac{z \sin(\Omega_0)}{z^2 - 2 z \cos(\Omega_0) + 1}$ | $|z| > 1$ | # | $\cos(\Omega_0 k) \epsilon[k]$ | $\frac{z ( z - \cos(\Omega_0))}{z^2 - 2 z \cos(\Omega_0) + 1}$ | $|z| > 1$ | # # where $z_0 \in \mathbb{C}$, $\Omega_0 \in \mathbb{R}$ and $n \in \mathbb{N}$. More one- and two-sided transforms may be found in the literature or [online](https://en.wikipedia.org/wiki/Z-transform#Table_of_common_Z-transform_pairs). # **Copyright** # # This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Continuous- and Discrete-Time Signals and Systems - Theory and Computational Examples*.