#!/usr/bin/env python # coding: utf-8 # # Counting indecomposable representations # Given a quiver $Q$, we can compute its (absolutely) indecomposable representations over a finite field using the Hua formula. We use its formulation from [arXiv:math/0608321](https://arxiv.org/abs/math/0608321). # # For any $d\in\Gamma^+=\mathbb N^{Q_0}$, we define its multi-partition to be a finite sequence of (nonzero) vectors $\lambda=(\lambda_1,\dots,\lambda_m)$ in $\Gamma^+$ such that $\lambda_1\ge\lambda_2\ge\dots\ge\lambda_m$ (meaning that $\lambda_k-\lambda_{k+1}\in\Gamma^+$) and $|\lambda|=\sum_k\lambda_k=d$. # Define # $$R_\lambda(q)=\prod_{k=1}^m\frac{q^{-\chi(\lambda_k,\lambda_k)}}{(q^{-1})_{\lambda_k-\lambda_{k+1}}},$$ # where $(q)_d=\prod_{i}(q)_{d_i}$ for $d\in\Gamma^+$ and $(q)_n=(1-q)\dots(1-q^n)$ for $n\in\mathbb N$. # Then the polynomials $A_d(q)$ counting absolutely indecomposable quiver representations having dimension vector $d$ are given by the formula # $$\sum_d A_d(q)x^d=(q-1)Log\left(\sum_{\lambda}R_\lambda(q)x^{|\lambda|}\right),$$ # where $Log$ is the plethystic logarithm. We use polynomials in $q=y^2$. # In[1]: import os, sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) from msinvar import * from msinvar.indecomposable import hua_formula set_plots() # In[2]: Q=JordanQuiver(1); show(Q) Q.prec([3]) hua_formula(Q).dict() # In[3]: Q=Quiver('1-2'); show(Q) Q.prec([3,3]) hua_formula(Q).dict() # In[4]: Q=KroneckerQuiver(2); show(Q) Q.prec([3,3]) hua_formula(Q).dict() # In[5]: Q=KroneckerQuiver(2); show(Q) Q.prec([3,3]) hua_formula(Q).dict() # In[6]: Q=CyclicQuiver(3); show(Q) Q.prec([3,3,3]) hua_formula(Q).dict() # In[ ]: