#!/usr/bin/env python # coding: utf-8 # # 3+1 Einstein equations in the $\delta=2$ Tomimatsu-Sato spacetime # # This worksheet demonstrates a few capabilities of SageMath in computations regarding the 3+1 slicing of the $\delta=2$ Tomimatsu-Sato spacetime. The corresponding tools have been developed within the [SageManifolds](http://sagemanifolds.obspm.fr) project (version 1.1, as included in SageMath 8.1). # # Click [here](https://raw.githubusercontent.com/sagemanifolds/SageManifolds/master/Worksheets/v1.1/SM_Tomimatsu-Sato_3p1.ipynb) to download the worksheet file (ipynb format). To run it, you must start SageMath with the Jupyter notebook, via the command `sage -n jupyter` # *NB:* a version of SageMath at least equal to 7.5 is required to run this worksheet: # In[1]: version() # First we set up the notebook to display mathematical objects using LaTeX rendering: # In[2]: get_ipython().run_line_magic('display', 'latex') # Since some computations are quite long, we ask for running them in parallel on 8 cores: # In[3]: Parallelism().set(nproc=8) #

Tomimatsu-Sato spacetime

#

The Tomimatsu-Sato solution is an exact stationary and axisymmetric solution of the vaccum Einstein equation, which is asymptotically flat and has a non-zero angular momentum. It has been found in 1972 by A. Tomimatsu and H. Sato [Phys. Rev. Lett. 29, 1344 (1972)], as a solution of the Ernst equation. It is actually the member $\delta=2$ of a larger family of solutions parametrized by a positive integer $\delta$ and exhibited by Tomimatsu and Sato in 1973 [Prog. Theor. Phys. 50, 95 (1973)], the member $\delta=1$ being nothing but the Kerr metric. We refer to [Manko, Prog. Theor. Phys. 127, 1057 (2012)] for a discussion of the properties of this solution.

#

Spacelike hypersurface

#

We consider some hypersurface $\Sigma$ of a spacelike foliation $(\Sigma_t)_{t\in\mathbb{R}}$ of $\delta=2$ Tomimatsu-Sato spacetime; we declare $\Sigma_t$ as a 3-dimensional manifold:

# In[4]: Sig = Manifold(3, 'Sigma', r'\Sigma', start_index=1) #

On $\Sigma$, we consider the prolate spheroidal coordinates $(x,y,\phi)$, with $x\in(1,+\infty)$, $y\in(-1,1)$ and $\phi\in(0,2\pi)$ :

# In[5]: X. = Sig.chart(r'x:(1,+oo) y:(-1,1) ph:(0,2*pi):\phi') print(X) ; X #

Riemannian metric on $\Sigma$

#

The Tomimatsu-Sato metric depens on three parameters: the integer $\delta$, the real number $p\in[0,1]$, and the total mass $m$:

# In[6]: var('d, p, m') assume(m>0) assumptions() #

We set $\delta=2$ and choose a specific value for $p=1/5$:

# In[7]: d = 2 p = 1/5 #

Furthermore, without any loss of generality, we may set $m=1$ (this simply fixes some length scale):

# In[8]: m = 1 #

The parameter $q$ is related to $p$ by $p^2+q^2=1$:

# In[9]: q = sqrt(1-p^2) #

Some shortcut notations:

# In[10]: AA2 = (p^2*(x^2-1)^2+q^2*(1-y^2)^2)^2 \ - 4*p^2*q^2*(x^2-1)*(1-y^2)*(x^2-y^2)^2 BB2 = (p^2*x^4+2*p*x^3-2*p*x+q^2*y^4-1)^2 \ + 4*q^2*y^2*(p*x^3-p*x*y^2-y^2+1)^2 CC2 = p^3*x*(1-x^2)*(2*(x^4-1)+(x^2+3)*(1-y^2)) \ + p^2*(x^2-1)*((x^2-1)*(1-y^2)-4*x^2*(x^2-y^2)) \ + q^2*(1-y^2)^3*(p*x+1) #

The Riemannian metric $\gamma$ induced by the spacetime metric $g$ on $\Sigma$:

# In[11]: gam = Sig.riemannian_metric('gam', latex_name=r'\gamma') gam[1,1] = m^2*BB2/(p^2*d^2*(x^2-1)*(x^2-y^2)^3) gam[2,2] = m^2*BB2/(p^2*d^2*(y^2-1)*(-x^2+y^2)^3) gam[3,3] = - m^2*(y^2-1)*(p^2*BB2^2*(x^2-1) + 4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2) gam.display() # A view of the non-vanishing components of $\gamma$ w.r.t. coordinates $(x,y,\phi)$: # In[12]: gam.display_comp() #

Lapse function and shift vector

# In[13]: N2 = AA2/BB2 - 2*m*q*CC2*(y^2-1)/BB2*(2*m*q*CC2*(y^2-1) /(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1) +4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)))) N2.simplify_full() # In[14]: N = Sig.scalar_field(sqrt(N2.simplify_full()), name='N') print(N) N.display() # The coordinate expression of the scalar field $N$: # In[15]: N.expr() # In[16]: b3 = 2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1) +4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2))) b = Sig.vector_field('beta', latex_name=r'\beta') b[3] = b3.simplify_full() # unset components are zero b.display_comp(only_nonzero=False) #

Extrinsic curvature of $\Sigma$

#

We use the formula $$ K_{ij} = \frac{1}{2N} \mathcal{L}_{\beta} \gamma_{ij}, $$ which is valid for any stationary spacetime:

# In[17]: K = gam.lie_derivative(b) / (2*N) K.set_name('K') print(K) #

The component $K_{13} = K_{x\phi}$:

# In[18]: K[1,3] #

The type-(1,1) tensor $K^\sharp$ of components $K^i_{\ \, j} = \gamma^{ik} K_{kj}$:

# In[19]: Ku = K.up(gam, 0) print(Ku) #

We may check that the hypersurface $\Sigma$ is maximal, i.e. that $K^k_{\ \, k} = 0$:

# In[20]: trK = Ku.trace() trK #

Connection and curvature

#

Let us call $D$ the Levi-Civita connection associated with $\gamma$:

# In[21]: D = gam.connection(name='D') print(D) #

The Ricci tensor associated with $\gamma$:

# In[22]: Ric = gam.ricci() print(Ric) #

The scalar curvature $R = \gamma^{ij} R_{ij}$:

# In[23]: R = gam.ricci_scalar(name='R') print(R) # The coordinate expression of the Ricci scalar is huge: # In[24]: R.expr() #

3+1 Einstein equations

#

Let us check that the vacuum 3+1 Einstein equations are satisfied.

#

We start by the constraint equations:

#

Hamiltonian constraint

#

Let us first evaluate the term $K_{ij} K^{ij}$:

# In[25]: Kuu = Ku.up(gam, 1) trKK = K['_ij']*Kuu['^ij'] print(trKK) #

The vacuum Hamiltonian constraint equation is $$R + K^2 -K_{ij} K^{ij} = 0 $$

# In[26]: Ham = R + trK^2 - trKK print(Ham) Ham.display() #

Hence the Hamiltonian constraint is satisfied.

# #

Momentum constraint

#

In vaccum, the momentum constraint is $$ D_j K^j_{\ \, i} - D_i K = 0 $$

# In[27]: mom = D(Ku).trace(0,2) - D(trK) print(mom) mom.display() #

Hence the momentum constraint is satisfied.

# #

Dynamical Einstein equations

#

Let us first evaluate the symmetric bilinear form $k_{ij} := K_{ik} K^k_{\ \, j}$:

# In[28]: KK = K['_ik']*Ku['^k_j'] print(KK) # In[29]: KK1 = KK.symmetrize() KK == KK1 # In[30]: KK = KK1 print(KK) #

In vacuum and for stationary spacetimes, the dynamical Einstein equations are $$ \mathcal{L}_\beta K_{ij} - D_i D_j N + N \left( R_{ij} + K K_{ij} - 2 K_{ik} K^k_{\ \, j}\right) = 0 $$

# In[31]: dyn = K.lie_derivative(b) - D(D(N)) + N*( Ric + trK*K - 2*KK ) print(dyn) dyn.display() #

Hence the dynamical Einstein equations are satisfied.

# #

Finally we have checked that all the 3+1 Einstein equations are satisfied by the $\delta=2$ Tomimatsu-Sato solution.