#!/usr/bin/env python # coding: utf-8 # # 5D Kerr-AdS spacetime: general solution with 2 angular momenta # *NB:* a version of SageMath at least equal to 7.5 is required to run this worksheet: # In[1]: version() # First we set up the notebook to display mathematical objects using LaTeX rendering: # In[2]: get_ipython().run_line_magic('display', 'latex') # We also define a viewer for 3D plots (use `'threejs'` or `'jmol'` for interactive 3D graphics): # In[3]: viewer3D = 'threejs' # must be 'threejs', jmol', 'tachyon' or None (default) # Since some computations are quite long, we ask for running them in parallel on 8 cores: # In[4]: Parallelism().set(nproc=8) # ## Spacetime manifold # # We declare the Kerr-AdS spacetime as a 5-dimensional diffentiable manifold: # In[5]: M = Manifold(5, 'M', r'\mathcal{M}') print(M) # Let us define **Boyer-Lindquist-type coordinates (rational polynomial version)** on $\mathcal{M}$, via the method `chart()`, the argument of which is a string expressing the coordinates names, their ranges (the default is $(-\infty,+\infty)$) and their LaTeX symbols: # In[6]: BL. = M.chart(r't r:(0,+oo) mu:(-1,1):\mu ph:(0,2*pi):\phi ps:(0,2*pi):\psi') BL # Note that $\mu$ is related to the standard Boyer-Lindquist coordinate $\theta$ by # $$ \mu = \cos\theta$$ # ## Metric tensor # # The 4 parameters $m$, $a$, $b$ and $\ell$ of the Kerr-AdS spacetime are declared as symbolic variables, $a$ and $b$ being the two angular momentum parameters and $\ell$ being related to the cosmological constant by $\Lambda = - 6 \ell^2$: # In[7]: var('m a b', domain='real') # In[8]: var('l', domain='real', latex_name=r'\ell') # In[9]: # Particular cases # a = 0 # m = 0 # b = a # Some auxiliary functions: # In[10]: sig = (1+r^2*l^2)/r^2 Delta = (r^2+a^2)*(r^2+b^2)*sig - 2*m sinth2 = 1-mu^2 Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 rho2 = r^2 + a^2*mu^2 + b^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2 # The metric is set by its components in the coordinate frame associated with the Boyer-Lindquist-type coordinates, which is the current manifold's default frame. These components are given by # Eq. (5.22) of the article [S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D **59**, 064005 (1999)](https://doi.org/10.1103/PhysRevD.59.064005): # In[11]: g = M.lorentzian_metric('g') tmp = 1/rho2*( -Delta + Delta_th*(a^2*sinth2 + b^2*mu^2) + a^2*b^2*sig ) g[0,0] = tmp.simplify_full() tmp = a*sinth2/(rho2*Xi_a)*( Delta - (r^2+a^2)*(Delta_th + b^2*sig) ) g[0,3] = tmp.simplify_full() tmp = b*mu^2/(rho2*Xi_b)*( Delta - (r^2+b^2)*(Delta_th + a^2*sig) ) g[0,4] = tmp.simplify_full() g[1,1] = (rho2/Delta).simplify_full() g[2,2] = (rho2/Delta_th/(1-mu^2)).simplify_full() tmp = sinth2/(rho2*Xi_a^2)*( - Delta*a^2*sinth2 + (r^2+a^2)^2*(Delta_th + sig*b^2*sinth2) ) g[3,3] = tmp.simplify_full() tmp = a*b*sinth2*mu^2/(rho2*Xi_a*Xi_b)*( - Delta + sig*(r^2+a^2)*(r^2+b^2) ) g[3,4] = tmp.simplify_full() tmp = mu^2/(rho2*Xi_b^2)*( - Delta*b^2*mu^2 + (r^2+b^2)^2*(Delta_th + sig*a^2*mu^2) ) g[4,4] = tmp.simplify_full() g.display() # In[12]: g.display_comp(only_nonredundant=True) # ## Einstein equation # # The Ricci tensor of $g$ is # In[13]: Ric = g.ricci() print(Ric) # In[14]: Ric.display_comp(only_nonredundant=True) # Let us check that $g$ is a solution of the vacuum Einstein equation with the cosmological constant $\Lambda = - 6 \ell^2$: # In[15]: Lambda = -6*l^2 Ric == 2/3*Lambda*g # In[ ]: