#!/usr/bin/env python # coding: utf-8 # # Comparison of Batch, Mini-Batch and Stochastic Gradient Descent # This notebook displays an animation comparing Batch, Mini-Batch and Stochastic Gradient Descent (introduced in Chapter 4). Thanks to [Daniel Ingram](https://github.com/daniel-s-ingram) who contributed this notebook. # # # #
# Open In Colab # # #
# In[1]: import numpy as np get_ipython().run_line_magic('matplotlib', 'nbagg') import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # In[2]: m = 100 X = 2*np.random.rand(m, 1) X_b = np.c_[np.ones((m, 1)), X] y = 4 + 3*X + np.random.rand(m, 1) # In[3]: def batch_gradient_descent(): n_iterations = 1000 learning_rate = 0.05 thetas = np.random.randn(2, 1) thetas_path = [thetas] for i in range(n_iterations): gradients = 2*X_b.T.dot(X_b.dot(thetas) - y)/m thetas = thetas - learning_rate*gradients thetas_path.append(thetas) return thetas_path # In[4]: def stochastic_gradient_descent(): n_epochs = 50 t0, t1 = 5, 50 thetas = np.random.randn(2, 1) thetas_path = [thetas] for epoch in range(n_epochs): for i in range(m): random_index = np.random.randint(m) xi = X_b[random_index:random_index+1] yi = y[random_index:random_index+1] gradients = 2*xi.T.dot(xi.dot(thetas) - yi) eta = learning_schedule(epoch*m + i, t0, t1) thetas = thetas - eta*gradients thetas_path.append(thetas) return thetas_path # In[5]: def mini_batch_gradient_descent(): n_iterations = 50 minibatch_size = 20 t0, t1 = 200, 1000 thetas = np.random.randn(2, 1) thetas_path = [thetas] t = 0 for epoch in range(n_iterations): shuffled_indices = np.random.permutation(m) X_b_shuffled = X_b[shuffled_indices] y_shuffled = y[shuffled_indices] for i in range(0, m, minibatch_size): t += 1 xi = X_b_shuffled[i:i+minibatch_size] yi = y_shuffled[i:i+minibatch_size] gradients = 2*xi.T.dot(xi.dot(thetas) - yi)/minibatch_size eta = learning_schedule(t, t0, t1) thetas = thetas - eta*gradients thetas_path.append(thetas) return thetas_path # In[6]: def compute_mse(theta): return np.sum((np.dot(X_b, theta) - y)**2)/m # In[7]: def learning_schedule(t, t0, t1): return t0/(t+t1) # In[8]: theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1)) r, c = theta0.shape cost_map = np.array([[0 for _ in range(c)] for _ in range(r)]) for i in range(r): for j in range(c): theta = np.array([theta0[i,j], theta1[i,j]]) cost_map[i,j] = compute_mse(theta) # In[9]: exact_solution = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y) bgd_thetas = np.array(batch_gradient_descent()) sgd_thetas = np.array(stochastic_gradient_descent()) mbgd_thetas = np.array(mini_batch_gradient_descent()) # In[10]: bgd_len = len(bgd_thetas) sgd_len = len(sgd_thetas) mbgd_len = len(mbgd_thetas) n_iter = min(bgd_len, sgd_len, mbgd_len) # In[11]: fig = plt.figure(figsize=(10, 5)) data_ax = fig.add_subplot(121) cost_ax = fig.add_subplot(122) cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*') cost_img = cost_ax.pcolor(theta0, theta1, cost_map) fig.colorbar(cost_img) # In[12]: def animate(i): data_ax.cla() cost_ax.cla() data_ax.plot(X, y, 'k.') cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*') cost_ax.pcolor(theta0, theta1, cost_map) data_ax.plot(X, X_b.dot(bgd_thetas[i,:]), 'r-') cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--') data_ax.plot(X, X_b.dot(sgd_thetas[i,:]), 'g-') cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--') data_ax.plot(X, X_b.dot(mbgd_thetas[i,:]), 'b-') cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--') data_ax.set_xlim([0, 2]) data_ax.set_ylim([0, 15]) cost_ax.set_xlim([0, 5]) cost_ax.set_ylim([0, 5]) data_ax.set_xlabel(r'$x_1$') data_ax.set_ylabel(r'$y$', rotation=0) cost_ax.set_xlabel(r'$\theta_0$') cost_ax.set_ylabel(r'$\theta_1$') data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'), loc="upper left") cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'), loc="upper left") # In[13]: animation = FuncAnimation(fig, animate, frames=n_iter) plt.show() # In[ ]: