#!/usr/bin/env python # coding: utf-8 # Deep Learning Models -- A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks. # - Author: Sebastian Raschka # - GitHub Repository: https://github.com/rasbt/deeplearning-models # In[1]: get_ipython().run_line_magic('load_ext', 'watermark') get_ipython().run_line_magic('watermark', "-a 'Sebastian Raschka' -v -p torch") # - Runs on CPU or GPU (if available) # # Model Zoo -- Convolutional Neural Network # ## Imports # In[2]: import time import numpy as np import torch import torch.nn.functional as F from torchvision import datasets from torchvision import transforms from torch.utils.data import DataLoader if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True # ## Settings and Dataset # In[3]: ########################## ### SETTINGS ########################## # Device device = torch.device("cuda:3" if torch.cuda.is_available() else "cpu") # Hyperparameters random_seed = 1 learning_rate = 0.05 num_epochs = 10 batch_size = 128 # Architecture num_classes = 10 ########################## ### MNIST DATASET ########################## # Note transforms.ToTensor() scales input images # to 0-1 range train_dataset = datasets.MNIST(root='data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transforms.ToTensor()) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Checking the dataset for images, labels in train_loader: print('Image batch dimensions:', images.shape) print('Image label dimensions:', labels.shape) break # ## Model # In[4]: ########################## ### MODEL ########################## class ConvNet(torch.nn.Module): def __init__(self, num_classes): super(ConvNet, self).__init__() # calculate same padding: # (w - k + 2*p)/s + 1 = o # => p = (s(o-1) - w + k)/2 # 28x28x1 => 28x28x8 self.conv_1 = torch.nn.Conv2d(in_channels=1, out_channels=8, kernel_size=(3, 3), stride=(1, 1), padding=1) # (1(28-1) - 28 + 3) / 2 = 1 # 28x28x8 => 14x14x8 self.pool_1 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0) # (2(14-1) - 28 + 2) = 0 # 14x14x8 => 14x14x16 self.conv_2 = torch.nn.Conv2d(in_channels=8, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=1) # (1(14-1) - 14 + 3) / 2 = 1 # 14x14x16 => 7x7x16 self.pool_2 = torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0) # (2(7-1) - 14 + 2) = 0 self.linear_1 = torch.nn.Linear(7*7*16, num_classes) # optionally initialize weights from Gaussian; # Guassian weight init is not recommended and only for demonstration purposes for m in self.modules(): if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear): m.weight.data.normal_(0.0, 0.01) m.bias.data.zero_() if m.bias is not None: m.bias.detach().zero_() def forward(self, x): out = self.conv_1(x) out = F.relu(out) out = self.pool_1(out) out = self.conv_2(out) out = F.relu(out) out = self.pool_2(out) logits = self.linear_1(out.view(-1, 7*7*16)) probas = F.softmax(logits, dim=1) return logits, probas torch.manual_seed(random_seed) model = ConvNet(num_classes=num_classes) model = model.to(device) optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # ## Training # In[5]: def compute_accuracy(model, data_loader): correct_pred, num_examples = 0, 0 for features, targets in data_loader: features = features.to(device) targets = targets.to(device) logits, probas = model(features) _, predicted_labels = torch.max(probas, 1) num_examples += targets.size(0) correct_pred += (predicted_labels == targets).sum() return correct_pred.float()/num_examples * 100 start_time = time.time() for epoch in range(num_epochs): model = model.train() for batch_idx, (features, targets) in enumerate(train_loader): features = features.to(device) targets = targets.to(device) ### FORWARD AND BACK PROP logits, probas = model(features) cost = F.cross_entropy(logits, targets) optimizer.zero_grad() cost.backward() ### UPDATE MODEL PARAMETERS optimizer.step() ### LOGGING if not batch_idx % 50: print ('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f' %(epoch+1, num_epochs, batch_idx, len(train_loader), cost)) model = model.eval() print('Epoch: %03d/%03d training accuracy: %.2f%%' % ( epoch+1, num_epochs, compute_accuracy(model, train_loader))) print('Time elapsed: %.2f min' % ((time.time() - start_time)/60)) print('Total Training Time: %.2f min' % ((time.time() - start_time)/60)) # ## Evaluation # In[6]: with torch.set_grad_enabled(False): # save memory during inference print('Test accuracy: %.2f%%' % (compute_accuracy(model, test_loader))) # In[7]: get_ipython().run_line_magic('watermark', '-iv')