#!/usr/bin/env python # coding: utf-8 # In[ ]: #%% """File 01logitBis.py :author: Michel Bierlaire, EPFL :date: Thu Sep 6 15:14:39 2018 Example of a logit model. Same as 01logit, using bioLinearUtility, and introducing some options and features. Three alternatives: Train, Car and Swissmetro SP data """ import pandas as pd import biogeme.biogeme as bio import biogeme.database as db import biogeme.models as models import biogeme.optimization as opt import biogeme.messaging as msg from biogeme.expressions import Beta, DefineVariable, bioLinearUtility # Read the data df = pd.read_csv('swissmetro.dat', '\t') database = db.Database('swissmetro', df) # The Pandas data structure is available as database.data. Use all the # Pandas functions to investigate the database. For example: #print(database.data.describe()) # The following statement allows you to use the names of the variable # as Python variable. globals().update(database.variables) # Removing some observations can be done directly using pandas. #remove = (((database.data.PURPOSE != 1) & # (database.data.PURPOSE != 3)) | # (database.data.CHOICE == 0)) #database.data.drop(database.data[remove].index,inplace=True) # Here we use the "biogeme" way for backward compatibility exclude = ((PURPOSE != 1) * (PURPOSE != 3) + (CHOICE == 0)) > 0 database.remove(exclude) # Parameters to be estimated ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) # Definition of new variables SM_COST = SM_CO * (GA == 0) TRAIN_COST = TRAIN_CO * (GA == 0) # Definition of new variables by adding columns to the database. # This is recommended for estimation. And not recommended for simulation. CAR_AV_SP = DefineVariable('CAR_AV_SP', CAR_AV * (SP != 0), database) TRAIN_AV_SP = DefineVariable('TRAIN_AV_SP', TRAIN_AV * (SP != 0), database) TRAIN_TT_SCALED = DefineVariable('TRAIN_TT_SCALED', TRAIN_TT / 100.0, database) TRAIN_COST_SCALED = DefineVariable('TRAIN_COST_SCALED', TRAIN_COST / 100, database) SM_TT_SCALED = DefineVariable('SM_TT_SCALED', SM_TT / 100.0, database) SM_COST_SCALED = DefineVariable('SM_COST_SCALED', SM_COST / 100, database) CAR_TT_SCALED = DefineVariable('CAR_TT_SCALED', CAR_TT / 100, database) CAR_CO_SCALED = DefineVariable('CAR_CO_SCALED', CAR_CO / 100, database) # Definition of the utility functions terms1 = [(B_TIME, TRAIN_TT_SCALED), (B_COST, TRAIN_COST_SCALED)] V1 = ASC_TRAIN + bioLinearUtility(terms1) terms2 = [(B_TIME, SM_TT_SCALED), (B_COST, SM_COST_SCALED)] V2 = ASC_SM + bioLinearUtility(terms2) terms3 = [(B_TIME, CAR_TT_SCALED), (B_COST, CAR_CO_SCALED)] V3 = ASC_CAR + bioLinearUtility(terms3) # Associate utility functions with the numbering of alternatives V = {1: V1, 2: V2, 3: V3} # Associate the availability conditions with the alternatives av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} # Definition of the model. This is the contribution of each # observation to the log likelihood function. logprob = models.loglogit(V, av, CHOICE) # Define level of verbosity logger = msg.bioMessage() #logger.setSilent() logger.setDebug() #logger.setWarning() #logger.setGeneral() #logger.setDetailed() # These notes will be included as such in the report file. userNotes = ('Example of a logit model with three alternatives: Train, Car and Swissmetro.' ' Same as 01logit, using bioLinearUtility, and introducing some options ' 'and features.') # Create the Biogeme object biogeme = bio.BIOGEME(database, logprob, numberOfThreads=2, userNotes=userNotes) biogeme.modelName = '01logitBis' # Estimate the parameters results = biogeme.estimate(algoParameters={'hamabs': True}, saveIterations=True) biogeme.createLogFile(verbosity=3) # Get the results in a pandas table print('Parameters') print('----------') pandasResults = results.getEstimatedParameters() print(pandasResults) # Get general statistics print('General statistics') print('------------------') stats = results.getGeneralStatistics() for description, (value, formatting) in stats.items(): print(f'{description}: {value:{formatting}}') # Messages from the optimization algorithm print('Optimization algorithm') print('----------------------') for description, message in results.data.optimizationMessages.items(): print(f'{description}:\t{message}')