#!/usr/bin/env python # coding: utf-8 # In[ ]: #%% """File 09nested.py :author: Michel Bierlaire, EPFL :date: Sun Sep 8 00:36:04 2019 Example of a nested logit model. Three alternatives: Train, Car and Swissmetro Train and car are in the same nest. SP data """ import pandas as pd import biogeme.database as db import biogeme.biogeme as bio from biogeme import models import biogeme.messaging as msg from biogeme.expressions import Beta, DefineVariable # Read the data df = pd.read_csv('swissmetro.dat', sep='\t') database = db.Database('swissmetro', df) # The Pandas data structure is available as database.data. Use all the # Pandas functions to invesigate the database # print(database.data.describe()) # The following statement allows you to use the names of the variable # as Python variable. globals().update(database.variables) # Removing some observations can be done directly using pandas. # remove = (((database.data.PURPOSE != 1) & # (database.data.PURPOSE != 3)) | # (database.data.CHOICE == 0)) # database.data.drop(database.data[remove].index,inplace=True) # Here we use the "biogeme" way for backward compatibility exclude = ((PURPOSE != 1) * (PURPOSE != 3) + (CHOICE == 0)) > 0 database.remove(exclude) # Parameters to be estimated ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) MU = Beta('MU', 1, 1, 10, 0) # Definition of new variables SM_COST = SM_CO * (GA == 0) TRAIN_COST = TRAIN_CO * (GA == 0) # Definition of new variables: adding columns to the database CAR_AV_SP = DefineVariable('CAR_AV_SP', CAR_AV * (SP != 0), database) TRAIN_AV_SP = DefineVariable('TRAIN_AV_SP', TRAIN_AV * (SP != 0), database) TRAIN_TT_SCALED = DefineVariable('TRAIN_TT_SCALED', TRAIN_TT / 100.0, database) TRAIN_COST_SCALED = DefineVariable( 'TRAIN_COST_SCALED', TRAIN_COST / 100, database ) SM_TT_SCALED = DefineVariable('SM_TT_SCALED', SM_TT / 100.0, database) SM_COST_SCALED = DefineVariable('SM_COST_SCALED', SM_COST / 100, database) CAR_TT_SCALED = DefineVariable('CAR_TT_SCALED', CAR_TT / 100, database) CAR_CO_SCALED = DefineVariable('CAR_CO_SCALED', CAR_CO / 100, database) # Definition of the utility functions V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED # Associate utility functions with the numbering of alternatives V = {1: V1, 2: V2, 3: V3} # Associate the availability conditions with the alternatives av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} # Definition of nests: # 1: nests parameter # 2: list of alternatives existing = MU, [1, 3] future = 1.0, [2] nests = existing, future # Definition of the model. This is the contribution of each # observation to the log likelihood function. # The choice model is a nested logit, with availability conditions logprob = models.lognested(V, av, nests, CHOICE) # Define level of verbosity logger = msg.bioMessage() # logger.setSilent() # logger.setWarning() logger.setGeneral() # logger.setDetailed() # Create the Biogeme object biogeme = bio.BIOGEME(database, logprob) biogeme.modelName = "09nested" # Calculate the null log likelihood for reporting. biogeme.calculateNullLoglikelihood(av) # Estimate the parameters results = biogeme.estimate() pandasResults = results.getEstimatedParameters() print(pandasResults)