%matplotlib inline import matplotlib.pyplot as plt import numpy as np from qutip import * N = 10 wc = 5.0 * 2 * pi w1 = 3.0 * 2 * pi w2 = 2.0 * 2 * pi g1 = 0.01 * 2 * pi g2 = 0.0125 * 2 * pi tlist = np.linspace(0, 100, 500) width = 0.5 # resonant SQRT iSWAP gate T0_1 = 20 T_gate_1 = (1*pi)/(4 * g1) # resonant iSWAP gate T0_2 = 60 T_gate_2 = (2*pi)/(4 * g2) # cavity operators a = tensor(destroy(N), qeye(2), qeye(2)) n = a.dag() * a # operators for qubit 1 sm1 = tensor(qeye(N), destroy(2), qeye(2)) sz1 = tensor(qeye(N), sigmaz(), qeye(2)) n1 = sm1.dag() * sm1 # oeprators for qubit 2 sm2 = tensor(qeye(N), qeye(2), destroy(2)) sz2 = tensor(qeye(N), qeye(2), sigmaz()) n2 = sm2.dag() * sm2 # Hamiltonian using QuTiP Hc = a.dag() * a H1 = - 0.5 * sz1 H2 = - 0.5 * sz2 Hc1 = g1 * (a.dag() * sm1 + a * sm1.dag()) Hc2 = g2 * (a.dag() * sm2 + a * sm2.dag()) H = wc * Hc + w1 * H1 + w2 * H2 + Hc1 + Hc2 H # initial state: start with one of the qubits in its excited state psi0 = tensor(basis(N,0),basis(2,1),basis(2,0)) def step_t(w1, w2, t0, width, t): """ Step function that goes from w1 to w2 at time t0 as a function of t. """ return w1 + (w2 - w1) * (t > t0) fig, axes = plt.subplots(1, 1, figsize=(8,2)) axes.plot(tlist, [step_t(0.5, 1.5, 50, 0.0, t) for t in tlist], 'k') axes.set_ylim(0, 2) fig.tight_layout() def wc_t(t, args=None): return wc def w1_t(t, args=None): return w1 + step_t(0.0, wc-w1, T0_1, width, t) - step_t(0.0, wc-w1, T0_1+T_gate_1, width, t) def w2_t(t, args=None): return w2 + step_t(0.0, wc-w2, T0_2, width, t) - step_t(0.0, wc-w2, T0_2+T_gate_2, width, t) H_t = [[Hc, wc_t], [H1, w1_t], [H2, w2_t], Hc1+Hc2] res = mesolve(H_t, psi0, tlist, [], []) fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8)) axes[0].plot(tlist, array(list(map(wc_t, tlist))) / (2*pi), 'r', linewidth=2, label="cavity") axes[0].plot(tlist, array(list(map(w1_t, tlist))) / (2*pi), 'b', linewidth=2, label="qubit 1") axes[0].plot(tlist, array(list(map(w2_t, tlist))) / (2*pi), 'g', linewidth=2, label="qubit 2") axes[0].set_ylim(1, 6) axes[0].set_ylabel("Energy (GHz)", fontsize=16) axes[0].legend() axes[1].plot(tlist, real(expect(n, res.states)), 'r', linewidth=2, label="cavity") axes[1].plot(tlist, real(expect(n1, res.states)), 'b', linewidth=2, label="qubit 1") axes[1].plot(tlist, real(expect(n2, res.states)), 'g', linewidth=2, label="qubit 2") axes[1].set_ylim(0, 1) axes[1].set_xlabel("Time (ns)", fontsize=16) axes[1].set_ylabel("Occupation probability", fontsize=16) axes[1].legend() fig.tight_layout() # extract the final state from the result of the simulation rho_final = res.states[-1] # trace out the resonator mode and print the two-qubit density matrix rho_qubits = ptrace(rho_final, [1,2]) rho_qubits # compare to the ideal result of the sqrtiswap gate (plus phase correction) for the current initial state rho_qubits_ideal = ket2dm(tensor(phasegate(0), phasegate(-pi/2)) * sqrtiswap() * tensor(basis(2,1), basis(2,0))) rho_qubits_ideal fidelity(rho_qubits, rho_qubits_ideal) concurrence(rho_qubits) kappa = 0.0001 gamma1 = 0.005 gamma2 = 0.005 c_ops = [sqrt(kappa) * a, sqrt(gamma1) * sm1, sqrt(gamma2) * sm2] res = mesolve(H_t, psi0, tlist, c_ops, []) fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8)) axes[0].plot(tlist, array(list(map(wc_t, tlist))) / (2*pi), 'r', linewidth=2, label="cavity") axes[0].plot(tlist, array(list(map(w1_t, tlist))) / (2*pi), 'b', linewidth=2, label="qubit 1") axes[0].plot(tlist, array(list(map(w2_t, tlist))) / (2*pi), 'g', linewidth=2, label="qubit 2") axes[0].set_ylim(1, 6) axes[0].set_ylabel("Energy (GHz)", fontsize=16) axes[0].legend() axes[1].plot(tlist, real(expect(n, res.states)), 'r', linewidth=2, label="cavity") axes[1].plot(tlist, real(expect(n1, res.states)), 'b', linewidth=2, label="qubit 1") axes[1].plot(tlist, real(expect(n2, res.states)), 'g', linewidth=2, label="qubit 2") axes[1].set_ylim(0, 1) axes[1].set_xlabel("Time (ns)", fontsize=16) axes[1].set_ylabel("Occupation probability", fontsize=16) axes[1].legend() fig.tight_layout() rho_final = res.states[-1] rho_qubits = ptrace(rho_final, [1,2]) fidelity(rho_qubits, rho_qubits_ideal) concurrence(rho_qubits) def step_t(w1, w2, t0, width, t): """ Step function that goes from w1 to w2 at time t0 as a function of t, with finite rise time defined by the parameter width. """ return w1 + (w2 - w1) / (1 + exp(-(t-t0)/width)) fig, axes = plt.subplots(1, 1, figsize=(8,2)) axes.plot(tlist, [step_t(0.5, 1.5, 50, width, t) for t in tlist], 'k') axes.set_ylim(0, 2) fig.tight_layout() res = mesolve(H_t, psi0, tlist, [], []) fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8)) axes[0].plot(tlist, array(list(map(wc_t, tlist))) / (2*pi), 'r', linewidth=2, label="cavity") axes[0].plot(tlist, array(list(map(w1_t, tlist))) / (2*pi), 'b', linewidth=2, label="qubit 1") axes[0].plot(tlist, array(list(map(w2_t, tlist))) / (2*pi), 'g', linewidth=2, label="qubit 2") axes[0].set_ylim(1, 6) axes[0].set_ylabel("Energy (GHz)", fontsize=16) axes[0].legend() axes[1].plot(tlist, real(expect(n, res.states)), 'r', linewidth=2, label="cavity") axes[1].plot(tlist, real(expect(n1, res.states)), 'b', linewidth=2, label="qubit 1") axes[1].plot(tlist, real(expect(n2, res.states)), 'g', linewidth=2, label="qubit 2") axes[1].set_ylim(0, 1) axes[1].set_xlabel("Time (ns)", fontsize=16) axes[1].set_ylabel("Occupation probability", fontsize=16) axes[1].legend() fig.tight_layout() rho_final = res.states[-1] rho_qubits = ptrace(rho_final, [1,2]) fidelity(rho_qubits, rho_qubits_ideal) concurrence(rho_qubits) from scipy.special import sici def step_t(w1, w2, t0, width, t): """ Step function that goes from w1 to w2 at time t0 as a function of t, with finite rise time and and overshoot defined by the parameter width. """ return w1 + (w2-w1) * (0.5 + sici((t-t0)/width)[0]/(pi)) fig, axes = plt.subplots(1, 1, figsize=(8,2)) axes.plot(tlist, [step_t(0.5, 1.5, 50, width, t) for t in tlist], 'k') axes.set_ylim(0, 2) fig.tight_layout() res = mesolve(H_t, psi0, tlist, [], []) fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8)) axes[0].plot(tlist, array(list(map(wc_t, tlist))) / (2*pi), 'r', linewidth=2, label="cavity") axes[0].plot(tlist, array(list(map(w1_t, tlist))) / (2*pi), 'b', linewidth=2, label="qubit 1") axes[0].plot(tlist, array(list(map(w2_t, tlist))) / (2*pi), 'g', linewidth=2, label="qubit 2") axes[0].set_ylim(1, 6) axes[0].set_ylabel("Energy (GHz)", fontsize=16) axes[0].legend() axes[1].plot(tlist, real(expect(n, res.states)), 'r', linewidth=2, label="cavity") axes[1].plot(tlist, real(expect(n1, res.states)), 'b', linewidth=2, label="qubit 1") axes[1].plot(tlist, real(expect(n2, res.states)), 'g', linewidth=2, label="qubit 2") axes[1].set_ylim(0, 1) axes[1].set_xlabel("Time (ns)", fontsize=16) axes[1].set_ylabel("Occupation probability", fontsize=16) axes[1].legend() fig.tight_layout() rho_final = res.states[-1] rho_qubits = ptrace(rho_final, [1,2]) fidelity(rho_qubits, rho_qubits_ideal) concurrence(rho_qubits) # increase the pulse rise time a bit width = 0.6 # high-Q resonator but dissipative qubits kappa = 0.00001 gamma1 = 0.005 gamma2 = 0.005 c_ops = [sqrt(kappa) * a, sqrt(gamma1) * sm1, sqrt(gamma2) * sm2] res = mesolve(H_t, psi0, tlist, c_ops, []) fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8)) axes[0].plot(tlist, array(list(map(wc_t, tlist))) / (2*pi), 'r', linewidth=2, label="cavity") axes[0].plot(tlist, array(list(map(w1_t, tlist))) / (2*pi), 'b', linewidth=2, label="qubit 1") axes[0].plot(tlist, array(list(map(w2_t, tlist))) / (2*pi), 'g', linewidth=2, label="qubit 2") axes[0].set_ylim(1, 6) axes[0].set_ylabel("Energy (GHz)", fontsize=16) axes[0].legend() axes[1].plot(tlist, real(expect(n, res.states)), 'r', linewidth=2, label="cavity") axes[1].plot(tlist, real(expect(n1, res.states)), 'b', linewidth=2, label="qubit 1") axes[1].plot(tlist, real(expect(n2, res.states)), 'g', linewidth=2, label="qubit 2") axes[1].set_ylim(0, 1) axes[1].set_xlabel("Time (ns)", fontsize=16) axes[1].set_ylabel("Occupation probability", fontsize=16) axes[1].legend() fig.tight_layout() rho_final = res.states[-1] rho_qubits = ptrace(rho_final, [1,2]) fidelity(rho_qubits, rho_qubits_ideal) concurrence(rho_qubits) # reduce the rise time width = 0.25 def wc_t(t, args=None): return wc - step_t(0.0, wc-w1, T0_1, width, t) + step_t(0.0, wc-w1, T0_1+T_gate_1, width, t) \ - step_t(0.0, wc-w2, T0_2, width, t) + step_t(0.0, wc-w2, T0_2+T_gate_2, width, t) H_t = [[Hc, wc_t], H1 * w1 + H2 * w2 + Hc1+Hc2] res = mesolve(H_t, psi0, tlist, c_ops, []) fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12,8)) axes[0].plot(tlist, array(list(map(wc_t, tlist))) / (2*pi), 'r', linewidth=2, label="cavity") axes[0].plot(tlist, array(list(map(w1_t, tlist))) / (2*pi), 'b', linewidth=2, label="qubit 1") axes[0].plot(tlist, array(list(map(w2_t, tlist))) / (2*pi), 'g', linewidth=2, label="qubit 2") axes[0].set_ylim(1, 6) axes[0].set_ylabel("Energy (GHz)", fontsize=16) axes[0].legend() axes[1].plot(tlist, real(expect(n, res.states)), 'r', linewidth=2, label="cavity") axes[1].plot(tlist, real(expect(n1, res.states)), 'b', linewidth=2, label="qubit 1") axes[1].plot(tlist, real(expect(n2, res.states)), 'g', linewidth=2, label="qubit 2") axes[1].set_ylim(0, 1) axes[1].set_xlabel("Time (ns)", fontsize=16) axes[1].set_ylabel("Occupation probability", fontsize=16) axes[1].legend() fig.tight_layout() rho_final = res.states[-1] rho_qubits = ptrace(rho_final, [1,2]) fidelity(rho_qubits, rho_qubits_ideal) concurrence(rho_qubits) from qutip.ipynbtools import version_table version_table()